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GEOMETRIZATION OF THE DIRAC THEORY OF THE ELECTRON

V. Fock
Leningrad

Summar

Using the concept of parallel displacement of a half vector, /261%
the Dirac equations are generally written in invariant form. The
energy tensor 1s formed and both the macroscopic and quantum
mechanic equations of motion are set up. The former have the
usual form: divergence of the energy tensor equals the Lorentz
force and the latter are essentially identical with those of
the geodesic line. The occurrence of the four-potential ¢1
together with the Riccicoefficientyikl in the formula for parallel
displacement on the one hand gives a simple geometrical reason
for the occurrence of the expression Py - §¢1 in the wave equation,
and on the other hand it shows that the ¢1 potentials, differing
from Einstein's 1dea, have an independent place in the geometric
world picture and must not, for example, be functions of Yik1®

In a work by D. Iwaneko and the author [7] it was suggested
that the Dirac matrices have a purely geometric significance.
In another work by these authors [6] the concept of parallel
shift of a half vector, 1.e. of a quadruple of quantities which
are transformed like Dirac ¢ functions, was proposed.

In another note [3] the author used this concept to set up
the general relativity wave equation of the electron and derived
the macroscopic equation of motion in the Einsteinian form.

The present work 1s & complete presentation of the observations
made 1n the note cited above.

* Numbers in the margin indicate pagination in the foreign text.



1. The transformation properties of the Dirac ¢ functions have

been studied in detall by F. Moglich [9] and J. von Neumann [10].

The transformation equation has an especially simple form if /262
for the first three Dirac a matrices one chooses the expression

@, = 0y, a, = 9302, ag = 03 (1)

and for the fourth matrix one chooses
= = *
@y = P50;, G5 = P10,, (1%)

where 31’92’93301’02’03 are the four-rowed matrices introduced
by Dirac [2].

The the following transformation of the Yy functions corresponds
to a general Lorentz transformation:

o= a¥, + By w’.=§w.+§¢..} (2)
";'f—_-?"x +8u; Y=y +dv,

The complex quantities a, B, Y, § satisfy the condition
ad - By =1 (3)

and in the case of a purely spatial rotation, are transformed
into the usual parameters of Cayley and Klein.

If o, 1s used to designate the unit matrix, then the quantities

0

A=Yy (=0,1,28) (4)
form the components of a four-vector, and the quantities

AG=E¢4¢’1 A‘=Ea§$ (u*)

are in varilance. This fact 1s expressed in equations as
follows. If S is used to designate Transformations (2):



V=8 V=38 (5)

where their s’ stands for the adjoint {transposed-conjugated)
matrix to S, then the following equations hold:

. . -
S"¢43=“20uug; S'a,S=ua; S'aS=—uqu, (6)
-0

where ay, are the coefficients of a general Lorentz transformation.
Because

Vot =95 aSy

the quantities (4) and (4%) are therefore transformed according
to the equations

3 T
m:éhgﬁ4=4;4§@ (7)

i.e, like a four-vector of like invariance. Since the Ai (1 =
0, 1, 2, 3) in the ¢y quadratic quantities form a four-vector,
we want to deslignate the Yy quantities with transformation pro-.
perties (2) as "half vectors."1

The explicit expressions for the quantities Ai (1 =0, 1, 2,
3, 4, 5) are as follows:

4, = To + B+ v+ _3_4"«
4, = 7’11’94‘ ?’1#’1"' Elwo'*' 2«"’!’
A, = —‘;|¢'| +‘E."x + ‘E]"c_"foi’l'
A.:—" E“'l"' F’|d’,+ ijl_ i’lvﬂ
Ad, = — $ ¥+ Vs + Gty — tﬂﬁl'
A‘ == —l'#':,i».-i-!'%%—"a.%'i-W«#’r

Using these expressions, we confirm the following identical

1*'I‘h:is term was introduced by L. Landau.

~
n
Lo )
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relationship between the quantities Ai:

A4 A+ AD 4 A3+ A) = 4}, (8

2. We have considered the transformation properties of ¢ func-
tions for a Lorentz transformation in the context of the special
relativity theory. If we now assume the standpoint of the general
relativity theory, then in order to be able to introduce the

half vector concept, we must have an orthogonal (more preclsely
"pseudo~orthogonal) reference system in each space-time point.

For this purpose we introduce a network of four orthogonal curve
congruences and, after Einstein, designate the directions of these
congruences as "legs." The observatlions made in the above
paragraphs then also remain valid for the general relativity
theory case if by Ai we mean the components of a vector along the

legs.

We number the legs with Roman indices and the coordinates
with Greek indices which everywhere run through the values 0, 1,
2, 3. In the summation according to the Roman indices, the sum
symbol is given explicitly, whereas in the summation using the
Greek indices, it is suppressed. We designate the parameters of
the curve congruences with small hﬁ and the moments with hk,a‘
Since we are dealing here with an indefinite metric, we introduce
along with Eisenhartl the quantities e, = e, = e3 = -1; ey = +1.
The components of a vectog along the coordinate directions (Ac)
and along the legs (A'k) © are then expressed in terms of each

1 See [1] and also the excellent collection of the most important
equations and facts in the study of T. Levi-Civita [8], p. 3.

2 In what follows, the leg and coordinate components are more
frequently designated with one and the same letter; 1n order

to avoid confusions, the leg components are provided with a prime
accent.



other as follows:

Ay = Ay Ae = g%-‘;“t.r (9)

If we designate the leg components of an infinitesimal /264

shift with dsk, then for the change of the components of a vector
in a paraliel shift, from the following equation

84, = I{, 4pdx*; I'f, = [ (10)

results the following expression for the change of its leg
components:

S4; = g ey didsy (11)

where Yqi1 2re the rotation coefficients introduced by Riceci:
Yer1= (v,hf)h,.,h;’-: (Voly, ) M . (12)

Here Vg stands for the covariant derivation with respect to

g
X .

3. We now want to consider the change of the components of a
half vector ¢ for an infinitesimal parallel shift. For this
change, we set up the equation

Sv= ?_,‘c,c,dw. (13)

The Cl's are matrices with the elements (Cl)mn’ and by clw
we mean four functions whose mth degree 1s given by the

equation . .
Cid)n = .2‘ (Comn¥n



The conjugate complex equation for (13) is as follows:
6§=6$¢:Uc’d!& (13%)

where CI stands for the adjoint matrix. Now by means of Eq. (13)
for the parallel shift of a half vector, the equation of a vector
is already determined; specifically we must have:

A =8Fav) =8V v + Vv .
"“??ﬂ(ocm-%mc:)dlw (14)

Should this change agree with that given by (11), then the Cl's
must satisfy the conditions

Clo; + ,C) = ;‘&“&1’:” (15)

Furthermore, since A', = Wduw and A'5 = $a5w are invariants,
then

34, =9 X e(Cla, +a,Clds ¥

! (16)

and llkewilse GA'S must disappear, from which follow the {urther
conditions

Cla, + a, ¢, = 0; Cla,+a,C;=0
(17)

We immedlately convince ourselves that the general solution /265
to Eqs. (15) and (17) is given by the equation

C=1} E.u.agegr.u-*"d’; (18)



in which &'1 's are Hermitian matrices, which must be inter-
changeable with all ai's as well as with a, and Q. If we
remain in the region of the four-row matrices, then proportion-
ality with the unit matrix follows from the interchangeability
with all o matrices. By contrast, 1f we consider matrices with
more than four rows,l then the case is not excluded that the
°'1 are not proportional to the unit matrix. We want to stay
with the four-row matrices and consider the Q'& 's as real
numbers.

It must be borne in mind that the Cl's do not contain the
oy and as matrices s8¢ that the first two ¢y functlons are trans-
formed between themselves and the last two between themselves.
Because of Eq. (2) this was also to be expected a priori.

L, After we have proposed the concept of the parallel shift
of a half vector, we can define the covariant derivation D'lw
of a half vector y along leg direction 1 by the following
equation

Diw =52 —av
(19)

stands for the derivation in the direction

where v . n? - o
]

o 1 97

of the 1th leg. We designate the covariant derivation of a half

g

vector along coordinate x° as follows

D.w=§-;f’,-,—r.w. (19%)

where for purposes of abbreviation
r._—_—zﬁghg‘ccl (20)
[

1 Such matrices could perhaps occur in certain generalizations
of the Dirac equation, for example as applied to the two body
problem.



If for a moment we consider the space as pseudo-euclidian
and set Yiu1 equal to zero, then Eq. (20) for D'l equals

Dy = %%—-‘Qi#.

But this is the same expression which appears in the Dirac
equation if é'l 1= taken to mean the quantity
28‘ »

0;=—h-c“9l (21)

where o'l stands for the leg components of the vector potential. /266
In whkat follows we intend to adhere to this physical interpreta-

tion of the geometric quantities &'1. Thus we have obtained a
geomet."ie interpretation for the occurrence of the vector potential

in the Dirac equation, and indeed this interpretation is such

that the potential can also be distinguished from zero when the

gravitation terms containing the quantities Yik1 disappear.

If we now turn to Eq. (13) for &y, we see that precisely
here the Weylian linear differential form appears:

Sugids = Podz*

e .

This is in agreement with the assumption expressed by Weyl.1
The occurrence of the Weylian differential form in the equation
for the parallel shift of a half vector 1s closely related to

the fact noted by the author [4] and also by Weyl (loc. cit.)
that the addition of a gradient to the four-potential corresponds
to the multiplication of the y-function by a factor with an

absolute velue of 1. This fact was designated by Weyl as the
"principle of gauge invariance."

1 [13] Section 19, page 88.



If for a moment we consider the space as pseudo-euclidian
and set y,,, equal to zero, then Eq. (20) for D', equals

D¢ = %{-—‘050-

But this is the same expression which appears in the Dirac
equation 1if 0'1 is taken to mean the quantity

o =’—,,"}93 (21)

where ¢', stands for the leg components of the vector potential. /266
In what follows we intend to adhere to this physical interpreta-

tion of the geometric quantities 0'1. Thus we have obtained a
geometric interpretation for the occurrence of the vector potential

in the Dirac equation, and indeed this interpretation is such

that L.« potential can also be distinguished from zero when the
gravitation terms containing the quantities ?1k1 disappear.

If we now turn to Eq. (13) for &8y, we see that precisely
here the Weylian linear differential form appears:

2&'5‘& = @oda*
' -

This i1s in agreement with the assumption expressed by Weyl.1

The occurrence of the Weylian differential form in the equation
for the parallel shift of a half vector 1is closely related to

the fact noted by the author [4] and also by Weyl (loc. eit.)
that the addition of a gradient to the four-potential corresponds
to the multiplication of the y-function by a factor with an
absolute value of 1. This fact was designated by Weyl as the
"principle of gauge invariance."

1 [13] Section 19, page 88.



5. Using the cincept of covariant derivation oi' a half vector,
it 1s possible 1o set up the Dirac wave equation for the electron
in the general relativity theory. For this purpcse we consider
the coperator

' b i _a_!_c -—ﬂ“‘ v
Py = -2-;72‘,&&(0& **) 4 (22)

We want to show that it 1s a self-adjoint cperator.l In order

to see this, we pass from the legs to the coordinates and intro-
duce the matrices

7= Zauk (23)

and the T  matrices defined by (20). Analogous relationships
follow from Eqs. (15) for the just-introduced matrices

I3y + 9l = —Vu? (24)

This equation can easily be proved by golng back to Definition
(12) of Yyk1®

Expressed in terms of the coordinates, the operator F /267
appears as follows:

b (9% _ o\ y
F"'-‘mf'(a‘;-’-") moa ¥ (25)

Taking into considexration (24) one can easily prove the identity

S A 1 0 -V-
—_— = —_— ﬁ)o
$Fv—(Fovw 2"776,,& 97 (26)

1 The wora "self-adjoint" is meant here in a somewhat extended
sense. Specifically, we mean that the expression YFy - (Fy)y

can be written in the form of a "in general four-dimensional”

divergence.



A

where g stands for the sbsolute value of the determinant l[gpo[L

This identity expresses the fact that the operator F is a self-

adjoint operator. This fact permits us to set up the equation

Fp=0 (27)

for the Dirac equation in the general relativity theory. If ¢
satisfies this equation, then it follows from identity (26) that

the divergence of the current vector
Br=39rw (28)

which 1s obviously real because of the Hermitian character of

the yp matrices, disappears:

%o%‘.(v‘;s-).-:o. (29)

It 1s easy to prove1 that Eqs. (25) ané (27) are invariant
(more precisely, covariant) for the Dirac equation not only with
respect to the choice of coordinates but also with respect to
the choice of orthogonal curve congruences.

By way of proof, let us first observe that the values of

ro can be uniquely defined in agreement with the above Definitions

(18), (20), and (21) by the following equations:

Ry+ylhi=—v.y (30)

1 2xie

If we now introduce any new network whatsoever of curve congruences

1 This section (to the end of section 5.) was added during the
corrections.

10




and designate the quantlties on thls network with g star,
then the new Pg solutions to the analogous equations are as
follows:

I3y + 9 I8 = — Fauy*°

1 2mie
stracely = —— g, (30%)
However the transition to the new leg directions in each /268

space~time point looks like a local Lorentz transformation.
Therefore the new componengts of the half vector y¥ and the new
matrices Y*o are related to the old p and Yd by equations of the
form

¥t = Sy; "= 8"p*’S (31)
[cf. Egs. (5) and (6)], where S stands for a matrix of the form

«f00
y800
00ap
00438

S:é: 3 ud—-ﬂy=l

with varlable elements.

But the transformatlion equation for the PG coefficients of
the parallel édisplacement 1s as follows:

. e, 055
I3 = SELS™ + 5587 (32)

for this expression is the unique solution of (30*)1.

1 . 95 o=1 _
It holds that: trace TxX0 3 0.

11



Furthermore it holds that

)
Y v =5(3% - 1) (33)

If we let F*y*¥ stand for the analogous terms in (25) which
we get if in that equation a star is assigned to yo, I‘o and
¥, then from (31) and (33) it follows that

Fy = §*Frye. (34)

The equation Fy = 0 1s thus equivalent to F¥y* = 0, which
was to be proved.

6. In this section we want to present the operator F in another
form in which we calculate the sum ?egu.q in Eq. (22).

In order to present the result in a clear form, we proceed
as follows. We introduce the quantities eijkl’ which should
disappear if among the iJkl indices two appear which are identical,
and in case different 1ndices are equal to +1 or -1, according
as the 1jkl sequence arises from 0 1 2 3 by means of an even or
odd permutation. With the help of these quantities we form the
"leg vector"

1
fi = 1 S eyeereguyn
i

(35)
with the components
' fo = =63+ Yesr + 7219
fi = — ¢, (Ps0s + Yoss + V2s0hr
fs = — ¢, (aer + Yor3 + Y130)s (35%)
fy = — 6,103 + You: + P110)- .

12



If we consider the identities

oy &y &y == §Q4&y
atgoty = €00ty i
Gyt = $0;%, (l")
ey = {038 .

which follow from Definition (1) of the a, matrices, then we can

write the sum ?egﬁgct"- in the form
L, 1 i
EIG‘QC; = ?e‘“‘(‘ﬁl—}-?eﬁ”‘!—i"aﬁ) (*)
We let
. B . l a
k= ;5;9,; Vs dz‘(ﬁ :) (36)

and introduce the term (*) into (22). We then obtain

Fyp = 2’1“.'(21,7,7__ "’+4mk’¢)

+1—;o.§ww——mca.u (20%)

We note that in this equation the first and second sums are
single self-adjoint operators.

In the event that all these congruences are normal congruences,

then the "leg" factor £y disappears, since each Ricci symbol

Yik1l disappears individually with three different indices. Fur-

thermore, we can then choose the hypersurfaces, whose perpendiculars

are given by the curve congruences, as coordinate surfaces. We
then have

ds® = Hidel; 17 = H I, H,1,;
(A= ZoHad ) (37)

M=—u ki=eli [(=0, (37%)

13



while all h,  and h] parameters disappear with different . /270
3
indices. The equation for the operator F is then as follows
— 1 /(b 09 e
Fo=Zoy E(m o5 WY
b 4 Vo
. +r_m' 3?; (lg.ﬁ;)w)—mcu‘t'. (38)

This equation permits us to ilmmediately write the Dirac
equation in any curvilinear orthogonal coordilnates. In so doing,
the following must be borne in mind. If for example in the case
of an ordinary euclidian space, we write Eq. (38) first in
cartesian coordinates and-then in curvilinear coordinates, then
the y functions occurring in both cases in (38) are not identical,
but they are related to one another by a transformation of the
form (2) with variable coefficients a, B, ¥, 6. This fact must
be kept in mind in setting up the uniqueness postulates for the
y functions.

In concluding this section it should be noted that as every-
one knows, it 1s not always possible in a general Riemann space
to select all the curve congruences as normil congruences. This
1s possible, however, in the important special cases of a static
gravitation fleld with central and axlal symmetry as has been
shown by the solutions to the Einsteinlan equations found by
Schwarzschild and Levi-Civita.

7. We now want to try to find the energy tensor. To do this
we consider the tensor
A =‘w‘y°(9-f —a¥) = Fy"Dew
. drs °° ; (39)

and calculate 1ts divergence.1

1 The results of. this,section could also be derived in a more
elegant form by considering an infinltesimal transformation
(ef. [11]). However, we prefer to proceed in a more elementary
manner.

14



T S

We write the Dirac equation with its conjugate complexes /271
in the following form:

. 2 :
(G5 — )~ ment =0 (40)
0% _ore)y+ 2 meve, = 0. (4o®)

We differentiate (40) with respect to x“ and multiply on

the left by ¥. We multiply Eq. (40%) on the right with &£
ox
and add the results. If we take-into account the following

equation, resulting from (24)

1- 9
Ly +rh=— —Z—;;’i, (41)

then we can write the sum in the following form:

1 9 0¥\, -0y ) S _
7;'6—‘:(75"3 ey 7 +#’3—pr#’—¢7”3-§¢-—-0 (42)

Furthermore, we multiply (40) on the left with -WP;, (40%) on
the right with raw and add the results. In the sum we replace
the terms r;y° and PZYU by their equivalent terms from Eqs. (24)
and (41). 1In this way we get

1

7 a’%- ®V99°Tev) + 9(Vay) Dov

. —vrify g @n—rrv=0. (43)

Here if we replace Vayo with

Ve = giz:‘i"-r:p}'"

then subtracting (43) from (42) gives

15



v_a“(V'A'.)—r',A' = ¥7*Dea ¥, (4Y4)

where by way of abbreviation we set

o, Or.
Du‘-=a—£;—§-z;+r¢ra—nr¢ (45)

We must now calculate the Doa matrix. We have
Doy = DyDo— DaDs = %emb...k}..m:. (46)
where we set
D}y = Dy Dj— DD} + S e (Ymir — Pmtt) D
[ )

(47)

The operator (47) is equal to

D=+ E“t“f'mm + ’m Ay, (48)

where Yijkl stand for the leg components of the Riemann tensor:

—_— vz 095
iy e Ty

+ .? € [Yijm Q-u ~ ¥mit) + Vma1 Ymst — Ymir¥mit) (49)
and the skewsymmetric tensor M'klz /272
M.'¢=%25 ‘;f:‘+§e.(r.u—r-.o¢-. (50)
represents the electromagnetic field.
First of all we express the YODW matrix in terms of D'kl:

¥ Dga = > exerayha Dit-
" (51)

16



The sum ?ef‘“*p"’ which appears here can be calculated with

the aid of (48), whereby the cyclic symmetry of the Riemann
tensor must be taken into account. We get

2xie

zegugl)h = 2’*“*(_—&"" M") (52)

where
R'u=—$¢ﬂ’4m (53)

denote the leg components of the reduced Riemann tensor. If we
set (52) in (51) then we get

‘ 2
)"D¢¢=7' Rgc"' ::GMQI)' (51*)
Thus for the divergence of the A6'~a we get the following
equation
2
Vl'_a- 4°;) - p.,A., So(——R,.+ ’"’Me.)
d (54)
If we set
ch a.
gag A% = Wi =T+, (55)

where T°" and U stand for the real and the imaginary com-

ponent of the complex tensor Wc"a , then Eq. (54) can be written
in the following form:

A
VeWi = 80 (e2tpa — o5 Fes) (56)

or if we separate the real and the imaginary components:

VeT e == ¢S50 Moa,

he
. == e R.-
Vel = 5 (57)

17



The second of these two equations 1s an easy-to-prove identity,
for the Uo‘(! tensor 1is equal to

ke
Vie=— gz V5 (58)
and the divergence of the s% vector disappears according to (29).

Eq. (57) states that the divergence of tensor Taa; 1s equal /273
to the Lortentz force. We can therefore interpret - o 28 an
energy tensor. Eq. (57) are then the equations of motlon of the
general relativity theory. Perhaps it would be more consistent
to iInterpret not just the real component To' o but the entire
complex tensor wo: o &8 an energy tensor, ﬁé will not discuss

here which of these interpretatiocns 1s preferable.

What 1s surprizing here 1s the appearance of the electro-
magnetic sensor Mpa along with the Riemann tensor Rpa in the
form of a Hermitian matrix.

]

8. From the results obtained in order to derive the quantum
mechanic equations of motion which correspond to those of a mass
point (geodesic), we proceed as follows.

. 4dxie
Bje— =y Mpa

In the range of spatial variables xl, X x3 we choose a
complete system of functions:

. Yn (B 2y 2y 7y 4] ¢=12384), (59)

each of which satisfies the Dirac equationl

the postulate:

and is normalized by

lcr [5] and [2].

18




j’Hi&.f‘r, Yodz,dz,day =1 (60)

Because of (26) and (27) it follows from the existence of this
equation for a special value of Xq that it 1s valid for any other
value of Xqge We define the matrix element for an operator L by
the equation

E'-ar = Hjﬁ.Ld’. Yodz,dz,dz,. (61)

We bear in mind that the operations performed in the preceding
section and in particular Eq. (54) remair unchanged if in A® .a
and in sP we replace y by w and ¥ by w , hence by two different
solutions of the Dirac equation. We now write Eq. (54) in the
form

Vl’ -59- n V99° D ) = [ ¥ny? Do

1 2xie

+1’-2’°(_‘"§RQI+ he Mp-)"l (62)

If we multiply (62) with /g_dxldxzdx3 and integrate over the /274
entire space, then only one single term remains left over from
the sum on the left side of (62), and we obtain

.%a U” Un?*Da ¥ Vo dz, a:,a;,}
=”IW.[I‘.'.,;&'D,+7¢(_%R” 2:“319-)]% \9dzr,dz,dz,, (63)

which we can also write symbolically in the form

d 1 2xf
750D = TipD+ (= g Rea t 35" Uos) (64)
or also, 1f we set
h
Py = ;. D,
=i (65)
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in the form

d s e AR
AWl = IegptPo + ﬁ(;”e-—m"e-)' (66)

Now we can interpret the %p operators as representing the

o}
clasgical velocity 955 and Pc as that particular quantity of

dax
(o]
the covariant motion quantities mgopgg— . This interpretation

makes 1t possible to complete the transition to the classical
theory. If we do this and consistently lgnore the h term on
the right side, then we obtein precisely the classical equation
of motion for a charged mass point in a gravitation field and

in particular -- when no electromagnetic field is present -- the
differential equation of the geodesic.

9. The pure covariant tensor

Woa = g‘,'"’?; = ¢y Putp (55’)

is not symmetric with respect to its indices. Because of the
significance of the Y4 and Pa operators (velocity and momentum)
the quantum mechanic parameter woa corresponds to the classic
paramever PoUgYy

Wou — Qo Uotay

(67)

where Uy stands for the classical covarlant component of the
four-velocity and Py stands for the rest density of the matter.
However, the parameter PoUslYq is symmetric with respect to the
indices.

The Dirac equation (27) can be derived from a variation
principle which can be formulated as follows with the aid of
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the energy tensor:

JHH(IIrf’& —mcPa,y) l’; dryde, dzydz, == 0, (68)

This equation produces a slimple physlical interpretation of the /275
invariance miaqw as the rest density of the matter.

10. We now want to summarlze the results of our study.

Our starting point 1s the concept of the parallel shift of
a half vector. By means of this concept, the appearance of the
¢a potentials along with the Py impulses in the Dirac equation
can be interpreted purely geometrlcally. The purely formal
transfer of the expression Py = g“hx from classlcal mechanles into
quantum mechanics thus became superfluous. Furthermore, this
concept allowed us to easlly arrange the potentials In the
geometrical scheme of the general relativity theory, and this
can be useful for setting up a unified theory of electricity and
gravitation.

Moreover, the Dirac equatlons were set up in the general
relativity theory. These are invariant with respect to the
cholce of coordinates and "legs." This produced a secondary
result, namely an explicit representation of the Dirac operator
in curvilinear orthogonal coordlnates. A tensor was constructed
whose divergence 1s equal to the Lorentz force. Thils tensor was
interpreted as an energy tensor and the equation satisfylng it
was Interpreted as a macroscopic equation of motion. In addition,
the quantum mechanic equations of motion for the electron were
derived which correspond to the classical equations for a.
charged mass peoint or -- 1in the absence of an electromagnetic
fleld —- the equatlons of a geodeslc. Finally, the variation
pricniple from which the Dirac equation can be derived was
written.
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Qur aim was to geometrize the Dirac theory of the electron
and integrate it into the gereral relativity theory. In so
doing, the difficulties attached to the Dirac theory -- such as
the occurrence of negativ: energy values and & non-disappearing
probability of charge exchange of the electron -~ were not at all
encountered. But perhaps our observations can contribute indi-
rectly to solving these difficulties by showing what the original,
unchanged Dirac theory can accomplish.

Leningrad, University Physics Institute, May/June 1929.
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APPENDIX /276

After completing this paper, I discoverd the very interesting
paper of H. Weyl [12]. Weyl's basic mathematical idea is essen-
tially identical to the concept of the parallel shift of a half
vector. However the physical content of Weyl's work is completely
different from mine,

The essential features of Weyl's approach can be summarized
as follows.

1. Weyl considers the Dirac equation to be a wave equation not
for the electron but for the electron-proton system.

2. In the additive gravitaticn terms, Weyl thinks he has found
a substitute for the mea term, the latter simply being cancelled.

In my view, both of these theses can hardly be supported,
for they run into considerable difficulties which I would here
like to draw attention to.

The quantum mechanic equations of motion resulting from
the Dirac equation are completely analogous with the classic
equations of motion for a charged particle (and not by the way
for a two-body system), as has already been shown in my earlier
work [2].

The Dirac equation, and indeed with the meay terms, 1is
perfectly sulted for describing the force-free motion of an
electron as a wave in the sense of the original de Broglie view.

The splitting up of the current vector S by Weyl into two

summands S(+) and S(-), which are interpreted as positive
current anc negative electricity, cannot be upheld, for these
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summands are null vectors, and only their sum S = s(+) 4 g(=)
1s a time-like vector.l However, the current 1ls a static- é
macroscopic quantity and as such must have thc same character as /277 ;
in the classical theory, hence must necessarily be time-like.

Weyl's equations are supposed to describe the electron-
proton system, We may therefore demand that they accurately
reflect the esnergy level of the hydrogran atom. However, sirnce
the mea,, term has been left out, this is hardly possible and in
any case 1s not proven.

The gravitation terms ["leg vector" £, in our equation (35)]
interpreted by Weyl as a substitute for the mass can be made
to disappear us soon as a system of normal congruences exlists
and especially in the case of spherical symmetry as well &s in
the static case ¢f axial symmetry. However, one can expect a
large degreee of symmetry from the electron-proton system.

Finally, it remains completely unclear just how the constants
m and M -- the mass of the electron and of the proton -- should be
produced from the gravitation terms.

Because of these difficulties, I cannot consider Weyl's
attempt to tackle the quantum mechanics problem of mass and the
two body problem as successful. On the other hand, I gladly
concur with Weyl's general idea that both problems are closely

1 Proof: The time-like character of S follows from identity (8)
(where now 81 is to be read instead of Ai)’ for 1t gives

sg -52-52-52 =52 +58f (*)

1 2 3 5

si(*) or 31(-) 1s obtained from S, 1f y; and y, or y, and ¥, are
set equal to zero. In both cases Su and 85 disappear, thus also
the left side of (%), which was to be proved.
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related to one another and to the problem of gravity.

In conclusion, I would like to make a few general remarks
on the physical content of the Dirac equations and on the two
body problem in quantum mechanies.

In my opinion, the Dirac equation describes only the electron

in terms of quantum mechanics while it describes the rest of the
world (perhaps also the mass of the electron) macroscopically.

In this case the rest of the world also includes the proton. The
solution to the‘two body problem must conslst in finding a
quantum mechanical description of the electron, the proton, the
electromagnetic fleld and the mass. The gquantum mechanical
problem of mass seems to me to defy solution as long as only one
body is considered. By contrast, for the macroscopic description
of gravity and electricity, the quantum mechanical one body
problem seems to render good service.
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