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GEOMETRIZATION OF THE DIRAC THEORY OF THE ELECTRON

V. Fock
Leningrad

[Summary]

Using the concept of parallel displacement of a half vector, 1261*

the Dirac equations are t,enerally written in invariant form. The

energy tensor is formed and both the macroscopic and quantum

mechanic equations of motion are set up. The former have the

usual form: divergence of the energy tensor equals the Lorentz

force and the latter are essentially identical with those of

the geodesic line. The occurrence of the four-potential ^l

together with the Ricci coefficient Yikl in the formula for parallel

displacement on the one hand gives a simple geometrical reason

for the occurrence of the expression :p 	 e in the wave equation,

and on the other hand it shows that the 0 1 potentials, differing

from Einstein's idea, have an independent place in the geometric

world picture and must not, for example, be functions of Yikl'

In a work by D. Iwaneko and the author C71 it was suggested

that the Dirac matrices have a purely geometric significance.

In another work by these authors [6] the concept of parallel

shift of a half vector, i.e. of a quadruple of quantities which

are transformed like Dirac * functions, was proposed.

In another note C31 the author used this concept to set up

the general relativity wave equation of the electron and derived

the macroscopic equation of motion in the Einsteinian form.

The present work is a complete presentation of the observations

made in the note cited above.

* Numbers in the margin indicate pagination in the foreign text.
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1.	 The transformation properties of the Dirac * functions have

been studied in detail by F. Moglich [9] and J. von Neumann [10].

	

The transformation equation has an especially simple form if 	 1262

for the first three Dirac a matrices one chooses the expression

01 = 41 ,	 a2 a P 342 2 	 a3 = 4 3	 (1)

and for the fourth matrix one chooses

0'4 = P 2a2 ,	 a5 a P142 ,	 (1*)

where Pl ,P22 P 3 ;41 ,42 ,43 are the four-rowed matrices introduced

by Dirac [2].

The the following transformation of the * functions corresponds

to a general Lorentz transformation:

(2)

The complex quantities a, B, y $ d satisfy the condition

Q6 - BY = 1	 (3)

and in the case of a purely spatial rotation, are transformed

into the usual parameters of Cayley and Klein.

If a 0 is used to designate the unit matrix, then the quantities

	

4 =j;ako ({ =0, 1,'2,3)	 (4)

form the components of a four-vector, and the quantities

are in variance.	 This fact is expressed in equations as

follows. If S is used to designate Transformations (2):

2

1

iVi = ^^ + d^,	 lbs = a ^i + $4,



*I = 8*i F = i; s+y
	

(5)

where their S+ stands for the adjoint ;transposed--conjugated)

matrix to S. then the following equations hold:

S+ a1 S = M'artat; S'a+ S=a^; S* N S =N,	 (6)} 

where aik are the coefficients of a general Lorentz transformation.

Because

Fait' = 1V s'ars*

the quantities (4) and (4*) are therefore transformed according
to the equations

s
Ai = art At; A^ = A.; As = At,

tst

i.e. like a four-vector of like invariance. Since the A i (i =

0, 1, 2, 3) in the * quadratic quantities form a four-vector,

we want to designate the * quantities with transformation pro-

perties (2) as "half vectors."'

The explicit expressions for the quantities A i (i = 0, 1, 2, /263

3, 4, 5) are as follows:

At =	 j;t 0, + i;t *t 4- tl►, #3 + ti; *4,

At dy *1-- ;^t + 1V, *t — i;, *j,
Ad = -- tpt 1y, + t , + fs 4.1 — V, 0v

At = — 41 #4+i0l dot — ii't*2 +ii;4ar1.

(7)

Using these expressions, we confirm the following identical

This term was introduced by L. Landau.

3
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relationship between the quantities Ai:

,

All -}' A: -}- A + A4	 Ai :- A`.

2.	 We have considered the transformation properties of 	 func-

tions for a Lorentz transformation in the context of the special

relativity theory.	 If we now assume the standpoint of the general

relativity theory, then in order to be able to introduce the

half vector concept, we must have an orthogonal (more precisely

pseudo-orthogonal) reference system in each space-time point.

For this purpose we introduce a network of four orthogonal curve

congruences and, after Einstein, designate the directions of these

congruences as "legs."	 The observations made in	 the above

paragraphs then also remain valid for the general relativity

theory case if by Ai we mean the components of a vector along the

legs.

We number the legs with Roman indices and the coordinates

with Greek indices which everywhere run through the values 0, 1,

2, 3. In the summation according to the Raman indices, the sum

symbol is given explicitly, whereas in the summation using the

Greek indices, it is suppressed. We designate the parameters of

the curve congruences with small hk and the moments with hk,a'

Since we are dealing here with an indefinite metric, we introduce

along with Eisenhart 1 the quantities e l = e2 = e 3 = -1; e 0 = +1.

The components of a vector along the coordinate directions (Aa)

and along the legs (A' k )	 are then expressed in terms of each

1 See [1] and also the excellent collection of the most important
equations and facts in the study of T. Levi-Civita [$], P. 3.

2 In what follows, the leg and coordinate components are more
frequently designated with one and the same letter; in order
to avoid confusions, the leg comporents are provided witii u prime
accent.
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:

other as follows:

7	 --7-77 T1
I^

Ak =- A, hr; Au = V, ek Ak hk, e.
it

(9)

If we designate the leg components of an infinitesimal	 l264

shift with ds k, then for the change of the components of a vector

in a parallel shift, from the following equation

a^^, ^ l Apdr r =1001	 {lo}

results the following expression for the change of its leg

components:

	

as =	 ^k=sy^k^Akd
k:	 {11)

where Yikl are the rotation coefficients introduced by Ricci:

yu 1= (V - kj) hk.0 hi '= (V. hi. p) 4 Mr	 (12)

Here Va stands for the covariant derivation with respect to
a

x .

3.	 We now want to consider the change of the components of a

half vector * for an infinitesimal parallel shift. For this

change, we set up the equation

	

d ^' =	 er Ci d of p. (13)j

The C1 I s are matrices with the elements (C 1 ) mn , and by Cl*

we mean four functiuns whose mth degree is given by the

equation

(01 Oa = 2 (00%*0
awl

5
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^ l

The conjugate complex equation for (13) is as follows:

d iV = 1t► ^: •t Ci d^a (13 * )t

where C1 stands for the adjoint matrix. Now by means of Eq. (13)

for the parallel shift of a half vector, the equation of a vector

is already determined; specifically we must have:

8A,= 8(m at0) = d «g4-+ Vasd *
= j; T; el (Cs at + ai Q dii ^{'•	 (14 )

Should this change agree with that given by (11), then the C1Is

must satisfy the conditions

Ciai + N CI = 2 Ctar yrki	 ( 15)

Furthermore, since A 1 4 _ 
fa4* and A' 5 Ta5^ are invariants,

then

and likewise 6A' 5 must disappear, from which follow the ;urther

conditions

Cr cc4 ♦ a' Ct = p; Cf N + a6 Ct = O	

(17)

We immediately convince ourselves that the general solution /265

to Eqs. (15) and (17) is given by the equation

6

(16)
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in which O' 1 's are Hermitian matrices, which must be inter-

changeable with all ai 's as well as with 0 4 and a5 .	 If we

ruin in the region of the four-row matrices, then proportion-

ality with the unit matrix follows from the interchangeability

with all a matrices. By contrast, if we consider matrices with

more than four rows, l then the case is not excluded that the
't' 1 are not proportional to the unit matrix. We want to stay

with the four-row matrices and consider the 0' 1 I t as real

numbers.

It must be borne in mind that the C1 's do not contain the

a4 and a5 matrices so that the first two * functions are trans-

formed between themselves and the last two between themselves.

Because of Eq. (2) this was also to be expected a priori.

4.	 After we have proposed the concept of the parallel shift

of a half vector, we can define the covariant derivation D'1*

of a half vector * along leg direction 1 by the following

equation

Dt * ^ d a °
 CI	

(19)

where J*
hCr. dam. stands for the derivation in the direction

of the lth leg. We designate the covariant derivation of a half

vector along coordinate x a as follows

do

where for purposes of abbreviation

O't	 Ct
	 (2©)

t

1 Such matrices could perhaps occur in certain generalizations
of the Dirac equation, for example as applied to the two body
problem.

7



2x@ ,
k c 9)

1 (21)

If for a moment we consider the space as pseudo-euclidian
and set yik1 equal to zero, then Eq. (20) for D' 1 equals

But this is the same expression which appears in the Dirac

equation if 0' 1 is taken to mean the quantity

where \S'1 stands for the leg components of the vector potential. /266

In what follows we intend to adhere to this physical interpreta-

tion of the geometric quantities 0 1 1 . Thus we have obtained a

geometric interpretation for the occurrence of the vector potential

in thy: Dirac equation, and indeed this interpretation is such

that the potential can also be distinguished from zero when the

gravitation terms containing the quantities Yikl disappear.

If we now turn to Eq. (13) for day, we see that precisely

here the Weylian linear differential form appears:

r

This is in agreement with the assumption expressed by Weyl.1

The occurrence of the Weylian differential form in the equation

for the parallel shift of a half vector is closely related to

the fact noted by the author [4] and also by Weyl (loc. cit.)
that the addition of a gradient to the four-potential corresponds

to the multiplication of the *-function by a factor with an

absolute velue of 1. This fact was designated by Weyl as the

"principle of gauge invariance."

1 [13] Section 19, page 88.
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If for a moment we consider the space as pseudo-euclidian

and set Yikl equal to zero, then Eq. (20) for D' 1 equals

A# =a ^—i ^id•.

But this is the same expression which appears in the Dirac

equation if 0' 1 is taken to mean the quantity

^i = 2 a 9Pi
	

(21)

where 
0'1 stands for the leg components of the vector potential. /266

In what follows we intend to adhere to this physical interpreta-

tion of the geometric quantities 0' 1 . Thus we have obtained a

geometric interpretation for the occurrence of the vector potential

in the Dirac equation, and indeed this interpretation is such

Chat to potential can also be distinguished from zero when the

gravitation terms containing the quantities Yikl disappear.

If we now turn to Eq. (13) for d*, we see that precisely

here the Weylian linear differential form appears:

t

This is in agreement with the assumption expressed by Weyl.1

The occurrence of the Weylian differential form in the equation

for the parallel shift of a half vector is closely related to

the fact noted by the author [4] and also by Weyl (lo g:. cit.)

that the addition of a gradient to the four-potential corresponds

to the multiplication of the *-function by a factor with an

absolute value of 1. This fact was designated by Weyl as the

"principle of gauge invariance."

1 [13] Section 19, page 88.
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1
5.	 Using the c.)ncept of covariant derivation ol' a half vector,

It is possible to set up the Dirac wave equation for the electron

in the general relativity theory. For this purpose we consider

the operator

F# 2x0 1,
	 d	 (22)

We want to show that it is a self-adjoint cperator. 1 In order

to see this, we pass from the legs to the coordinates and intro-

duce the matrices

(23)

and the r  matrices defined by (20). Analogous relationships

follow from Eqs. (15) for the just-introduced matrices

Y yff + 20r, = — Voo.
	 (24)

This equation can easily be proved by going back to Definition

(12) of Yikl'

Expressed in terma of the coordinates, the operator F 	 /267

appears as follows;

2si
	

(25)

Taking into consideldtion (24) one can easily prove the identity

I The word "self-adj oint" is meant here in a somewhat extended
sense. Specifically, we mean that the expression jF* - TF7**
can be written in the form of a "in general four-dimensional"
divergence.

9



1

where g stands for the absolute value of the determinant 11Rpo11.

This identity expresses the fact that the operator F is a self-

adjoint operator. This fact permits us to set up the equation

F#=O	 (27)

for the Dirac equation in the general oelativity theory. if

satisfies this equation, then it Follows from identity (26) that

the divergence of the current vector

	

or = ft*#^	 (28)
which is obviously real because of the Hermitian character of

the yp matrices, disappears:

fix,{Vi°3 moo.
	 (29)

It is easy to grove l that Eqs. (25) and (27) are invariant

(more precisely, covariant) for the Dirac equation not only with

respect to the choice of coordinates but also with respect to

the choice of orthogonal curve congruences.

By way of proof, let us first observe that the values of

ra can be uniquely defined in agreement with the above Definitions

(18), (20), and (21) by the following equations:

r: rr + rar. = — Vero
	

(30)
race 	 2xie

If we now introduce any new network whatsoever of curve congruences

1 This section (to the end of section 5.) was added during the
corrections.

10



4tracer.* = -Teip.. (30*)

(31)

and designate the quantities on this network with a star,

then the new ra solutions to the analogous equations are as

follows:

However the transition to the new leg directions in each	 /268

space-time point looks like a local Lorentz transformation.

Therefore the new components of the half vector ** and the new

matrices y* o are related to the old * and y o by equations of the

form

I
J

[cf. Eqs. (5) and (6)], where S stands for a matrix of the form

UPOO

$ OOa#	 ab —^y = 1

IOOY81

with variable elements.

But the transformation equation for the r  coefficients of

the parallel displacement is as follows:

r^ = srAs-, + OS S-',	 (32)a7xw

for this expression is the unique solution of (30*)l.

4

l It holds that: trace 2xv S-1 = 0.
i

11
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S	
(33)

If we let F*** stand for the analogous terms in (25) which

we get if in that equation a star is assigned to y ta and
*, then from (31) and (33) it follows that

&a-

F* = S+ F * #'.	 (34)

The equation F* = 0 is thus equivalent to F*** = 0, which

was to be proved.

6.	 In this section we want to present the operator F in another

form in which we calculate the sum 2 ekskCt	 in Eq. (22).

In order to present the result in a clear form, we proceed

as follows. We introduce the quantities cijkl' which should

disappear if among the ijkl indices two appear which are identical,

and in case different indices are equal to +1 or -1, according

as the ijkl sequence arises from 0 1 2 3 by means of an even or

odd permutation. With the help of these quantities we form the

"leg vector"

A = 122 efetetfrptIrp1
Jkl 	 (35)

with the components

to -= —"MY1ss +Yssi+Ysls),
A	 — el (Ysoe + Yess + Ysso)?

is ^ les(Yso1+Yoie +Y1so), 	 (35*)

to = — do (Yies+Yost+Yste)•

12



If we consider the identities

^^4ae = 48641
ahae .:- ^Qva,,

ch at =;Pe+ee ►

which follow from Definition (1) of the a  matrices, then we can

write the sum	 Eck a& Ck :	 in the form
k

ecat of = ^ela4(i0"-- 
1

z 7	
i

elYftt —' 2 Peti)	 { ^ )

We let

k,	 YJ0 = V
g dx° 	 (36)

and introduce the term () into (22). We then obtain

j''ih = ^ eiai ai o^ai — e 9Df ^ ^' 4x+^^

+ he8 E eialfl d' —mca4*-i
	 (22*)

We note that in this equation the first and second sums are

single self-adjoint operators.

In the event that all these congruences are normal congruences,

then the "leg" factor f  disappears, since each Ricci symbol

Yikl disappears individually with three different indices. Fur-

thermore, we can then choose the hypersurfaces, whose perpendiculars

are given by the curve congruences, as coordinate surfaces. We

then have

d0 = 2efHIdx)p V9 =Ne11IHeHe;	
(37)

ill= f; hit = ei h; t1=0,
(37*)

13



I

while all hi,c and hi parameters disappear with different	 /270

indices. The equation for the operator F is then as follows

I A at 8

71j, (2 Si 	 7TA

+ 4xi a 1ig^D} ^ —fue«;t.
(38)

This equation permits us to immediately write the Dirac

equation in any curvilinear orthogonal coordinates. In so doing,

the following must be borne in mind. If for example in the case

of an ordinary euclidian space, we write Eq. (38) first in

cartesian coordinates and then in curvilinear coordinates, then

the ^ functions occurring in both cases in (38) are not identical,

but they are related to one another by a transformation of the

form (2) with variable coefficients a, a, 7, d.	 This fact must

be kept in mind in setting up the uniqueness postulates for the

* functions.

In concluding this section it should be noted that as every-

one knows, it is not always possible in a general Riemann space

to select all the curve congruences as normal congruences. This

is possible, however, in the important special cases of a static

gravitation field with central and axial symmetry as has been

shown by the solutions to the Einsteinian equations found by

Sehwarzsehild and Levi-Civita.

7.	 We now want to try to find the energy tensor. To do this

we consider the tensor

A# ' _ y° (a, -- r. *) = fr°D•	 (39)
and calculate its divergence.1

1 The results af=this.aec*.ion could also be derived in a more
elegant form by considering an infinitesimal transformation
(cf. [111). However, we prefer to proceed in a more elementary
manner.

14
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We write the Dirac equation with its conjugate complexes

in the following form:

l2?1

IL

y{ .._ red►}- 2k,,mea,	 0,	 (40)

COO* 	
(40*)

We differentiate (40) with respect to xa and multiply on
the left by i,. We multiply Eq. (40 *) on the right with R 8x
and add the results. If we take into account the following

equation, resulting from (24)

r:r`+r°r, =-- I  V-0 Y. 	
(41)

dX.

then we can write the sum in the following form:

Furthermore, we multiply (40) on the left with —Tra, (40*) on

the right with r and add the results. In the sum we replacea
the terms raY 6 and r6Y a by their equivalent terms from Eqs. (24)
and (41). In this way we get

Here if we replace Daya with

Ora + rse Y°,

then subtracting (43) from (42) gives

v. rQ =

y	
a

(43)

15



Y-1 dos
	

(44)

where by way of abbreviation we set

0) A
—X. as-R +	 A	 (45)

We must now calculate the D 
aa matrix. We have

	

Do& AD. — D.Dv	 (46)

where we set

Dk', DkD,'— DI Dk' + e. (y. tk rad A's

(47)

The operator (47) is equal to

—iM"iITjej7Ijkl+ 2Xid N;11 (48)

where	 stand	 for the leg components of theYijkl Riemann tensor:

dos

+ E eM[7IjM(7fttl — Yolk) +Ym it Yojk -
(49)

and the skewsymmetric tensor M I kl /272

q)k	 Ov;
-Uk 	 +	 (Y.?k	 Y.0 970' 1

(50)

represents the electromagnetic field.

First of all we express the y D	 matrix inact terms of D kl

ki (51)

16



The sum geRar^k^	 which appears here can be calculated with

the aid of (48), whereby the cyclic symmetry of the Riemann

tensor must be taken into account. We get

1

	

xi ON;^eta^1^xt—^et«k{- 2^+ e 	 (52)

where

irks
	

(53)

denote the leg components of the reduced Riemann tensor. If we

set (52) in (51) then we get

y°Dao= Ye(— 2 Res+ 1
1e e ale-)-	 (51*)

Thus for the divergence of the A6. 'a we get the following

equation
1	 S^iedta^.

•^ dxâ ^ # A°`) — I `p A?; = 
SQ `— 2 R@.^ -^ e Q

Y p	 (54)

If we set

Ch

2Xi A% _ We	 +iUO	
(55)

where Ta '.a and Uo' a stand for the real and the imaginary com-

ponent of the complex tensor Wo ' a , then Eq. (54) can be written

in the following form:	 .

V" W6: = Se (em. — 
Ac

	

,C 
Re.}
	 (56)

or if we separate the real and the imaginary components:

he

° U% 4a^R	 (57)

17
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The second of these two equations is an easy-to-prove identity,

for the Ua'.a 
tensor is equal to

US. = — LV6951	 (58)

and the divergence of the S  vector disappears according to (29).

..

Eq. (57) states that the divergence of tensor T a A is equal ZM
to the Lortentz force. We can therefore interpret To 

a as an

energy tensor. Eq. (57) are then the equations of motion of the

general relativity theory. Perhaps it would be more consisten"

to interpret not ,just the real component Ta'.a but the entire

complex tensor W6'.a as an energy tensor. We will not discuss

here which of these interpretations is preferable.

What is surprizing here is the appearance of the electro-

magnetic sensor Mpa along with the Riemann tensor Rpa in the

form of a Hermitian matrix.

4hCE^ ^tt

8.	 From the results obtained in order to derive the quantum

mechanic equations of motion which correspond to those of a mass

point (geodesic), we proceed as follows.

In the range of spatial variables x i , x2 , x3 we choose a

complete system of functions:

- ** (xo x, x, x,+ ()	 (C w 1 , 2, $, 4),	
(59)



Iff ji. yo #'. V—PdXj dX2 4XI = I '	 (60)

Because of (26) and (27) it follows from the existence of this
equation for a special value of X 0 that it is valid for any other
value of x0 e We define the matrix element for an operator L by
the equation

L. 0 	 rp. L I!# d x, d x, d x,.	 (61)

We bear in mind that the operations performed in the preceding

section and in particular Eq. (54) remain unchanged if in A

and in S P we replace * by *n and -j by Tm , hence by two different.
solutions of the Dirac equation. We now write Eq. (54) in the

form

^70

+^. (_ i (62)+

If we multiply (62) with Vg4x,1 dx2 dx
3
 and integrate over the /274

entire space, then only one single term remains left over from
the sum on the left side of (62), and we obtain

djO ^J J ^a^Do ^'. ^
lil dx,dr,dx,

R,.+Lx i—e Jfe	
(63)

' J^1 ^^L e^D°+ ^! Z	 -A 
4, ydr dxdx,,,

which we can also write symbolically in the form

d
jOVD-) r-eyeD. + y? (— -!it.. +2	 (64)

or also, if we set

D.	 (65)

19



I	 in the form

d 
Vl.) = rst ye P, + 70 (1, 'If's — 

_L

Now we can interpret the yp operators as representing the
c

classical velocity 
d	

and Pd as that particular quantity of

the covariant motion quantities mgc dso	 This interpretationP
makes it possible to complete the transition to the classical

theory. If we do this and consistently ignore the h term on

the right side, then we obtain precisely the classical equation

of motion for a charged mass point in a gravitation field and

in particular -- when no electromagnetic field is present -- the

differential equation of the geodesic.

9.	 The pure covariant tensor

We. = P." W°, = c'f y®psi,
(55*)

is not symmetric with respect to its indices. Because of the

significance of the cy a and Pa operators (velocity and momentum)

the quantum mechanic parameter Woa corresponds to the classic

Parameter pouaua

Wss '; Q0 U® tee r	

(67)

where ua stands for the classical covariant component of the

four-velocity and p© stands for the rest density of the matter.

However, the parameter p 0uoua is symmetric with respect to the

indices.

The Dirac equation (27) can be derived from a variation

principle which can be formulated as follows with the aid of

«..

20



I f f f f 0'0; —,1H1'Wa4 *)}gdx dx,dx,dx, = 0.

the energy tensor:
5

p

^

(68)
	

a

J	 J	 I	 I	 I_^	 G
5

1

This equation produces a simple physical interpretation of the /275
	

A
invariance R a4 y as the rest density of the matter.

10. We now want to summarize the results of our study.

Our starting point is the concept of the parallel shift of

a half vector. By means of this concept, the appearance of the

^a potentials along with the p a impulses in the Dirac equation

can be interpreted purely geometrically. The purely formal

transfer of the expression pa c 0a from classical mechanics into

quantum mechanics thus became superfluous. Furthermore, this

concept allowed us to easily arrange the potentials in the

geometrical scheme of the general relativity theory, and this

can be useful for setting up a unified theory of electricity and

gravitation.

Moreover, the Dirac equations were set up in the general

relativity theory. These are invariant with respect to the

choice of coordinates and "legs." This produced a secondary

result, namely an explicit representation of the Dirac operator

in curvilinear orthogonal coordinates. A tensor was constructed

whose divergence is equal to the Lorentz force. This tensor was

interpreted as an energy tensor and the equation satisfying it

was interpreted as a macroscopic equation of motion. In addition,

the quantum mechanic equations of motion for the electron were

derived which correspond to the classical equations for a_

charged mass point or -- in the absence of an electromagnetic

field -- the equations of a geodesic. Finally, the variation

pricniple from which the Dirac equation can be derived was

written.
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our aim was to geometrize the Dirac theory of the electron

and integrate it into the ganeral relativity theory. In so

doing, the difficulties attached to the Dirac theory -- such as

the occurrence of negativ? energy values and a non-disappearing

probability of charge exchange of the electron -- were not at all

encountered. But perhaps our observations can contribute indi-

rectly to solving these difficulties by showing what the original,

unchanged Dirac theory can accomplish.

Leningrad, University Physics Institute, May/June 1929.
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After completing this paper, I discoverd the very interesting

paper of H. Weyl [12]. Weyl's basic mathematical idea is essen-

tially identical to the concept of the parallel shift of a half

vector.	 However the physical content of Weyl's work is completely

different from mine.

The essential features of Weyl's approach can be summarized

as follows.

I. Weyl considers the Dirac equation to be a wave equation not

for the electron but for the electron-proton system.

2.	 In the additive gravitaticn terms, Weyl thinks he has found

a substitute for the mca 4 term, the latter simply being cancelled.

In my view, both of these theses can hardly be supported,

for they run into considerable difficulties which I would here

like to draw attention to.

The quantum mechanic equations of motion resulting from

the Dirac equation are completely analogous with the classic

equations of motion for a charged particle (and not by the way

for a two-body system), as has already been shown in my earlier

work [2].

The Dirac equation, and indeed with the mc0 4 terms, is

perfectly suited for describing the force-free motion of an

electron as a wave in the sense of the original de Broglie view.

The splitting up of the current vector S by Weyl into two

summands S (+) and S (-) , which are interpreted as positive

current and negative electricity, cannot be upheld, for these
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summands are null vectors, and only their sum S . S{+} 
♦ S{_}

is a time-like veetor. l However, the current is a static-

macroscopic quantity and as such must have tho same character as 1,37

in the classical theory, hence must necessarily be time-like.

Weyl's equations are supposed to describe the electron-

proton system. We may therefore demand that they accurately

reflect the energy level of the hydrogran atom. However, since

the mca 4 term has been left out, this is hardly possible and in

any case is not proven.

The gravitation terms ["leg vector" f i in our equation {35}]

Interpreted by Weyl as a substitute for the mass can be made

to disappear as soon as a system of normal congruences exists

and especially in the case of spherical symmetry as well as in

the static case of axial symmetry. However, one can expect a

large degreee of symmetry from the electron -proton system.

Finally, it remains completely unclear just how the constants

m and M -- the mass of the electron and of the proton -- should be

produced from the gravitation terms.

Because of these difficulties, 1 cannot consider Weyl's

attempt to tackle the quantum mechanics problem of mass and the

two body problem as successful. On the other hand, I gladly

concur with Weyl ' s general idea that both problems are closely

1 Proof: The time-like character of S follows from identity {8}
(where now Si is to be read instead of A i ), for it gives

S4 - S1 _ S2 _S 2 S2 # S^	 {s}

Si {}} or Si {-} is obtained from S i if * 3 and *4 or *1 and *2 are

set equal to zero. In both cases S 4 and SS disappear, thus also

the left side of ( s ), which was to be proved.
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related to one another and to the problem of gravity.

In conclusion, I would like to make a few general remarks

on the physical content of the Dirac equations and on the two

body problem in quantum mechanics.

In my opinion, the Dirac equation describes only the electron

in terms of quantum mechanics while it describes the rest of the
world (perhaps also the mass of the electron) macroscopically.
In this case the rest of the world also includes the proton. The
solution to the two body problem must consist in finding a

quantum mechanical description of the electron, the proton, the

electromagnetic field and the mass. The quantum mechanical
problem of mass seems to me to defy solution as long as only one

body is considered. By contrast, for the macroscopic description

of gravity and electricity, the quantum mechanical one body

problem seems to render good service.
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