
General Disclaimer 

One or more of the Following Statements may affect this Document 

 

 This document has been reproduced from the best copy furnished by the 

organizational source. It is being released in the interest of making available as 

much information as possible. 

 

 This document may contain data, which exceeds the sheet parameters. It was 

furnished in this condition by the organizational source and is the best copy 

available. 

 

 This document may contain tone-on-tone or color graphs, charts and/or pictures, 

which have been reproduced in black and white. 

 

 This document is paginated as submitted by the original source. 

 

 Portions of this document are not fully legible due to the historical nature of some 

of the material. However, it is the best reproduction available from the original 

submission. 

 

 

 

 

 

 

 

Produced by the NASA Center for Aerospace Information (CASI) 

https://ntrs.nasa.gov/search.jsp?R=19770009848 2020-03-11T19:23:10+00:00Z



IMPORT SAMSO-TR.76-137

D

SAP `^ 15^';.^

•

( Evaluation of HAL/S Lanpage.p b' ty
Using	 S $s Compiler Writing System (CWS)

C)

Systems Software Depotment
jIn6matfon Processing Division
'Engineering Science Operati na

The Aerospace Corporation
'El Segundo- j !Calif.902459?

r

^s

• 20 August 1976

Final Report

13 PR01ICn FQR 0UI31.IC OCICASE•
DISTRIBIJTION UNLIMITED

Pre arad:.Ior.
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

'LANGLEY RESEARCH CENTER
Laugley Station, H&Mjpton i V irgint& 2SSBS

and

SPACE AND MISSILE SYSTEMS ORGANIZATION
AIR FORCE SYSTEMS COMMAND

Los Angeles Air Force Station
P.O. Box 92960, Worldway Postal Center

Los Angeles, Calif. 90009



t

J

t ^^

IllIy

I j

I

ik

This final report was submitted by The Aerospace Corporation,
El Segundo, California 90245, under Contract F04701-75-C-0076 with the
Space and Missile Systems Orgmaization, Deputy for Advanced Space Pro-
grams, P.O. Hose 92960. Worldway Poofal Center, Los Angeles, E:alifbrnta
90009. It was reviewed and approved for The Aerospac# Corporation by
S. C. McCarty and K. F. Steffan, Engineering Sci-.Ace Operations and
G. W. Anderson, Advanced Programs Division. The Air Force project
engineer was Captain Craig E. Miller, SAMSO/YAD.

This report has been reviewed by the Information Office (OI) and is
releasable to the National Technical Information Service (NTIS). At NTIS,
it will be available to the general public, including foreign nations.

This technical report hus been reviewed and is approved for publication.
P'ublicatlon of this report does not constitute Air Force approval of the
report's Findings or conclusions. It is published only for the exchange and
stimulation of ideas.

+	

A

Crag E. Xqlle-r,
Project Officer
Computer Technology Function
Development Directorate

THE COMMANDER

.V.O 0 ve^i..ae

Space Programs

.. .- 7...., — F'. +.....4 ......^
Computer Tech aology Function
Qment Directorate

on	 "a@ PPM it
IOC	 #of Seals( Q

NUN IMCD	 0

AT....................... .......... 	 ..........
I13311FRON i111LAIJUlY COW



1 7 NC LA I;SI FIE D
SECURITY CLASSIFICA T I ON OF THIS PAGE (When been llntwed)

REMRT DOCUMENTATION PAGE 	 READ INS'T'RUCTIONS
,r	BEFORE COMPLETING FORM

I EW7.0	 12 GOVT ACCESSION NO.1 S. IMCIPIENT • S CATALOG NUMSER

SAMSIti R-76-:37	 -^
4 TITLE ;and Subtitle)	 _ 	 --..	 s ng $4.arsnT • a inn ^Y

Evaluation of HAL/S Language Compilability l lnalxe,.Qt.
j	 Using SAMSO's Compiler Writing System (CWS?. Marfi^75	 Fete 1 76

1271	 tJ(68^-1
7 AU T HOR(*)	 BER(a)

M./Fe IIciano,
Ii. D./Anderson	 /	 F#47#1-75-C ,4 7r,

j	 J. W. /Bond. III
73N NAME AND ADDRESS	 10. PROGRAM ELEMENT, PROJECT, TASK

AREA 6 WORK UNIT NUMBERS
The Aerospace Corporation
E1 Segundo, California 90245	 i

II CONTROLLING OFFICE NAME A"D ADDRESS
National Aeronautics and Space Administratio2Z,0 Aug76
Langley Research Center	 NUMBER OF PAGE5
Langley Station, Hampton, Va 23365	 70

• MONITORING AGENCY NAVE b ADDRESS(!f different from Controlling Offlae)	 IS. SECURITY CLASS. (of thla report)
Space and Missile Systems Organization
Air Force Systems Command 	 Unclassified
Los Angeles Air Force Station
P.O. Box 92960, Worldway Postal Center 	 an' SCHEDUL1EIC

Ar1oN DowrtcRAa1 N G

Los	 el s	 000
IR. DISTRIBUTION STATEMENT (of this Report)	

1
/ ^

Approved for Public Release; DTs r:butio	 li
e

 mited.

17. DISTRIBUTION STATEMENT (of the abe *act 60ten"dln Bloch 20, 11 differen t from Report)

W SUPPLEMENTARY NOTES 	
...

19. KEY WORDS (Continue on reverse aide it necessary and Identify by block number) 	 4

Computer language	 Language comparisons
Language constructs	 Programming languages
Compilert`	 Compiler writing system

a ABSTRACT (Continue an reverse ride It naceanary and fdeNtlly by black numbor)

NASA/Langley is engaged in a program to develop an adaptable guidance and
control software concept for spacecraft such as shuttle-launched payloads.
It is envisioned that this flight software be written in a higher -order language, A^
such as HAL /S, to facilitate changes or additions. To make this adaptable
software transferable to various onboard computers, a compiler writing
system capability is necessary. A joint program with the Air Force Space
and Missile Systems Organization was initiat ed to determ ine if the

a

f

FORM
QQIFA«,MiLE, 14T3 UNCLASSIFIED !!:^ `n ?^

SE66AITY CI. A551FICATION OF THIS PAGE (When Dets Lrntered)



UNCLASSI1"IM)
MITT GLA$%IVIGAT1VM Ur TMI'rAW%(WMM KJlf•

T9 KEY MO 'fbs i

a)

Compiler Writing System (CWS) owned by the Air Force could be utilized foi
this purpose. The present study explores the feasibility of including the
HAL/S language constructs in CWS and the effort required to implement
these constructs. This will determine the iompilability of HAL/S using
CWS and permit NASA/Langley to identify the HAWS constructs desired for
their applications. The study consisted of comparing the implementation of
the Space Programming Language using CWS with the requirements for the
implementation of HAL/S. It is the conclusion of the study that CWS already
contains many of the language features of 14AL/S and that it can be expanded
for compiling part or all of HAL/S.

It is assumed that persons reading and evaluating this report have a basic
familiarity with (1) the principles of compiler construction and operation,
and (2) the logical structure and applications characteristics of HAL/S and
SPL. k

UNCLASSIFIED
SECURITY CLASSIFICATION 00 0 Tills *AaEfften Dwtw Enters*



PREFACE

This report was prepared for the Advanced Programs Division, GLudance
Program Office of The Aerospace Corporation and for the Stability and
Controls Branch of the Flight Dynamics art'. Controls Division, National
Aeronautics and Space Administration, Langley Reaeareh Center.

The report authors are M. Feliciano, H. D. Anderson, and J. W. Bond, III,
of the Information Processing Divisior. Substantial contributions and helpful
suggestions to this report by Allan Gott and Leila Jennings of the information
Processing Division and Linda Lisak of the Advanced Programs Division
are gratefully acknowledged.

a

-iv-



CONTENTS

!. INTRODUCTION	 . .	 . . . . . . . . . . . . . . .	 .	 .	 .	 .	 .	 .	 . I

1. 1	 Background	 .	 .	 .	 .	 .	 .	 .	 . I
1. 2	 Purpose of the Study	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 .	 . I
1. 3	 Stunmary of Results and Recommendations .	 .	 .	 .	 .	 .	 .	 . 1

2. GENERAL DISCUSSION 	 . . . . . . . . . . . . .	 .	 .	 .	 . 3

2. 1	 The Compilation Process . . . . . . . . . . .	 .	 .	 .	 .	 . 3
2. 1. 1	 Lexical Analysis	 .	 .	 .	 .	 .	 .	 0 3
2. 1.2	 Syntactic Analysis 	 .	 . 5
2. 1.3	 Semantic Analysis 	 .	 . . .	 .	 .	 .	 . 6
2. 1.4	 Code Generation	 . .	 . . .	 .	 .	 .	 . 6
2. 1. 5	 Bookkeeping	 . . . . 6

• 2. 1.6	 Code Optimization	 . . . 6
2. 1.7	 Error Recovery and Error Analysis 7

2.2	 Compiler -Writing Systems 7
Z. 3	 CWS .	 .	 .	 .	 . 7
2.4	 SPL... 8

3. METHODOLOGY . . . . . . . . . . . . . . . . .	 .	 .	 .	 .	 .	 .	 . 11

3.1	 Objects to be Compared	 . . . . . . . . .	 .	 ,	 .	 .	 0 11
3.2	 Criteria for Evaluation . 	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 .	 . 12
3. 3	 Explanation of the Tables . . . . . . 13

4. RESULTS .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . . 17

4.1	 Summary of Results	 . . . . . . . . 0 17
4.7.	 Comments on Specific Features 	 . . . . . . .	 . 18

4.2.1	 Primitives	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 . 18
4.2.2	 Block Structure and Organization	 . . .	 .	 .	 .	 .	 .	 .	 . 19
4.2.3	 Declare Group	 . . .	 . . . . . . . . . .	 .	 .	 .	 .	 .	 .	 . ZZ
4.2.4	 Label Attributes	 .	 . .	 . . . .	 . .	 .	 . .	 .	 .	 .	 .	 .	 .	 . 23

i	 -V

5

t

t



CONTENTS (Continued)

4.2.5 Type Specification	 . . . .	 . . .	 .	 .	 .	 .	 . Z3
4. 2. b Initialization	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 .	 . 24
4.2.7 Data Referencing	 . . . . .	 . 25
4.2, S Natural Sequence .	 . 25
4. Z. 9, 10 Subscripting	 .	 .	 .	 .	 . .	 .	 .	 .	 .	 . 26

4.2. 1I Regular Expressions	 .	 . 27
4.2. 12 Conditional Expressions. 28
4.2. 13 Event Expressions	 . . . . .	 . 29
4.2. 14 Normal Functions . . . . . . . . . 29

4.2. 15 Explicit Type Conversions	 . .	 . . . .	 .	 .	 .	 .	 . 29
4.2. 16 Explicit Precision Conversions . . . . .	 .	 .	 .	 .	 . 29
4. Z. 17 IF Statement	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . . 29

4.2. 18 Assignment Statement	 . . . . . . . 30
4.2. 19 CALL Statement. . . . . . . . . . . . 30
4. Z. 20 RETURN Statement	 . . . . . . . . . 30

4. 2.21 DO... END Statement Group	 . . . . .	 . 30
4.2.22 The SCHEDULE Statement . . . . . .	 .	 .	 .	 . 31
4.2.23 Other Real-Time Executive Statements .	 .	 .	 .	 . 32
4. 2.24 Error Recovery and Control	 . . . . . .	 .	 .	 .	 .	 . 3Z
4.2.25, Z6 Input and Output Statements 	 .	 . 32
4.2.27 Systems Language Features	 . . 32

4. 3	 Subsets .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . . 33

APPENDIX; TABLES OF HAL/S FEATURES 0	 0 A-i

I.

_V



FIGURES

Ia. Relationship Between Host and Target Computers . . . . . . 	 4

1b.	 A Compiler Configuration Built Using CWS . . . . . . . . . .	 9

TABLES

A-1. Listing of Appendix Tables of HAL/S Features . . . . . . . .	 A-ii



t

I
f

I. INTRODUCTION

	

1.1	 BACKGROUN13

NASA / Langley is engaged in a program to develop -a • adaptable
,,_:dance and control software concept for spacecraft such . a shuttle - launched
payloads. Such a software package would contain generalized control algor-
ithms, hardware interfaces, and di gital filters which could be adapted to
different spacecraft configurations or missions by parameter changes rather
than by recoiling. It is envisioned that the flight software be written in a
higher order language, such as HAL/S, to facilitate changes and/or additions.
To make this adaptable software transferable to various onboard computers,
a compiler writing system capability is necessary. A joint program with the
Air F )rce Space and Missile Systeras Organization (SAMSO) was thus initiated
to determine if the Space Programi ,ning Language (SPL) Compiler Writing
System ( CWS) could be utilized for this purpose. This approach would take
advantage of the compiler writing capability already owned by the government.

	

1.2	 PURPOSE OF THE STUDY

The present study is intended to Establish the feasibility of repre-
senting the HAL/S language constructs in the CWS intermediate language and
to determine the effort required to implement these constructs in CDC 6600
object code. This will define tEe compilability of HAL/S using the SAMSO
CWS and permit NASA /Langley to identify the HAL/S constructs or subset
desired for the onboard guidane:e and control software applications.

	

1.3	 SUMMARY OF RESULTS AND RECOMMENDATIONS

The resources avai °.able to the above mentioned compiler -writing
system are sufficient to produce a compiler for HAL /S with a reasonable
amount of effort. This is the result of having used CWS for writing compilers
for SPL, a higher order aerespace oriented programming language sharing
common goals with HAL /S. The following features of HAWS require attention-

-I-

"p `^^•



Structures, which do not exist in SPL; real-time features that are dependent
on a real-time executive or operating system, which are more elaborate
than those found in SPL; error-recovery features that depend on an error-
recovery executive, which are more elaborate than is SPL; and arrays of
matrices and vectors.

It is estimated that implementation of the above mentioned features
will take up most of the effort involved in incorporating HAL/S features into 	 ;I
the CWS intermediate language. A complete account of each HAL/S language
feature is given in the table in the Appendix. Section 4.2 of this report con-
tains detailed comments on the CWS compatibilities or compiler problems
associated with each feature described in the Appendix.

It is the conclusion of the study that the CWS intermediate language
already contains many of the HA'./S language features and can be readily
expanded to serve very well for compiling part or all of HAL/S.

V

i

^	 3
^I }

i'
S	 ^

F	 d

I	
^

i

I '`

-_ m:^v-s::.^a^^^-e—+rer—umf ^^arw^^r^-	 —	 ^'S'^^'^Y_a^r.Gr^•-`f



2. CENERAL DISCUSSION

Section 2 is given as general technical background to the discussions
in subsequent sections.

2.1	 THE COMPILATION PROCESS	 j

A compiler is a computer program which accepts as input a source
program written in a higher-order language and produces as output an equiva-
lent program called the object program in a fo; rn acceptable to a computer.
The compiler resides in the host computer and produces object programs for
the target computer. The relationship between host and ta rget computers isg	 P	 P	 g	 P	 ^

illustrated in Figure la.

Although a variety- of techniques can be used in a compiler imple-
mentation,mentation, a number of functions are common to most compilers. These
include lexical analysis, syntactic analysis, semantic analysis, code genera-

.	 tion, bookkeeping, code optimization, and error recovery and error analysis.
These functions are discussed below. A compiler is not necessarily struc-
tured according to the various functions it performs. In practice the above
mentioned functions are conceptual entities which are difficult to separate
from each other in an actual compiler. Nevertheless, they are useful con-
cepts for descriptive purposes.

A compiler may examine the source program or equivalent repre-
sentations of it one or more times. Each such examination is called a pass.
The rosult of a pass is a transformation of its input into an equivalent form.
A compiler may perform several functions in a pass; in fact, there exist one-
pass compilers although many, if not most, compilers contain at least two
passes.

2. 1. 1	 Lexical Analysis

A higher-order language uses a set of characters from which are
formed the primitives of the language. In HAL/S examples of primitives are
the comma separator, the reserved word DECLARE:, and an identifier.

-3-	 ^:<:



	

SOURCECOMPILER	 OBJECT
PROGRAM	 IN HOST	 PROGRAP^'

	

COMPUTER	 FOR TARGET
COMPUTER

Figure Ia. Relationship Between Host and
Target Computers

R

-4-



Primitives. then, aie substrings of one or more characters that are con-
sidered to be an entity of the language very much like words and punctuation
marks are considered entities in a natural language.

Lexical analysis is the process of identifying the various primitives
used in a source program. Usually the lexical analyzer delivers a token
which contains two components: the identification of the primitive, and the
information about the primitive. Thus, for example, the token of a variable
may consist of the designation of the primitive as an identifier and the name 	 j
of the identifier. In actual practice more information is given. Lexical
analysis is common to all compilers.

2. 1.2	 Syntactic Analysis

A sentence of a natural language is analogous to a declaration or a
statement of a higher-order programming language. The purpose of syntax

•	 analysis is to parse the "sentences" of the source program and to form parse
trees. It was observed that lexical analysis groups characters into tokens.
Roughly speaking, syntactic analysis groups tokens into trees. The parse
trees formed by a syntactic analyzer arise from the specified constructs of 	 ±'
the language. The parse trees give a complete syntactic analysis of the
statements and declarations of the program. Therefore, the result of syntac-
tic analysis is a transformed input source program in which relationships
among the primitives (tokens) are given in exacting detail. In many c-Mpilers 	 {
the output of syntactic analysis is explicit and consists of a set of parse trees. 	 i.
Each declaration (nonexecutable statement) results in one or more dictionary
entries, and each executable statement has its own tree. Thus, there are
assignment trees, IF... THEN trees, and so on.

The trees are then processed to produce object code. It will be
f

seen in the comments on specific features of HAL/S that reference is fre-
quently made to the availability of various kinds of trees in CWS.

-5-



2.1.3	 Semantic Analysis

The function of semantic analysis is to establish if valid relation-
ships exist among various elements of the program. For example, does a
COTO statement have an admissible label? Do the number of parameters
in a procedure CALL agree with the number of parameters in the procedure
declaration? Semantic analysis is also required to resolve forward references.
How much semantic analysis is performed depends on the objectives of a
compiler as well as on technical grounds.

2. 1.4	 Code Generation

Code generation is the ultimate purpose of the compiler. Some
compilers are designed to produce machine language code. Most, however,
produce assembler language code. An advantage gained by producing
assembler code is that some "tightening" or optimization of the object cone
can best be achieved at this level.

2.1.5	 Bookkeeping

The identifier token produced during lexical analysis must deliver
information about the identifier such as its name and its type. All information
about identifiers is listed in a symbol table or dictionary. In this way, the
identifier token need only point to the place in the symbol table which contains
the information about it. The management of the symbol table is termed
bookkeeping. Bookkeeping also includes the management of any other tables
used during compilation.

y	 The symbol table is constructed to facilitate obtaining information

i
	 from it and storing information into it. The symbol table is used during code
I	 generation to provide the information needed for allocation of storage to the

various identifiers and constants used in the source program.

V
	

2. 1.6	 Code Optimization

Many compilers use algorithms to reduce the run time or the
storage requirements of the object program. Although no compiler can
guarantee that an object code is optimized in time or in space, or in both. the

ti

-6-



term "code optimization" persists. The speed of the compiler is generally
reduced as the amount of optimization increases.

2. 1.7	 Error Recovery and Error Analysis

This function refers to the ability of the compiler to continue
processing a source program that contains errors and to the ability to deter-
mine the kinds of errors in the source program. This function is common to
all compilers.

2.2	 COMPILER WRITING SYSTEMS

The purpose of a compiler writing system is to facilitate writing
compilers. Several resources are available in compiler writing systems. A
compiler writing system may make available one or more languages specifi-
cally designed for writing compilers. The tasks of bookkeeping and of pro-
gram and data management maybe simplified. Some functions--lexical
analysis and syntactic analysis--can be mechanized or they can be written
quickly by using established patterns. Also, the system may allow the use of
previously developed compilation algorithms.

The success of compiler writing systems is based on various func-
tions of the compilation process being well understood and on the proven
ability of compiler writers to develop efficient, general purpose algorithms
that require only minor modifications for a specific compiler implementation.

It is not true that compiler writing systems have been developed
which make writing compilers a trivial task. At present, compiler writing
systems require a thorough knowledge of certain aspects of the compilation
process. Also, present systems are large, complex programs which are
not easily manageable. Despite this, compiler writing systems facilitate to
a great extent the task of writing compilers.

2.3	 CWS

The compiler writing system CWS is a significant upgrade of the
SPLIT system originally developed by Systems Development Corporation for
the Air Force Space and Missile Systems Organization.

-7-



CWS allows the use o.' two languages --Syntax Analysis Language
(SAL) and Generator Language (GEN). These languages were designed to
simplify the vxriting of compilers.

CWS has been used primarily to produce three-pass compilers.
The first pass consists of lexical analysis and syntactic analysis. From it
are obtained the symbol table and the parse trees. These serve as input to
the second pass, which consists of semantic: analysis, data allocation, and
global optimization. Modifications to the symbol table and to the parse
trees are the result of the second pass. The third pass uses this informa-
tion to generate code and to do some local code optimization. A compiler
configuration built using CWS is sketched in Figure 1b.

Usually, the first pass is called the front end of the compiler, and
the other two passes are called the back end. The library of subroutines
used bq- the three passes are termed the support package of the CWS. Note
that the first pass depends on the language being compiled. The information
used by CWS to produce the first pass constitutes the specifications of the
language. Once the specifications of a language are given in an acceptable
form, the front end of the compiler can be built without regard to the target
computer; i.e., it is machine independent.

The second pass requires some knowledge of the target computer,
but not to the extent required by the third pass. In fact, some of the tasks in
the second pass are parametrized. To the extent that this has been done, the
second pass can be reused with only minor modifications. The third pass,
in contrast, requires a thorough knowledge of the target computer and roust
usually be rewritten when code is to be generated for a new target computer.

2.4	 SPL

The higher order programming language SPL was developed by
Systems Development Corporation for the Air Force Space and Missile Sys-
tems Organization. SPL is intended for the programming of space and air-
borne applications.

-8-



B OOKKEEP I NG

LEX 1 CAL	 SEMANTI C	 CODE
ANALYS I S	 ANALYSIS	 GENERATION

AND DATA	 LOCAL
SYNTACTIC	 ALLOCATION	 CODE
ANALYSIS

	

	 GLOBAL CODE	 OPTIMIZATION
OPTIMIZATION

f

	ERROR RECOVERY AND	 LIBRARY OF SUBROUTINES
ERROR ANALYSIS 	 USED BY THE THREE PASSES

I	 _	 Figure 1be A Compiler Configuration Built Using CWS

-9-

1-1._.-,- - -	 - -	 --



i

	

	 The CWS has been used to develop compilers for SPL for several
. " rget computers. To the extent that other languages are similar to SPL,
the resources developed within CWS for the production of SPL compilers can
be used in the production of compilers for other languages. Since most higher
order programming languages share many common features, many of the
facilities of CWS can assist the writing of compilers for languages other than
SPL. Specifically., because they are designed for the same types of applica-
tions, SPL and HAL/S share many common features. Therefore, the CWS
has many features which facilitate writing a compiler for HAL/S.

In brief, SPL does not handle the HAL/S structures. The real-
time features and the error processing features of HAL/S are handled in SPL
by the CHRONIC statement. However, in HAWS these features are extended
and elaborated beyond the corresponding features in SPL. The above ar ^ the
major portions of concern. Another concern is the elaborate scheme of arrays
in HAL/S; however, this turns out to be mostly a problem of syntax. In other
areas differences are accounted for by SPL having more operators than does	 .
HAL/S and in turn by HAL/S having more data configurations than does SPL.

r

t

-la-



3. METHODOLOGY

This report establishes the degree of difficulty required to write a
compiler for HAL/S using CWS. This was accomplished by listing all fea-
tures of HAL/S and establishing for each feature the degree of effort which
would be required to process it. In turn, this was achieved by establishing
the degree of correspondence between each HAWS feature and the available
resources in CWS.

3.1	 OBJECTS TO BE COMPARED

Each HAL/S feature was ranked as to degree of difficulty involved
in its compilation. Examples of HA.L/S features are assignment statements,
scalar declarations, procedure calls, and structure declarations. The rank
of difficulty was established by first establishing semantic correspondence
with an SPL feature. Next, the syntactic organization of the two features was
compared. Finally, the process used to compile the SPL feature was com-
pared with the HAL/S feature to establish a correspondence in the process.

For example, the HAWS assignment statement is similar to the
SPL assignment statement. Their syntactic structures were compared and
were found to be the same. The process involved in compiling the SPL
assignment statement was matched with the requirements in compiling the
HAL/S assignment statement. As an aside, it was found that the SPL assign-
ment statement is more elaborate than the ore in HAL/S and, therefore, a
HAL/S compilation process would require that the existing SPL process be
slightly restricted.

Briefly, a HAL/S feature was matched with an SPL feature. Re -
quirements for compiling the HAL/S feature were compared with the cor-
responding resources available for compiling SPL. Discrepancies between
HAWS requirements and available SPL resources were noted.

1

s

0

-11-



w

3.2	 CRITERIA FOR EVALUATION

Whenever a HAL/S feature matched with an SPL feature in semantic
content, their syntactic structures were compared. If 'the syntactic struc-
tures matched, it was expected and verified that the available SPL compilation
process could be used with only minor modifications to process the HAL/S
feature.

If a HAL/S feature matched an SPL feature in semantic content but
not in syntax, then two processes were investigated; syntactic analysis and the
second pass, particularly the latter. If the second pass matched the require-
ments of the HAL/S feature, then the requirements for syntactic analysis
were examined. An evaluation was made of the difficulty of doing the syntac-
tic pass. It was expected and found that wherever a parse tree existed for the
feature, only the syntactic analyzer would be affected.

If a HAL/S feature did not match any SPL feature in semantic con-
tent, then a ranking was established according to three categories: (1) an SPL
feature exists which contains more than the HAL/S feature, (2) an SPL fea-
ture exists which is contained in the HAL/S feature, and (3) no SPL feature
exists which approximates the HAL/S feature.

In category (1), the problem reduces to restricting the compilation
process to the HAL/S semantic subset. It was examined and verified that in
syntactic analysis the parse tree could be restricted through default options

!	 which would impose satisfactory restrictions on further processing.

In category (2), the choice was made to determine the necessary
extensions which would be required in the second pass. Then a corresponding
modification to the parse tree would be expected. Then, the difficulties in

j	 modifying the second pass and in producing the parse tree were determined.

In category (3), emphasis was placed on the second pass. The
reason for this is that most of the difficulties in introducing a new parse tree
would be found in the second pass. Then the syntactic analysis for the feature

j	 was examined to determine whether any additional, problems could be found.

;I

i
}

;I

-12-

s



In general, the ranks and the compatibility used in the table in the
Appendix were established using the above criteria.

3. 3	 EXPLANATION OF THE TABLES

The tables in the Appendix present the study findings. A partial
table example is shown below:

11. Regular Expressions

Item Prior--	 HAWS	 Associated	 Compati-
ID	 ity	 Feature	 SPL Feature	 bility	 Rank

1	 1	 Arithmetic expres- Arithmetic expres-
sions of scalars and r^ons of simpia
integers	 variables

At the upper left is found "ll. Regular Expressions, "" which is a numbered
category of features. The first column is labeled "Item ID'" and contains the
number 1. This number, when coupled with the category number (11), gives
11. 1, which is the specific item number. The next column is "HAL/S Fea-
ture, " which contains "Arithmetic expressions of scalar and integers."
Thus, item 11. 1 refers to the HAL/S feature "Arithmetic expressions of
scalars and integers." The associated SPL feature is "Arithmetic expressions
of simple variables. "' This establishes the correspondence between the HAL/S
feature and the SPL feature. If the entry under SPL feature were blank, then
there is no corresponding SPL feature.

Three other columns need explanation: "Priority, " "Compatibility,
and "Rank." The entries in these columns are integers and they are explained
below.

"Priority" refers to the need of the HAWS feature for various pur-
poses. The entries here are integers whose values and meanings are listed
below.

I

E

1	 ^

r

I

i

I
-13-



1.	 The HAL/S feature is a basic feature of most higher order
programming languages. This implies that all programming
languages of interest have the feature and that no reasonable
subset of the language could do without the feature.

Z.	 The HAL/S feature is useful or necessary for in-flight com-
puter applications. However, features marked 2' , are not
strictly necessary. Most of the features marked 2* depend
upon a real-time executive which supports the feature. In-
flight computers have been programmed so that any real-time
control is performed by the real-time executive and not by
the applications programs. Therefore, the selection of fea-
tures of priority 2 and,* can only be made after the mode of
operation of the in-flight computer has been designed.

3. A FORTRAN IV-like language can be built from features of
priority 1, some features of priority 2, and features of
priority 3. This then would form a HAL/S subset for use in
ground computers.

4. A HAL/S feature of priority 4 is desirable for some applica-
tions and not for others. Therefore, the selection of features
of priority 4 depends on the applications envisioned for the
particular environment.

"Compatibility" refers to the degree of match which exists between
an SPL feature and the HAL/S feature. The value shown establishes the
degree to which the correspondence occurs. The values and the meanings
of the entries are listed below.

1. The HAWS feature and the listed SPL feature match in syntax
and in semantics (with the possible exception of minor modi-
fications in syntax).

2. The HAL/S feature is semantically like the SPL feature.

3. The syntax of the HAL/S feature and of the SPL feature match.

4. The HAL/S feature and the SPL feature are similar but with
modifications.

5. There is no corresponding SPL feature.

-14-



"Rank" refers to the estimated degree of difficulty required to
modify the existing intermediate language forms required for implementa-
tion of the HAL/S feature. Listed below are the values and their meanings.

1.	 A. straightforward process, which for the most part uses
resources already available to CWS.

Z.	 This fe,:tture can be processed using minor mod =''cations of
existing elements in CWS, or it is a new feature which can
be implemented with little effort.

3. This feature requires substantial modification to the available
resources, or it is a new feature which can be implemented
i'vith a moderate amount of effort.

4. 'This feature requires a major effort to implement under the
existing resources, or it is an advanced new featw e.

-15-

r



4. RESULTS

In the following paragraphs are given the general findings of the
study, detailed comments on each feature of HAL/S, and a comment on
defining subsets of HAL/S.

4. 1	 SUMMARY OF RESULTS

The study shows that HAL/S and SPL have many features in
common. The study also shows that most features of HAL/S can be compiled
with reasonable effort using the resources available to CWS. Salient excep-
tions to the above are listed below.

i
STRUCTURES do not exist in SPL and they require a method of

data referencing not currently implemented.

TASK BLOCKS AND UPDATE BLOCKS require some modifica-
tion to the existing intermediate language for their implementation.

ARRAYS in HAL/S are more elaborate than they are in SPL.
Again, modifications are needed here.

REPLACE WITH ARGUMENTS may lead to serious difficulties
because of the nesting of replace statements. This feature is implementation-
dependent and nesting can be disallowed.

PARTIAL INITIALIZATION may result in a slower compilation.

REAL-TIME FEATURES are more elaborate than exist in SPL.
They depend on a real-time executive. Their implementation depends upon
the support of the real-time executive.

ERROR RECOVERY AND CONTROL is much more elaborate in
HAL/S than it is in SPL. Implementation depends on the support of an error
recovery executive.

MACROS involve the use of the operating system because of
necessary linkages.

-17-

_	 _	 ;p 



4.2	 COMMENTS ON SPECIFIC FEATURES

Below are given comments on the HALLS features. The fea-
tures are listed along with a numbering scheme for cross -reference to the
tables in the Appendix of this report. Thus, Tll. I refers to Table 11, line 1,
"Arithmetic expressions of scalars and integers. "

4.2.1	 Primitives (T1. )

The set of primitives of HAL/S and the rules for forming them
are similar to those used by many other languages. A straightforward lexical
analyzer should be sufficient to convert the primitives of HAL/S to tokens.
A prepass may be required if two-dimensional formats are admissible in an
implementation of the language (TI.4). It should be observed that the
REPLACE statement M. I and T3.2) may affect the lexical analyzer because
REPLACE allows for substitution of a string of text by another string of text.

4.2. 1.1	 Character Set (TI. 1)

The HALLS character set contains 86 characters and seven
additional extended-set symbols. An implementation of HAL/S may be
affected by the peculiarities of the character set for any given computer
system. For example, the alphabet may be restricted to uppercase letters.

4. Z. 1. 2	 Reserved Words M.2)

Reserved words tend to simplify the lexical analyzer.

4.2.1.3	 Identifiers (T1. 3)

The rule for constructing an identifier is used in many languages.
The maximum number of characters in an identifier is 32.

4.2.1.4	 Literals (T1.4)

The type of an arithmetic literal (integer or scalar) is contextu-
ally defined, and no distinction is made between single and double precision.
Because of this, arithmetic literals must be processed exactly as would be
arithmetic variables. This is particularly true in computations occurring

..lg-



during compilation; for example, the computation of the size of each dimen-
sion in an array declaration. Also noted about arithmetic literals is the
admissibility of multiple exponents. The maximum inumber of exponents
allowed in an arithmetic literal is implementation-defined and could be re-
stricted to one.

Bit literals and character literals can be processed straighL-
forwardly. Notice that "/ °" is the opening delirniter of a comment even in a
character literal (T1.6).

4.2. 1. 5	 Two-Dimensional Source Formats (Tl. ).

The specifications of HAL/S regard the two-dimensional form
as standard. However, an implementation of HAL/S is not required to follow
the norm. Two-dimensional formats may require a prepass; that is, a pass
through the source program before lexical analysis.

4.2. 1.6	 Comments and Blanks (T1.6)

Rules governing blanks are precisely 3efined. Comments may
occur wherever blanks are legal (T1.4).

4.2.2	 Block Structure and Organization (T2.)

The HAL/S concept of a program complex allows for the execu-
tion of several programs within the framework of an executive operating sys -
tem. Of interest here is that a program may be activated by another program
within a program complex. Hence, a program module may be thought of as a
procedure that is activated by the executive operating system and upon ter-
mination returns control to the operating system.

To some extent a HAL/S program is block structured. In fact,
the block structure of HAL/S is the same as that of SPL. However, neither
has the block structuring capabilities of a block-structured language such as
ALGOL 60.

-1g-



V;

7

l

4.2.2. 1	 Unit of Compilation (T2. 1)	 it

The unit of compilation is defined as one of four blocks
(PROGRAM, FUNCTION, PROCEDURE, or COMPOOL block) optionally
preceded by one or more templates. This is similar to an SPL compilation. 	 .s

A HAWS program may reference more than one COMPOOL block. The
maximum number of COMPOOL blocks allowed in a program complex is
implementation defined.

4. 2.2. Z	 Templates (T2. 2)

Block templates provide information to the outermost code block
about external blocks. This kind of information is needed for implementing
independent compilations.

4.2.2.3	 Program Block (72.3)

A HAL/S PROGRAM block is similar to the SPL program. The
program template of HAL/S and the START declaration of SPL have similar
objectives. A HAL/S PROGRAM block does not admit arguments, whereas
an SPL program does.

4.2.2.4	 PROCEDURE and FUNCTION Blocks (T2.4)

The HAL/S PROCEDURE and FUNCTION blocks are similar in
form and purpose to SPL procedures and functions.

4.2.2.5	 TASK. Blocks (T2. 5)

SPL does not have a construct exactly like the HAL/S TASK
block. A TASK block is a named block, identified as a TASK block and having
no parameters. It can only be activated by scheduling it as a process under
control of a real-time executive. Therefore, a TASK block is similar to an
SPL procedure without parameters which can only be invoked by a CHRONIC
statement. This implies the need of a TASK tree or of an extension of attri-
butes in the procedure tree. The TASK block depends on the real-time execu-
tive.

-20-



4.2.2.6	 UPDATE Blocks (T2.6)

The UPDATE block does not occur in SPL. The UPDATE block
is an optionally named block identified as an UPDATE block and having no
parameters. The UPDATE block is executed in line. The SPL inline pro-
cedure or the "statement" can be restricted to have the same effect as the
HAL/S UPDATE block. The form of the UPDATE block is very restrictive.
It does not contain input or output statements or other UPDATE blocks, and
it cannot invoke FUNCTION or PROCEDURE blocks defined outside of the
UPDATE block. Only certain real-time programming statements are admis-
sible to the UPDATE block. The UPDATE block is intended for use in data
sharing in a real- - time environment.

Considerable effort may be required to ascertain that restric-
tions on the UPDATE block are observed. It will be necessary to use an
update tree or to extend the attributes of a procedure.

4.2.2.7	 COMPOOL Blocks (T2.7)

The HAL/S COMPOOL block is similar to the SPL COMPOOL
block; however, HAWS allows the use of many COMPOOLs, whereas SPL
allows for only one.

4.2.2.8	 Statements (T2.8)

HAL/S statements play the same role th4t SPL statements do.

4.2.2.9	 Header Statements (T2.9) 	 i
i

Header statements identify the kind of block being declared.
Except for the cases of TASK blocks ( T2. 5) and UPDATE blacks (T2.6;, the 	 y

header statement is similar to the SPL START, PROCEDURE, and FUNCTION
declarations. The forms may differ slightly but not the meaning.

r:
4.2.2. 10	 CLOSE Statement ^V.10)

The CLOSE statement is the closing delimiter of a block. In
SPL a pr -)gram is terminated with the TERM statement, and procedures and
functions with the EXIT statement.

-21



f
a

r^

4, 2. 2. 11	 Name Scope - (T2. 11)

The name scope rules in HAL/S are the same as those in other
block-structured languages.

4.2.3	 Declare Group T3.

4.2.3.1	 REPLACE Without Arguments T3.1)

The action required by this construct is to replace a character
string by another character string possibly of greater semantic complexity.
This can be accomplished by text manipulation or by token manipulation. This
feature is not available in SPL, but no substantial difficulties are expected.

4.2.3.2	 REPLACE With Arguments (T3.2

This form of the REPLACE statement allows for the selective
replacement of textual strings within the source text. Notice that HAL/S
specifications allow for nested REPLACE statements with arguments. The
nesting of REPLACE statements with arguments leads to serious complica-
tions; particularly, since recursive nesting is allowed. In turn, this leads te,

obscure programs and also to possible interminable loops during the compila-
tion process. However, the amount of nesting allowed is implementation--
dependent. It is suggested that nesting of REPLACE statements not be allowed.
Even without nesting this feature is difficult to implement.

4.2.3.3	 Structure Templates (T3.3)

The structure concept is not available in SPL. It requires a
considerable amount of effort to implement because it implies a different
method of referencing data than is currently available. For example, it may
be necessary to include information about structure templates in the object
program.

4.2.3.4	 DENSE and ALIGNED (T3.4)

These instructions indicate how data are to be stored. These
attributes are of use only in some computers.

i

ii



f

4. 2. 3. 5	 DECLARE (T3. 5 )

This is a factored declaration feature that exists in SPL.

4, Z.4	 Label Attributes (T4. }

4.2.4.1	 FUNCTION (T4. 1)

The use of FUNCTION in this context is to indicate to the com-
piler that the identifier associated with the keyword FUNCTION is referenced
before the FUNCTION is defined. This device is used to simplify linkages
at a later time.

4.2.4.2	 PROCEDURE (T4.2}

This feature is similar to FUNCTION (T4.1).

4.2.4.3	 NONHAL (T4. 3^

This is a keyword indicating an Pxternal routine in some other 	 L

language. This is implementation-dependent in the sense that the implemen-
tation must support the other language along with all linkage functions.

4. Z. 4.4	 TASK (T4.4 )

This feature is similar to FUNCTION (T4. 1). When a task is
referenced before definition, this indicates to the compiler that error con-
ditions are to be suppressed.

4, 2. 5	 Type Specification (T5. )

4. Z. 5. 1	 MATRIX (T5. 1)

This is a specialized array. The compiler can do a certain
amount of semantic analysis of occurrences of variables of this type. Checking
of operational consisten ,7y will prevent certain runtime errors.

4.2.5.2	 VECTOR (T5. Z )

See comments in T5. 1.

. 4.2.5.3	 SCALAR LT5. 3)

This is the basic f1cating point type.

s

-23-



4.2. 5.4

4. 2. 5. 5

4.2.5.6

INTEGER (T5.4)

Integer type. Implemented as in SPL.

BIT ST5. 5)

This is similar to the SPL Logical.

CHARACTER (T5.6)

This is the same as SPL Textual. Notice that SPL often dic-
tated textual to be used as a secondary type for 1/0 purposes. This does not
appear to be the case in HAL/S.

4.2.5.7	 EVENT (T5.7)

The Event type is similar to Boolean, but differs in that iden-
tifiers of this type are to be used for real-time applications. HAWS Event
identifiers are similar to the Boolean formulas which must be evaluated during
the execution of an SPL Chronic statement. It n ay be necessary to add an
attribute value for this data type.

4.2.5.8	 BOOLEAN (T5.8)

SPL BOOLEAN and HAL/S BOOLEAN are similar.

4.2.5.9	 STRUCTURE (T5.9)

Having a structure type in addition to a structure declaration
allows numerous identifiers to be declared to have the same form with ter-
minal and substructure names. Proper referencing will have to be checked
during compile time. If checking is to be performed during execution at least
two ramifications appear--execution time will be increased and elaborate
linkages will have to be developed for data allocation.

4.2.6	 Initialization (T6. )

4.2.6.1	 CONSTANT (T6. 1)

This is analogous to a read only memory. The compiler will
ensure that stores are not made to identifiers with this attribute.

r
	 -24-

i
S:



I ^j

4. 2. 6. 2	 INITIAL. (T6. 2)

This is the same as the SPL "Preset' concept. Partial initiali-
zation can be achieved at the expense of a more complicated and slower
compiler.

4.2.7	 Data Referencing (T7. )

4,2.7.1-3	 Referencing Nonstructure Variables ST7. 1-3)

Simple variables are referenced by name in the same manner
in which they are referenced in many other programming languages including 	 i
SPL. The attributes of the simple variable are known from the data declara-
tion. Variables may also be subscripted as in many other languages. 	 fi
4.2.7.4	 Referencing Structures (T7.4)

References to a structure as a whole are made by the declared
name. References to parts of a structure are either qualified or unqualified.
The reference is unqualified when the structure name is the same as the
structure template name. In this case, reference may be made using the
names of the structure parts. A reference is qualified if the structure name
differs from the template name. In this case, first the structure name is
taken followed by a period, and then the names of the intermediate nodes on
the path to the terminal or substructure of interest. All intermediate node
names are separated by periods. These two types of referencing permit
several different structures with different naxnes to share the same struc-
ture template. A reference to a structure terminal is considered the same
as a variable reference. Structures are not found in SPL.

4.2.8	 Natural Sequence (T8. )

The natural sequence is important whenever a data structure is
i	 converted to a linear string of data elements or vice versa. This occurs

i
primarily during I/O and data conversions. The natural sequence defines the
order in which the data structure is unraveled or raveled.

1

i
3.

5	 S

I



4. Z. 9, 10	 Subscripting (T9, 10)

Three classes of subscripting can occur: structure, array, and
component. Therefore, it is possible for a reference to involve three sub-
scripts. The syntax of all three subscripts is identical. The HAL/S sub-
sc-ipting is somewhat more general than SPL in that SILL does not include
arrays of vectors and matrices, and SPL does not, of course, include struc-
tures. SPL does permit all simple data types except vectors and matrices
to be arrayed. HAL/S permits subscripts themselves to be arrays. It also
permits subscripting to select subarrays in addition to individual components.
In both cases, the permitted subscripting is more general than that found in
SPL.

The use of subscripting involves the concept of arrayness.
A variable possesses arrayness either from a declaration specification or
from being a member of a structure with multiple copies. The number of
dimensions of arrayness is the sum of the number of dimensions from both
sources. The arrayness of expressions is determined by the arrayness of the
variables contained in them. The general rule governing arrayness is that all
variables in an expression must possess the same arrayness. For a compiler,
semantic checking is implied to determine that arrayness is correct.

The inclusion of the extended HAL/S subscripting capabilities
would impact each of the . three passes of the compiler. The major impact in
the syntactic pass is the extension of the dictionary to contain the new data
forms. There are several impacts in the second pass. First, the data allo-
cation routines must be extended. Also, the checks for consistency of data
forms must be more extensive than at present. Finally, the checks for proper
arrayness must be included. In the code generation pass, looping mechanisms
must be established for the processing of arrayed expressions. Provision
must be made for the allocation of arrayed temporaries.

The subscripting of structures has a major impact an the com-
piler because structures are a completely new data form. The impact is
primarily in semantic processing since the syntax of structures is similar to
existing syntactic forms.

-26-



4.2.11	 Regular Expressions ('T11.

Regular expressions are arithmetic expressions, bit expressions,
character expressions, and structure expressions. Except for structure expres-
sions, which are not in SPL, regular expressions can be processed straight-
forwardly.

4.2.11.1	 Arithmetic Expressions (Tli.1)

In HAWS an arithmetic expression may have matrix or vector
operands as well as scalars or integers. This is also true in SPL. In HAL/S
the notation A**T (or its two-dimensional equivalent) is used for the trans-
pose of the matrix A. The method of inverting the matrix A is not specified;
it is assumed that a standard technique such as the Gauss -Jordan method is
acceptable.

The precedence rules for arithmetic operators establish a left-
'	 to-right evaluation for operators having the sarne order of precedence, but

exponentiation and scalar division follow a right-to-left order.

4.2. 11.2	 Bit Expressions (T1I.2)

Bit expressions in HAWS correspond to logical formulas in
SPL. The concatenation operator does not exist in SPL. Bit expressions
should not present serious difficulties. See also T11. 3.

4, 2.11.3	 Character Expressions (T11. 3 )

Character operands in HAL/S correspond to textual operands in
SPL. There are no textual operators in SPL. The only character operator
in HAWS is concatenation. A concatenation tree could be defined which
would be used in bit expressions (Tll.2) as well as in character expressions.

4.2. i1.4	 Structure Expressions (Tll.4)

A structure expression is either a structure or a normal func-
tion of type structure. If these elements are defined, then the implementa-
tion of structure expressions should present no major difficulties.

i

-27-



4. 2. 12	 Conditional Expressions (T12_. )

The HAL/S conditional expression corresponds to the SPL
Boolean formula.

4.2.12.1	 Conditional OEerators (T12. 1)

Conditional operators in HAL/S are the logical AND and the
logical OR; both of which are operators in SPL.

4.2.12.2	 Conditional Operands (TI2.2}

Conditional operands in HAL/S are comparisons of parenthe-
sized conditional e;cpressions. In SPL they are called relational formulas
and Boolean formulas.

4.2.12.3	 Arithmetic Comparisons (T12.3)

Except comparisons of vectors and matrices there should be no
problems. Comparisons of vectors and of matrices could be processed in a
number of ways, none of which requires much effort.

4.2.12.4	 Bit Comparisons (TI2.4)

Minor difficulties can occur here in comparing bit operands of
different length. Arrayed comparisons may also cause problems.

4.2. 12.5	 Character Comparisons (T12.51

Arrayed comparisons may cause problems; otherwise, this
construct does not present difficulties.

4.2.12.6	 Structure Comparisons (TI2.6)

If structures are defined, then this construct can be processed

r in a number of ways.

4.2.12.7	 Comparisons Between Arrayed Operands (TI2. 7)

This construct requires a looping mechanism.



4. Z. 13	 Event Ex2ressions (T13.
I^
I

Event expressions are handled very much like conditional ex-
pressions. Restrictions and implications need to be considered carefully.

4. 2. 14	 Normal Functions (T14._)

No difficulties are envisioned with this construct. It is not
clear if input arguments are call-by-reference or call-by-value.

4. Z. 15	 Explicit TXpe Conversions (T15.

4.2.15. 1	 Integer-Scalar Conversions (T15.1

These are the most useful conversions and also the simplest to
process.

4.Z.15.2	 Other, Unsubscripted Conversions (T15. 2}
r

	

	 These conversions require at most minor modifications to the
existing system.

4.Z.15.3	 Matrices and Vectors (T15. 3)

.

	

	 These require some, but not substantial, modifications to the
existing system.

4.2. 16	 Explicit Precision Conversions T16. )

This feature refers to SINGLE and DOUBLE . prtacision. No
difficulties are found here.

4. 2. 17	 IF Statement (T17.1

4.2. 17.1	 IF Statement with Arithmetic Comparisons (T17. 1)

Whether the Ii statement is of the forge IF... THEN, or of the
form IF... THEN... ELSE, the use of arithmetic comparisons is taken to be
basic.

}
I

i
1

1
y,

-29-

f



4.2. 17.2	 IF Statement with Other Than Arithmetic
Comparisons (T17.2)

IF statements with other than arithmetic compar.sons can be
easily implemented provided the items being compared are already in the
language.

4.2.18	 Assignment Statement (T18. )

For the most part, assignments can be processed straight-
forwardly. Some difficulty can be expected in structure assignments.

4.2. 19	 CALL Statement (T19.)

The CALL statement is basic to a programming language.
Miner difficulties may occur with parameters which are structures or arrays.

4.2.20	 RETURN Statement (T20.)

This is a basic feature which is easily processed.

4. 2.21	 DO... END Statement Group (T21. )

The looping statement is a programming convenience which is
considered almost basic; particularly, by those who insist on visibility of
program organization.

4.2.21.1	 Simple DO Statement (T21. 1)

The simple DO statement is used to make a basic statement
out of one or more statements. This is similwr to the ALGOL 60 compound
statement. No difficulties are expected here.

4.2.21.2	 DO CASE Statement (T21.2)

In SPL, decision tables are used which can be used with or
without the ELSE mechanism. Some adjustments may be required.

_30_



4.2.21.3	 DO WHILE Statement (T21.3)

Test of loop control variable is performed prior to execution of
the group of statements to be repeated. In SPL thi. is the LOOP WHILE
statement.

4. 2.21.4	 DO UNTIL Statement (T21.4 )

The DO UNTIL statement requires that the group of statements
to be repeated be executed at least once. Minor modifications are required
to use the SPL LOOP UNTIL statement.

4.2.21. 5	 Discrete DO Statement JTZI. 5)

SPL does not have this statement type. A discrete-DO tree may
be required. This is not a substantial effort.

4.2.21. 6	 Iterative DO Statement (T21. b)

This is the most common form of the looping statement.

4.2.21.7	 END Statement (T21. 7)

This statement is used to terminate loops.

4. Z. 21. 8	 REPEAT Statement (T21. $

This statement is similar to the SPL TEST statement.

4.2.21.9	 EXIT Statement (T21.9)

This is used to escape from a loop; it should be easy to process.

4.2.22	 The SCHEDULE Statement (T22. )

The SCHEDULE statement consists of various keywords:
SCHEDULE, AT, IN, ON, PRIORI`T'Y, DEPENDENT, REPEAT, AFTER,
EVERY, WHILE, and UNTIL along with the arguments for the keywords. The
compiler will generate code consisting of placement of arguments in registers
or a predetermined area of core and a transfer to the system executive routine.
Implementation of the schedule statement is not possible without a real-time
executive.

I

I

iI

-31-



4, 2.23	 Other Real-Time Executive Statements ('123. )

The statements in this category require a real-time executive
(RTE) for implementation. If the RTE is available, the compiler will issue
code consisting of a transfer to the RTE with the correct parameters stored
appropriately.

4. 2. 24	 Error Recovery and Control (T24. )

For routine error control, HAL/S specifies an error recovery
executive which handles system-defined errors or user-defined errors. For
system-defined errors, the error recovery executive performs a standard
procedure unless otherwise directed by the user. A specific implementation
may allow the user to define additional error conditions. The HAWS language
allows the programmer to communicate with the error recovery executive.
The programmer can direct th=.t a procedure other than the standard proce-
dure be performed for certain system-defined error conditions. It is also
possible to send an error condition to the error recovery executive in user-
defined errors or to simulate system-defined errors. The HAL/S facilities
in this rea go beyond those found in SPL.

4. Z. 25, 26	 Input and Output_ Statements (T25, 26)

All input and output is machine and operating system dependent.
I/O is directed to software channels which are associated with hardware
devices in an actual implementation. In addition to sequential I/O found also
in SPL, HAL/S provides for random access record oriented I/O. External
sequential files are viewed as lines of characters with conversion taking
place during 1/0. When complex data structures are involved in 1/0, the
order of conversion to a string of characters or vice versa is determined by
the "natural sequence" of the data.

4.2.27	 S sterns Language Features T27.

4.2.27.1	 Inline Function Blocks TV. 1

The inline function is a method of defining and invoking a function
at the same time. The syntax of the inline function is similar to that of thc,

t

i	 -32-



' t regular" HAWS function but is slightly restricted. The inliize function can
be used to increase the usefulness of the parametric REPLACE statement.

4.2.27.2	 %o Macros (T27. Z)

The %Q macro allows the addition of special purpose features to
the HAL/S language. The details of the implementation of a % macro depend
on the particular application. A typical use would be to set up the linkage to
external routines. The inclusion of the % macro feature in a HAWS compiler
involves the operating system because of the necessary linkages. % macros
may be typed or typeless.

4.2.27.3	 TEMPORARY Variables (T27, 3)

The TEMPORARY variable form is a directive to the compiler
which can be used to aid code optimization. It pertains only to variables used
in DO groups and permits assignment of these variables to such items as
registers, scratch pad and memory, depending on the hardware of the target
computer. Usually, reference to variables stored in this type of location can
be made more quickly using a more compact instruction than can references
to variables stored in main memory. An equivalent construct is found in SPL.
The usefulness of the concept depends on the structure of the target machine.

4.2.27.4	 NAME Facility (T27.4)

The NAME facility provides a pointer capability within HAL/S.
A NAME identifier always points to the location of an identifier of the same
type. Although SPL contains a similar construct, HAL/S contains data types
not found in SPL; therefore, to implement the full NAME facility in a HAL/S
compiler, new identifier types are required in addition to tho ie found in SPL.
Several statements are provided for manipulating NAME variables,

4.3	 SUBSETS

The design of a language requires a great deal of effort and an
enormous amount of attention to minute details. To some extent, the same
can be said of establishing subsets of a given language. Less than an exacting
analysis may lead to the production of dangling constructs or mismatched
elements.

-33-

;.i

L



'

	

	 The above observation is made because the richness of HAL/S
data types and data structures magnifies the difficulties of subset definition.
It may be desirable to establish a subset by converging from a set of desirable
features to a complete set of necessary features during a detailed analysis
and design of the compiler for the subset.

-14-



r-

A

APPENDIX

TABLES OF HAL/S FEATURES

A-i



Table A-1. Listing of Appendix Tables of HAL/S Features

Table Title Page

1 Pr imative s A-1
2 Block Structure A-2
3 Declare Group A-3
4 Label Attributes A-4
5 Type Specification A-5
6 Initialization A-6
7 Data Referencing A-7
8 Natural Sequence A-8
9 Subscript Forms A-9

10 Subscript Classes A-10
11 Regular Expressions A-11
12 Conditional Expressions A-12
13 Event Expressions A-13
14 Normal Functions A-14
15 Explicit Type Conversions A-15
16 Explicit Precision Conversions A-16
17 IF Statement A-17
18 Assignment Statement A-18
19 CALL Statement A-19
20 RETURN Statement A-20
21 DO... END Statement Group A-21
22 SCHEDULE Statement A-22
23 Other RTE Statements A-23
24 Error Recovery and Control A-24
25 Sequential 1/0 Statements A-25
26 Random Access 1/0 A-26
27 Systems Language Features A-27

A -ii



x

1. Primitives
Item

ID Priority HAWS Feature
Associated

SPL Feature
Compati-

bility Rank

1 1 Character set Character set 1 1

2 1 Reserved words Keywords 1 1

3 1 Identifiers Identifiers 1 1

4 1 Literals Constants 1 1

5 4 Two-dimensional Source format ---- 5 2

6 1 Comments and blanks Comments and blanks 1 1

4011W lob "M



2, Block Structure

N

Item As suciated Compati-
ID Priority HAL/S Feature SPL r'eature bility Rank

1 1 Unit of compilation Program, procedure, function, 1 1
and compool

2 1 Templates, general concept START, PROCEDURE, 2 2
COMPOOL, and EXTERNAL
declarations

3 1 PROGRAM block PROGRAM 1 1

4 1 PROCEDURE and FUNCTION PROCEDURE and FUNCTION 1 1
blocks

5 2 TASK blocks PROCEDURE or CLOSE 5 2

6 2 UPDATE blocks INLINE PROCEDURE, CLOSE 4 2

7 1 COMPOOL blocks COMPOOL block 1 2

$ 1 Statement Statement 1 1

9 1 Header statement Keywords, attributes 1 1

10 1 CLOSE TERM and EXIT 1 1

11 1 Name scope Name s cope 1 1



w

3. Declare Group

t^



4. Label Attributes

Item
ID Priority HALES Feature

Associated
SPL Feature

Compati-
bility Rank

1 1 FUNCTION FUNCTION 1 1

2 1 PROCEDURE PROCEDURE 1 1

3 4 NONHAL - - - - 5 3

4 2* TASK PROCEDURE 4 3



S. Type Specification

Item
ID Priority HALLS Feature

Associated
SPL Feature

Compati-
bility Rank

1 2 MATRIX ARRAY 1 1

2 2 VECTOR ARRAY 1 1

3 2 SCALAR Floating- point 1 1

4 1 IN'T'EGER IN'T'EGER 1 1

5 2* BIT LOGICAL 1 1

b 4 CHARACTER TEXTUAL 1 1

7 2 EVENT BOOLEAN formula 3 2

8 2* BOOLEAN BOOLEAN 1 1

9 4 S'T'RUCTURE -- - - 5 4

sw

1

r
t



o. Initialization

::em
=D Priority HAL /S Feature

Associated
SPL Feature

Compati-
bility Rank

1 2* CONSTANT CONSTANT l 1

Z T INITIAL PRESET or "_ " 1 2



7. Data Referencing
Item

ID Priority HAL/S Feature
Associated

SPL Feature
Compati-

bility Rank

1 1 Simple variable, unsubscripted Unsubscripted variable I 1

2 1 Simple variables, subscripted, Subscripted variables 1 1
except arrays of vectors and
matrices

3 4 Simple variables, Subscripted ---- 4 3
arrays of vectors and matrices

4 4 Structure variable ---- 5 4



as

8. Natural Sequence

b



I

9. Subscript Forms

.ti

Item
ID Priority

Associated
HAL/S Feature	 SPL Feature

Cotnpati-
bility Rank

1 1 Simple index	 Simple index 1 1

2 4 AT and TO partitions	 :6 OR loop 4 3

3 4 Asterisk	 Blank subscript 1 1

4 4 Subscripts that are arrays 	 Nested subscripts with FOR 4 4
loops



10. Subscript Classes

a

0

Item
ID Priority HAWS Feature

Associated
SPL Feature

Compati-
bility Rank

1 1 Component subscript Subscript 1 1
2* BIT modifier 1 1
4 BYTE modifier I I

2 4 Array subscript, except Array subscript 1 I
arrayed vector and matrix

3 4 Array subscript for arrayed ---- 4 3
vector and matrix

4 4 Structure subscript -- - - 5 4

5 4 Combinations TEXTUAL and BIT components 3 3
of arrays



11. Regular Expressions

Item
iD Priority HAWS Feature

Associated
SPL Featurc;

Compati»
bilit}- Rank

1 1 Arithmetic expressions of Arithmetic expressions of 1 I
sca.lars and integers simple variables

2 2 Arithmetic expressions of Arithmetic expressions of 1 1
scalars and integers, vectors, simple variables, vectors,
and matrices and matrices

3 1 Arithmetic operands Aritmhmetic operands 1 1

4 2^ Bit expressions Bit expressions 1 1

5 2* Bit operands Bit operands 1 1

6 3 Character expressions Byte expressions 1 1

7 3 Character operands Byte operands 1 1

8 4 Structure expressions ---- 5 2



12. Conditional Ea:pres sions

N

Item
ID Priority HAL/S Feature

Associated
SPL Feature

Compati-
bility Rank

1 2 Conditional operators Boolean formulas 1 1

2 2 Conditional operands Boolean operands 1 1

3 1 Arithmetic comparisons Relational formulas 1 1

4 1 Bit comparisons Logical expressions 2 1

5 3 Character comparisons 2 1

6 4 Structure comparison ---- 5 4

7 4 Comparison between arrayed Array comparison a_ 4
operands

^	 s	 ^	 1	 a	 s



w

13. Event Expressions

raw.....::^-t:.a.^--^---.^̂--^•^--^"+^;; .--ry,	 i-	 --^^	 ...-..—.. _T..r "̂i,^>^.-.:,,;^__._^	 ^	 _	 _ -	 _



14. Normal functions

w

Item
ID	 Priority HAWS Feature

As sociated
SPL Feature

Compati-
bility Rank

1	 1 Built-in functions Built-in functions 1 1

2	 1 User-defined functions User-defined functions 1 1



15. Explicit Type Conversions

e

U1

Item
ID Priority HAL/S Feature

Associated
SPL Feature

Compati-
bility Rank

I I Integer-scalar Integer-floating point 1 1

2 4 All other "unsubscripted ---- 4 2

3 4 Matrices and vectors ---- 4 2



16. Explicit Precision Conversions



Cotility17. IF Statement Associated	 bility	 Rank
$PL Feature

Item	 HAL/S Feature

	

M	 Priority	 1	 1

,THEN.	 E
, .and IF... THEN.. IF`... THEN... and IF...

 THEN. .

	

1	 1	 LSE... with arithmetic
ELSE... Nyith arithmetic	 Comparisons
comparisons	1 	 1

d IF... 	
IF... THEN... and IF... THEN. .

2	 IF... THEN...  "  	 ELSE... with other than
ELSE.. , with other than
arithmetic comparisons 	

arithmetic comparisons

w,

Ilk	 -Z!41 r	 _	 pia



s
Y
00

18. Assignment Statement
Item

IU Priority HA.L/S Feature
Associated

SPL Feature
Compati-

bility Rank

1 1 Simple and multiple assignment Simple and multiple assignment I I
for scalars, integers, vectors,
matrices, and other types
(bit, etc. )

2 4 Structure assignments ---- 5 3

f



9
.n

Item
ID Priority

Associated
-HALJS Feature	 SPL Feature

Compati-
bility Rank

1 1 General form and semantics	 General form and semantics 1 I

2 4 Structures as parameters 	 ---- 5 Z

3 4 Arrays of vectors and matrices 5 Z
as parameters

19. CALL Statement



20. RETURN Statement

c^

Item
ID Priority HALJS Feature

As sociated
SPL Feature

Compati-
bility Rank

3 i RETURN for functions and RETURN for functions 1 I
for procedures for procedures



r• 3 	 r

21. DO... END Statement Group

Item Associated
ID Priority HAL/S Feature SPL Feature

1 3 Simple DO

2 4 DO CASE with or without ELSE Switches or decision tables

3 2 DO WHILE FOR and LOOP WHILE

4 2 DO UNTIL FOR and LOOP UNTIL

5 4 Discrete DO For with no assigned value
otherwise no correspondence

5 4 Iterative DO LOOP

7 1 END END

8 4 REPEAT TEST

9 4 EMT

Compati-
bility Rank

5 2

3 2

1 1

1 1

3 2

1 1

1 1

1 1

5 2



22. SCHEDULE Statement

N

Item
ID Priority HAWS Feature

Associated
SPL Feature

Compati-
bility Rank

I 2T SCHEDULE Set of SPL elements that 4 3
includes CHRONIC

2 2* AT and IN HARDWARE, CHRONIC 4 3

3 2M ON ON... CHRONIC 4 3

4 2* PRIORITY System dependent 5 3

5 4 DEPENDENT System dependent 5 3

b 2* REPEAT, AFTER, EVERY ON, CLOCK, CHRONIC 5 3

7 2, WHILE, UNTIL. ON... CHRONIC 5 3

i



23. Other RTE Statements

N
W

Item
ID Priority

Associated
HALJS Feature	 SPL Feature

Compati-
bility Rank

1 4 CANCEL	 .._.._ 5 3

2 4 TERMINATE	 ---- 5 3

3 2* WAIT	 WAIT 5 2

4 4 UPDATE PRIORITY	 ---- 5 3

5 2T EVENT control: SET, RESET,	 HARDWARE, BOOLEAN, 4 3
and SIGNAL	 STATUS, used with CHRONIC

6 2* Data sharing and UPDATE block	 LOCK, UNLOCK 4 3



i
Ell

24. Error Recovery and Control



.25. Sequential I/O Statements

f

Item
ID Priority HAL/S Feature

Associated
SPL Feature

Compati-
bility Ra--k

I 1 READ READ 4 3

2 4 READALL READ 4 3

3 1 WRITE WRITE 4 3

4 3 Control functions TAB, Control functions and 4 3
COLUMN, SHIP, LIME, declarations
PAGE



26. Random Access I/O

a
c^

Item
ID

t

Priority HAWS Feature
Associated

5PL Feature
Compati-

bii.ity Rank

A 4 FILE ---- 5 4

I	 4'
	 1	 a

.L



27. Svstems Language Features

Item
ID Priority HAL/S Feature

Associated
SPL Feature

Compati-
bility hank

1 4 Inline function blocks CLOSE, FUNCTION, INLINE 5 3

2 4 % macros ---- 5 3

3 4 TEMPORARY variable INDEX declaration 1 2

4 4 NAME LOCATION 1 3


