General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

NASA TECHNICAL MEMORANDUM

NASA TM 75131

(NASA-TH-75131) EFFECT OF NITROGENOUS BASES N77-27243 ON THE THERMAL STABILITY OF JET FUELS (Scientific Translation Service) 6 p HC (Scientific Translation Service) 6 p HC CSCL 21D Unclas G3/28 36809

EFFECT OF NITROGENOUS BASES ON THE THERMAL STABILITY OF JET FUELS

B.A. Englin, M.P. Alerseyeva, G.V. Kachurina, M.A. Mardanov, Zh.I. Gasanova, A.Ya. Isaev, G.B. Skovorodin and S.M. Borisova.

Translation of "Vliyaniye azotistykh osnovaniy na termicheskuyu stabil'nost' reaktivnykh topliv", Neftepererabotka i Neftekhimiya (Moscow), No. 3, 1973, pp. 9 - 11.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON, D.C. 20546 JULY 1977

NASA-11Q

			1001	
1. Report No. NASA TM-75131	2. Government A	ssion No.	3: Recipient's Catal	og No.
4. Title and Sublitle EFFECT OF THE THERMAL STABILITY	F NITROGENOUS (OF JET FUELS	BASES ON	5. Report Date July 1977	
			5. Performing Organi	zation Code
7. Author(s) B.A. Englin, 1	A.P. Alekseyev	<i>7</i> a,	8. Performing Organi	zotion Report No.
A.Ya. Isaev, G.B. Sko	wardanov, 2n. ovorodin and S	S.M. Borisova	0. Work Unit No.	
9. Performing Organization Name and	Address		NASW-2791	No.
Box 5456	222.08	1	3. Type of Report on	d Period Covered
Santa Barbara, CA S	•••		Translati	on
National Aeronautics Washington, D.C. 20	and Space-Adm)546	inistration 1	4. Sponsoring Agone	y Code
15. Supplementary Notes			•	•
16. Abstract	•		•	
Fuel's from naphthenic	petroleums ha	id more N bases	s than those'	paraffinic
ones (0.00024 and 0.00	00009% N, resp	etively). The	ne removal of	the N
formation during oxide	cantly the the the trution of the f	ermal stabilition fuel. The impu	ty and reduced covement dependent	d the resid nded on
both content and compo content of N bases (0	sition of the 00058% N) and	e bases. Thus, I thermal stab:	fuels with a lity had oxid	similar con dation
and after removing the	.6 and sol. g N bases, res	um of 13 and 1 pectively.	L.5 mg/100 mł	, before
	•			· ·
•	•	•	•	
	N N		•	
17. Key Words (Selected by Author(s))	18. Distribution State	ement	
	•	Unclassified	- Unlimited	
	•	·	•	
19. Security Classif. (of this report)	20. Security Class	sif, (of this page)	21- No. of Pages	22.
Unclassified _	Unclassi	fied	6	
•	1			the second s

ii

. . . •

Nitrogenous bases contained in jet fuels, together with neutral nitrogenous compounds, take an active part in the formation of residue and gum during the heating of fuels [1,2]. Therefore, it was of certain importance to explain within what limits the content of nitrogenous bases changes in different samples of fuel TS-1 and T-1. The nitrogenous bases in fuels were determined by titration 0.02N solution of 57% perchloric acid in glacial acetic acid with the addition of acetic enhydride in the presence of the indicator "crystalline violet" [3].

It follows from the data presented below that the content of nitrogenous bases in fuels TS-1, produced from different petroleums, increases with the weighting of their fractional composition:

Petroleums (boiling limits, °C): Chalk precipitates of Checheno- Ingush ASSR:	% nitrogen
139-236 140-224 137-224	0.000023 0.00001 0.0001
Mixture of tuymazin, devonian,	
138-222 139-222	0.00001 0.00001
Mixture of tuymazin, arlano- chekmagush (137-222)	0.000019
Volgograd: 137-230 141-230	0.000004 0.00001
Mixture of romashkin and permian 15% (139-220)	0.000009
Romashkin (141-235)	0.00003
Mixture of romashkin, tyumen and shkapov (137-%.34)	0.00001
The same, and 10% vuktyl condensate (136-223)	0.00009
In fuels T-1	
Mixture of azerbaydzan and turkmen:	
142-265 142-270 140-266 142-262 138-263	0.00049 0.00062 0.00067 0.00057 0.00071

* Numbers in margin indicate pagination in original foreign text.

1

/9*

/10

Ekhabinsk:		
148-248	•	0.00059
149-253		0.00058
147-245		0.00027
146-255		0.00053
Mixture of krasnodar and grozny		
(140-264)		0.00071
In alkalized distillates of azerbaydzan petroleums		
143-220	. **	0 00024
159-279		0.0015
Shimron .	·	0,001)
151_222		0.0000
132-225	,	0.00024
Sanmaaha] (120, 254)		
Dangachar (1)0-2)4)		0.0004
Buzovnin (181–241)		0.00094
Neftyanyye Kamni (170-275)		0.00126
Ostrov Peschanyy (ligroin)		0.00023
In 10-degree fractions of mixture		

of turkmen petroleums

120-130	0.00004
180-190	0.00006
220-230	0.00022
250-260	0.00079
280-290	0.00266

With the same boiling limits the fuels of naphthenic base contain more nitrogenous bases than fuels of paraffin base. Thus, the distillate of shirvan petroleum which boils in the limits 132-225°C contains 0.00024% base nitrogen, while distillate of romashkin and permian petroleums which boil within 139-220°C only 0.00000%.

/ 11

If one assumes that the molecular weight of nitrogenous bases contained in jet fuels is 10 times greater than the atomic weight of nitrogen, then in fuels T-1 the content of nitrogenous bases is 0.0024-0.015%. It can be assumed that with such a content the nitrogenous bases will have an essential effect on the thermal stability of the fuel. For confirmation of this, after back-titration of fuel by perchloric acid and careful washing, its thermal stability was determined (GOST 9144-59 and GOST 11802-66). It is apparent from the data in the table that as a result of the removal of the nitrogenous bases the thermal stability of the fuels was considerably improved, moreover the amount of residue

2

EFFECT OF NITROGENOUS BASES ON THERMAL STABILITY OF FUEL

			•					
Petroleums	Fuel (boiling points), °C	% nitrogen	Thermal stabili (GOST 9144-59),	ty residue,	Thermal stabili 11802-66), mg/1	ity (GOST 100 ml		
			mg/100 ml		residue		soluble	gums
		•	before removal	after removal	before cemoval	after	before	after
			of bases	of bases	of bases	rem of	rem. of	rem. of
						bases	bases	bases
Binagadin	143-220	0.00024	15.4	5.1	-	* 1		
Balakhan	159-279	0.0015	28.4	7.8	1	1	1	i
Shirvan	151-222	0.00024	10.8	5.8	1	1	1	ł
	132-225	0,00024	10.0	3.4	ł	1		1
Sangachal	130-254	0°0004	15.2	8.6	1	1	 I	I
Buzovnin	181-241	1,6000.0	23.0	6.6	1	1	i	ł
Heftyan.	170-275	0.00126	12.6	6.2	i	I	1	ł
Kamni								
Ostrov	ligroin	0.00023	5.4	1.0		I	i	1
Peschan.								
Ekhabin	149-253	0.00058	1	\$	30.7	13.4	26.7	25.2
Mixture	142-265	0.00049	1	1	25.9	18.6	17.0	0.01
of azer-	142-270	0.00062	1	ł	31.9	20.6	21.5	17.7
baydzan	140-268	0.00058	1	ł	30.5	5.42	33.0	0
and	140-266	0.00067	8	ł	24.9	18.6	0.02	20.5
turkmen	142-262	0.00057	1	8	29.0	17.6	19.5	20.2
	140-256	0.00065	1	8	28.5	22.9	25.5	20.5
		•			•			

3

·• 1

•

formed during oxidation of the fuel was reduced. The degree of improvement of thermal stability after removal of the nitrogenous bases depends not only on their content, but also on the composition of nitrogenous bases. Thus, with equal content of nitrogenous bases in the samples of fuel T-1 produced from ekhabin petroleum and a mixture of azerbaydzan and turkmen petroleums (0.00058%N), and practically similar thermal stability evaluated according to the amount of residue, with the removal of nitrogenous bases from fuel T-1 of ekhabin petroleum the amount of residue formed in it is reduced by 17.3 mg, while in fuel T-1 of a mixture of azerbaydzan and turkmen petroleums only by 5.6 mg/100 ml. In the latter case, as a result of the removal of nitrogenous bases there is a significant reduction in the amount of scluble gums (13.0 and 1.5 mg/100 ml respectively).

Despite the fact that in the distillates made of petroleum from the deposit Neftyanyye Kamni the content of base nitrogen reached 0.00126%, the amount of residue formed during oxidation was only 12.6 mg/100 ml and therefore after removal of the nitrogenous bases the amount of residue was only reduced by 6.0 mg.

The obtained data indicate that nitrogenous bases impair the thermal stability of fuel and therefore their removal from jet fuels would permit improvement of the thermal stability of fuel.

References

- 1. Oswald, A. and F. Noel, Chem. Eng. Data, 6, No. 2 (1961), 294.
- 2. Vol'f, M. B., <u>Khimicheskaya stabilizatsiya motornykh i reaktivnykh topliv</u> ["Chemical Stabilization of Engine and Jet Fuels"], Moscow:"Khimiya," 1970.
- 3. Suslennikova, V. M. and Ye. K. Kiseleva, <u>Rukovodstvo po prigotovleniyu</u> <u>titrovannykh rastvorov</u> ["Manual on Preparing Titrants"], Moscow: "Khimiya," 1968, p. 137.

4