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NOMENCLATURE

A	 swirl parameter used in reference 1

Cg	group velocity of wave propagation in axial direction, 	
d

Cp	phase velocity of wave propagation in axial direction, k

c	 geometry parameter of the shape of the duct

k	 axial wave number

n	 azimuthal wave number

Q	 a parameter defined by S'fil-

61

q	 a parameter defined by ari

R(z)	 the geometry function of the shape of the duct

R 
	 the radius at the inlet of the duct

2WRi
Re	 Reynolds number, defined by

V

r*	 the radial coordinate normalized by R(z)

(r, e, z)	 cylindrical coordinates sitting at the center of the inlet of a
divergent duct

r 
	 the radial coordinate at the inlet of the duct

(U,V,W)	 velocities of basic flow field; U in radial direction,
W in axial direction

V 
	 swirl velocity along the wall of the duct

W	 average axial velocity from volume flow rate

W
0	

axial velocity along the axis of the duct

W 
	 axial velocity along the wall of the duct

01s1 6 0 9 6 1) parameters of the best fit to the experimental data

t	 circulation function

Rel/2
^ b	 a parameter used in reference 1,	

R i
V	 kinematic viscosity of water
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stream function of the basic flow field

V
R	 swirl number, defined by -W

W

W	 frequency of the disturbances



A CROUP-VELOCITY CRITERION rOR BREAKDOWN OF VORTEX FLOW --

AN APPLICATION TO MEASURED INLET PROFILES

Chon-Yin Tsai* and Sheila E. Widnallt

Ames Research Center

SUM J' RY

A group-velocity triter +.on for vortex breakdown implied by Landahl's

general wave trapping theory is applied to vortex flews exhibiting breakdown

in a slightly divergent duct. 'Clhe slowly varying vortex flow field down-
stream of the entrance and upstream of the breakdown region is obtained numer-
ically by using the inviscid quasi-cylindrical approximation. In these calcu-

lations, the Faler and Lebovich's experimental data were used as the starting
conditions at the entrance of the duct. The group velocity of %.ave propaga-

tion for the axisymnetric mode (n - 0) and the asymmetric modes (n = 1.1 and
n - t2) are calculated for the entrance conditions. For the theoretically

predicted slowly varying flow field downstream of the entrance, the wave
characteristics of the n = 0 and n = ±1 modes are presented. It is found

that the flows which subsequently undergo vortex breakdown are all predicted

to be supercritical and stable to infinitesimal inviscid disturbances, includ-

ing Lhe axially symmetric as well as the nonsymmetric perturbations.

INTRODUCTION

Vortex breakdown is a natural characteristic of vortex motions in which
swirl and axial flow are combined. The breakdO Wn of the flow is usually

identified by the formation of an internal stagnation puint on the vortex
axis, followed by reversed flow in a region of limited axial extent (ref. 2).
Sarpkaya (ref. 3) and Faler and Lebovich (ref. 4) have classified several

types of vortex breakdown based oil 	 experiments an(i on flow visualiza-

tions in a slightly divergent duct. Their experimental results show that the

type .ind location of the breakdown are governed by the ratio of the azimuthal

to axial velocity components. They subsequently measured the detailed veloc-
ity of vortex flow field which exhibited breakdown in the same divergent duct
by using laser Doppler anemometry (refs. 4, S).

In the present study, the wave trapping analysis is applied to the exper-
imental data measured by Faler and Lebovich (ref. 4) at the entrance of the
duct and to the theoretically predicted velocity profiles downstream of the

*National Research Council Research Associate, Ames Research Center.
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tnrofessor in Department of Aeronautics and Astronautics, Massachusetts

Institute of Technology, Cambridge, Mass.
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entrance. The development of the slowly varying steady vortex flow in the duct

is obtained by using the experimentally measured data as the input condition

at the inlet of a di.vergent duct. The duct flow is then calculated by means

of an inviscid quasi-cylindrical approximation. T1,e linear-wave-propagation
analysis is they, applied to this base flow at each axial station. The disper-
sion relation is calculated numerically and from this the group velocity is
obtained. Tsai and Widnall (rei. 6) also applied the linear-w;.ve-propagation

analysis to real vortex flows whirl+ were measured at several aAal stations
both upstream and downstream of the breakdown region obtained oy Garg (ref. 5).

The authors gratefully acknowledge the valuable assistance and encourage-
ment of Dr. Vernon J. Rossow.

..INALYSIS OF THE BASE FLOW FIELD

The flow apparatus used in the experiments is described in detail by

I'	 Faler (ref. 7). The test section is a slowly divergent duct which consists

of a linear change in the internal diameter from 3.81 cm to 5.08 cm over a

length of 25.4 cm. The test apparatus permitted two parameters, Reynolds

number (Re = 2WRi/v where rJ is the average axial velocity from volume rate

and Ri is the radius at the inlet of the test section) and swirl number
(S1 = VwJW where Vw is the swirl velocity at the wall), to be systematically
varied in the experiments. For a given set of parameters (Re, Q), Faler and

Lebovich (ref. 4) used flow visualization studies to reveal six distinct types
of vortex breakdown. The types of flow disturbance observed and the mean
axial location of the disturbance are summarized in figure 1. Two forms pre

dominate, one called "near-axisymmetric" (sometimes "axisyrametric," or "bubble-

like," or type 0) and the other called "spiral" (type 2). A series of measure-
ments of the swirl (V) and the axial (W) velocity components were taken at a

station located two-thirds of a tube radius upstream of the start of the
diverging test section for various combinations of Reynolds numbers and swirl
numbers. The resulting measured velocity components were represented approxi-

mately by a least squares fit of the data to the profiles.

2
V(r) _ ^ C1 - e_ ar
	

(1)

W(r) = do + 6,e-ar
2 	(2)

where r is the radial location normalized with respect to the rad{:s Ri.

The parameters a, S, do, and 6 1 were obtained by Garg (ref. 5) and are

tabulated in table 1. (The wave-propagation analysis is applied to the base
flow with slightly different value of these parameters. This set of slightly
different values, written in parenthesis in table 1, was provided by

S. Lebovich earlier than Garg's (ref. 5) publication.)
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The deveAopment of a vortex flow in a slightly divergent duct, without

any outside disturbances, can be obtained by means of an inviscid quasi-

cylindrical approximation. With the input functions, equations (1) and (2),
at the inlet of the duct, the upstream conditions are given by

1

^(r i , z = 0)
2

 r i g + 2a ^1 - e-aril	 (3)

II' M- ^(1 - e-ari 
2 

j
\	

(4)

where r i and z are the radial and axial coordinates from the center of the
inlet of the divergent duct; ^ and r are the stream function and the circula-
tion function, respectively.

For a slightly divergent duct, a quasi-cylindrical approximation can be
used to obtain the vortex flow field. The governing equation for the stream
function ^ can be written as follows (ref. 8):

dd 2 i d	 r dr	 dk	 dr
dr 1 - r dr = r

2 (ri d̂ + W diy - r d̂	 (5)

Substitution of the upstream conditions (3) and (4) into the right-hand side
of equation (5) yields

d2	 1 d	 _	 262a2(1 - e-q )e q

dr*	 r* d^*	
r*`R'(z) -lad l e -q +

(0 +dleq^q

- R2(z) 
2b 2 a(1 - e-q )e q	 (6)

d o + d l e q

where q is calculated by inverting the equation

d	 dl

V( q ; z = 0) - 2a 
q + 2a (1 - 

e_ 

q N	 (7)

and

R(z) = 1 + z tan 1.43° = 1 + 0.025z

q = ari2

r* = r/R(z)

with z normalized by R. i . The boundary conditions are

^(r* = O,z) = 0
	

(8)
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4,(r* - 1, z) a Zo + 2a (1 - e -a )	 (9)

Since equations (6) and (7) are nonlinear, the solution has to be obtained

numerically. The procedure is as follows: at each axial station z, we use

	

y,(r * a 10-5)	 20 r*2 + GUESS	 (1	 - e
-ar*' 1

dr* 
(r* - 10- 5 ) = 6o r* + GUESS • r*e-ar

*z

as the initial condition to start the integration in the radial direction.

The value of "GUESS" used in the foregoing equation is the solution obtained

at the previous axial station. The correct numerical result is then determined

by an iteration process in order to satisfy tl ►e boundary condition at r* - 1.
Since we cannot express q in terms of 0 explicitly from equation (7), we

have to calculate q numerically from a, at each step of the integration in

the radial direction in order to continue the integration to the next step in

the radial direction. At each axial station, the numerical solution is

checked by two conditions: (l) the total head function H(^) must be conserved

along; the stream line; and (2) the difference in the axial gradient of the
axial velocity along the wall and along; the axis is given by

	

2	 >	 R
	dW o	dWw.. - 

2	 1 art dr

	

dz	 dz	 r3 az
U

where Wo = W(r = O,z) and Ww = W(r - R,z). The above numerical solution is

restricted to positive ^; that is, a reverse flow region is not allowed.

The computer program for the inviscid quasi-cylindrical approximr.tion to

a vortex flow was first applied to the case of constant vorticity and uniform
axial velocity at the inlet of a divergent duct. The comparison between the
numerical results and the well-known analytical solution was good. This
computer program was then applied to input velocity profiles of the form

V = S(1 - e-2or- )/r and W = 1.0 in a duct of the shape R(z) = (1 + cz)-112.

The parameters B in the foregoing equation are 0.25, 0.275 and 0.30. These
cases are equivalent to those of Hall (ref. 1) with A = 10.0, 11.0, 12.0,

and ^b = 40.0, where A is the swirl parameter and r l, = Re 1 / 2 Ri. The
numerical results obtained from the present computer program are shown in

figures 2-4. The results obtained by Hall's numerical method including
viscous effects are reproduced in figures 5-7. It can be seen that two solu-

tions show the same characteristics qualitatively, although not quantitatively,
because the Reynolds number used in Hall's case (Re = 1600) was too small to

compare with the inviscid case. From the comparison of the inviscid quasi-
cylindrical calculations with those of Hall, we conclude that although the

qualitative behavior of a slightly viscous flow is predicted by the inviscid
theory, the quantitative behavior is not. The effects of viscosity become

i
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more pronounced as the duct becomes more gradual and as the swirl velocity

increases. In general, the position of the failure of the quasi-cylindrical

calculation in a viscous supercritical flow will occur ccpstream of that for
inviscid flow.

We then apply the present computer program to the various velocity pro-

files listed in table 1. Figure 8 shows the variation of the axial velocity

along the axis for different initial values of the swirl parameters of

v - all - e-15.69r 2 )/r and W - 1 + 1,137 e-15,69r2 (case 4 with variable E?)
within the fixed shape of the duct R(z) - 1 + 0.025z. It can be seen that

the convergence of the inviscid quasi-cylindrical approximation solution is

sensitive tc the swirl parameter s. Fo. S - 0.50 7 , which is case (4) in
experiments (table 1), the inviscid quasi-cylindrical approximation fails
around z - 1.6.45. 'The theoretically calculated profiles of the axial velocity

and the swirl velocity at each axial stations are shown in figure 9. The flow
visualization studies for the case (4), from figure 1, reveal that the spiral

form breakdown was dominant at about z - 5.4 and the axisymmetric form of

breakdown either formed around z - 3.9 and did or did not persist.
Figures 10-12 show another calculation for cases (1), (2) and (l) (table 1).

It can be seen that, in these four cases, the experimentally observed break-

down occurs at an axial location upstr. , am of the failure of the quasi-

cylindrical approximation (table 2). (Only four locations of the failure of
the inviscid quasi-cylindrical approximation are presented in table 2.)

The present computer program is also applied to the Garg's (ref. 5) data
which have been measured at higher Reynolds number than those of Faler and
Lebovich, and at several downstream stations. For the flow exhibiting spiral

form of breakdown, Garg'S data have been given at one more station ahead of
the ureakdown region. Therefore, the comparison between the best-fit curve

of experimentally measured data and the inviscid quasi-cylindrical approximate

solution can be made. However, it can be seen from figures 13-15, that the
comparison is not good. If we check the volume flow rate and the circulation
at two axial stations ahead of the breakdown region, it was found that the

volume flow rate of best-fits for the measured data increases 14.7%, 10.8%,

and 5.9%; the circulation decreases 13.9%, 10.1%, and 12.5% at Re - 11480,
Si = 0.787, Re = 14100, Q = 0.741 and Re - 20660, S2 = 0.682, respectively.

Since a discrepancy between the volume flow rate of the best fit to the

experimentally measured data at the two axial stations decreases as Re

increases, it shows that the viscous effec t :s important in the low Re cases.

Therefore, the viscous effect in Faler and Lebovi,:h's cases, which were

measured at much lower Re than Garg's, is believed to be important in their
experiment. We were unable, under the present program, to include viscous
effects in our calculations; this clearly should be done in the future.

It is still of considerable interest to calculate the wave propagation
characteristics of the inviscid quasi-cylindrical development of the inlet

profiles measured by Faler and Lebovich (ref. 4), even if the discrepancy

between the mean flow and inviscid calculations remains to be resolved.
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WAVE CALCUI.ATIONS AND DISCUSSION OF RESULTS

Landahl (ref. 9) developed a general theory for the wave mechanics of

breakdown to determine under what conditions the steady or unsteadv laminar

flow will breakdown into high frequency oscillations. Hilanin (ref. 10)
applied Landahl's theory to vortex flows and concluded that the breakdown

criterion for steady vortex flow in a slowly divergent duct requires that the
group velocity Cg of infinitesimal wa.-es be zero. The vortex flow may then
be classified as "supercritical" when the group velocity of the infinitesimal

wave propagates in the downstream direction (Cg > 0), and "subcritical" if

the wave can propagate in either direction. The dispersion relations, and

hence the group velocities, are obtained here by solving the e!genvalue prob-
lem at each axial station as if the flow were locally parallel. The location

at which the group velocity of the wave disturbance is zero is the place where

wave trapping occurs and it has been proposed that the vortex flow would also

breakdown there. Typically, only one type (axisymmetric or spiral) wave mode
would be critical at ar.y station in the flow.

Except for special case of uniform vorticity and axial flow, the dis-

persion relation of linear wave propagation on a parallel flow field

(0, V(r), W(r)) bounded by a rigid cylindrical tube 0 < r < 1 has to be
obtained numeri, lly. Waves were assumed to be of the form

Jt

	

tt	 tt	 V, W}P 
i(wt+no+kz*)

	

'	 a lU, 

so that the phase velocity is given by

C - -w/k
p

and 'he group velocity by

C - -dw/dk
g

Note that z* is a local axial coordinate that is distinct from z used in

the last section. The governing equation for this flow can be found in

Lessen, Singh and Paillet (ref. 11). Hultgren (ref. 12) presented a numerical
method that uses Moulton's method for the stability calculation of rotating
gas flows. by using this computer program, it was possible to search for the

eigenvalues for different cases listed in table 1 and also for their down-

stream development of the flow fields.

We use bo as the velocity scale and R(z) as the length scale for the
wave calculations. The characteristics of wave propagation for modes

n = 0, tl, ±2 on the veloc i ty fields measured at inlet (listed in table 1)

have been investigated numerically. It was found that the vortex flows that

exhibit various types of breakdown are supercritical to these five modes of
disturbances. Since there are similarities in wave charac_,.eristics among

these eight cases, only the results for the wave charactt:cistics of the inlet
flow for case (8) (exhibiting Type 4 breakdown) are pro_tented in figures 16-20.

It can be seen that the minimum value of the group velocity is the same order

6
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of magnitude for modes n a 0 and n - 1. However, the group velocities of
mode n - -1 and n - t2 have larger valuee than. bcch modes n - 0 and n = 1.

This indicates that we can ignore the downstream development of the n - -1
and n - ±2 modes. More detailed calculations confirmed this statement.

The wave characteristics (Cg vs k) at each station in the downstream

development of the flow are shown in figures 21-27 for cases (1-4) of

tables 1 and 2. On these figures, the wave number k has been rondimen-

sionalized by the local radius R(z). For mode n - 0, it can be seen that

the group velocity Cg crosses zero near the place where the inviscid quasi-
cylindrical approximation fails. Since the inviscid quasi-cylindrical approxi-

mation is a long-wavelength limit for axisymmetric wave, the group.-velocity
criterion (Cg - 0) for axisymmetric type of breakdown corresponds to the

failure of the quasi-cylindrical approximation. For modes n = +1, the group
velocity does not cross zero at any axial station. Although the group-
velocity criterion for vortex breakdown (Cg - 0) does not occur for modes

n - +1, the magnitude of the group velocity decreases with increasing down-
stream distance. It may be that a "finite amplit ,ide" wave would be able to
stand in this region of the flow. A direct comparison cannot be made of the

experimentally observed axial location where the breakdown occurs with the

theoretically predicted location for wave trapping since the mean flow is not
adequately predicted by the inviscid calculations.

CONCLUSIONS

Although the original intent of the study (to use the group-velocity

criterion to predict breakdown for experimentally determined initial data ana
then comparing the experimentally and theoretically determined location of

the vortex breakdown point) was not completely realized, some conclusions can
be drawn:

1. All flows that exhibit vortex breakdown of the "axisymmetric" form
or "spiral" form are supercritical upstream, in that the group velocities of

mcde n - 0 or n =	 are directed downstream. The group velocity of mode

n - -1 is directed downstream with a speed larger than that for the mode

n	 1; therefore, in a linear wave-trapping theory of vortex breakdown mode

n - -1 is not the mode responsible for the Ppiral form of breakdown. The

phase velocity of modes n - -1 and n - -2 can be in either direction, depend-

ing on the wave number k. In fact, the numerical results show that the phase
velocity is directed upstream in the long wave limit of mode n - -1.

2. The group velocity of n = 0 and n - 1 wave propagation on a super-
critical flow in a divergent duct becomes smaller as the axial location moves

downstream. This may imply that the waves do have a tendency to eventually
be trapped; however, since it is likely that vortex breakdown is a nonlinear
phenomenon, the linear wave-trapping theory cannot be applied to the region

near breakdown although it is useful for characterizing the state of the flow.

The computer program for the linear wave-propagation analysis is also limited

to the application of parallel flow.
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3. The parameters Q in table 1 are larger than 1.5 for eight experi-

mental cases. Therefore, according to the numerical results of Lessen et al.

(ref. 11), all flows that exhibit vortex breakdown are stable upstream of the

breakdown position to all modes of disturbances. Our numerical calculations

also indicated that all of these flows were stable upstream of breakdown.

4. Viscous effects ok. the downstream development of the mean flow should

be included even at moderate Reynolds numbers.
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TABLE 1. - THE LEAST SQUARES BEST FIT OF THE EXPF.PIMENTAL DATA TO THE EQUATIONS (1) and (2)

i Case Re R

1.282

ew

-1.3

.misec
/fa

13.870	 (13.80)

/se	 /
cm/sec _T cm/sic

18.903	 (18.66) 7.013	 (6.60)

u Q

1 6000 19.493	 (22.53) 1.711
2 6000 1.068 -1.3 14.220	 (14.20) 13.587	 (13.88)	 5.831	 (5.65) 19.311	 (21.14) 1.886
3

1	
6000 .727 -1.3 14.720	 (14.70) 7.181	 (	 7.09)	 3.980	 (4.10) 19.462	 (18.05) 2.445

4 I	 4540 1.282 -1.3 10.630	 (10.55) 12.077	 (12.00)	 5.104	 (5.35) 16.408	 (15.69) 1.745
5 4540 1.068 -1.3 10.890	 (10.90) 9.352	 (	 9.33)	 4.399	 (4.44) 15.671	 (15.53) 1.862
6 4540 .727 -1.3 11.290	 (11.20) 4.946	 (	 4.97)	 3.080	 (3.19) 15.689	 (14.41) 2.467

8 3220 1.068 -1.3 7.670	 (	 7.70) 4.646	 (	 4.67)	 3.017	 (2.99) 12.117	 (12.53) 2.260

Note: The numerical values in ( ) were provided by S. Lebovich earlier than
Garq's (ref. 5) publication.

	

TABLE 2.	 'OMPARISON OF POSITION BFTWEEN THE EXPERIMENTALLY OBSERVED VORTEX BRLAKDUWN

.ND THE FAILURE OF INVISCID QUASI-CYLINDRICAL APPROXIMATION

Observed mean	 Position of the
Case I	 Re	 Swirl	 Type of	

position of	 failure of inviscid quasi-
number	 breakdown	

breakdown, cm	 cylindrical approximation, cm

	

1	 6.000	 1.282	 AxisyAmetric	 3.33	 2).5

	

2	 6,000	 1.068	 Spiral	 13.83	 30.8

	

3	 6,000	 .727	 Uncertain	 Uncertain	 35.2

	

4	 4,540	 1.282	 Axisymmetric	 7.87	
31.4

Spiral	 10.67

	

5	 4,540	 1.068	 Spiral	 17.87

	

6	 4,540	 .727	 Uncertain	 Uncertain

	

7	 3,220	 1.541	 Axisymmetric	 3.33

	

8	 3,120	 1.068	 Type 4	 18.57

Ga W s Data (ref. 5)

	

20,660	 0.819	 Axisyawetric	 4.6

	

20,660	 .682	 Spiral	 15.2

	

14,100	 .884	 Axisymme[rlc	 5.6

	

14,100	 .741	 Spiral	 15.5

	

11,480	 1.066	 Axisymmetric	 2.3

	

11,480	 .787	 Spiral	 15.5

9



LI
^I

d

N

I N'^N 	 I	 .^ I

	

^	 IN	 /

	

I	 N	 / .^	 I

	

N	 I	 /

O	 I	 /	 I	 1

N	
N	

I	 ^^. N/^ ^ r ^^ ^	
NI I/^	 ^D♦ ^	 I N/ I

j

N	 ^/•	 I

^.^	 I	 N

o	 !
I	 ,'I

I	 ^	 N
m	

I ^^	 N'	 I

	

^I	 N'

I	 ^	
I	

I	 ,I	 /

N
I

	

^I	 VT	 !

CRrI	 I,^
11

I/I	 N

I	 `^ A

COL x Ob

10

N
W

L
0w

o

0
G

fY

it

0

u
l..
0

r-I

--4 -,r^•4Xcow
ro^

cc	 (n
w	 1-1 W

O
bLA
m^
^>

0

U
G
ro
.n

a



1=0
1.0

W

.8

6

8

I

.6

V

4

.2

I	 I	 I	 I	 I	 I

0	 .2	 .4	 .6	 .8	 1.0

r/R(z)

Figure 2.- Calculated profiles ofAxial (W) and swirl (V) velocity for initial

velocity; V = 0.275 G - ,-20r2 )/r; W = 1.0 at the inlet of the duct with
shape; R(z) _ (1 - O.O2z)-1/2,
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1.0

C=0

8 -	 -0.02
W0

.s	 -o.oa
-o.os

4	 I	 l	 l	 l	 1	 l
0	 .2	 .4	 .6	 .8	 1.0	 1.2	 1.4	 1.6	 1.8	 Z.0

z
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Shape; R(z) = 1 + 0.025z.
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Figure 11.- Calculated profiles of axial (W) and swirl (V) velocity for
case (2) in the duct with fixed shape; K(z) = 1 + 0.025z.
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Figure 13.- Comparison of axial (W) and swirl (V) velocities between the best
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Figure 14.- Comparison of axial (W) and swirl (V) velocities between the hest

curve fit to experimental data and inviscid quasi-cylindrical solution

(I.Q.C.) at axial station z = 6.8 for Re - 14100; 0 - 0.741 at the inlet

of the duct with shape; R(z) - 1 + 0.025z.
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Figure 15.- Comparison of axial (W) and swirl (V) velocities between the best
curve fit to experimental data and inviscid quasi-cylindrical solution
(I. Q. C.) at axial station z = 6.5 for Re = 20660; 	 = 0.682 at the
inlet of the duct with shape; R(z) - 1 + 0.025z.
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Figure 16.- Variation of frequency w, phase velocity C p and group velocity
Cg vs wave number k of mode n - 0 for case (8) at the initL of a
divergent duct.
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Figure 17.- Variation of frequency w, phase velocity C 	 and group velocity
Cg vs wave number k of mode n - 1 for case (8) at the inlet of a
divergent duct.
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Fi^ure 18.- Varlation of frequency w, ph.ise velocity Cp and group velocity
(:g v:4 wave number k of mode n - -1 for case (8) at the inlet of a
divergent duct.
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Figure 19.- Variation of frequency w, phase velocity C
p 

and group velocity
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divergent duct.
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Figure 20.- Variation of frequency w, phase velocity C p and group velocity

Cg vs wave number k of mode n _-2 for case (8) at the inlet of a

divergent duct.
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Figure 21.- The group velocities of mode n = 0 at various axial stations for
case (4) in table 1. Inviscid quasi-cylindrical approximation fails near

z = 16.5
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Figure 22.- The group velocities of mode 	 = 1 at various axial stations for
case (4) in table 1.
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Figure 23.- The group velocities of mode n = 0 at various axial stations for

case (1) in table 1. Inviscid quasi-cylindrical approximation fails near

z = 15.5.
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Figure 24.- The group velocities of mode n = 1 at various axial stations
for case (1) in table 1.
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Figure 25.-- I'te group velocities of mode n = 0 at various axial stations for
case (2) in table 1. Inviscid quasi-cylindrical approximation fails near
z = 16.2.
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Figure 26.- The group velocities of mode n = ] at various axi.a.l- stations for
case (2) In table 1.
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Figure 27.- The group velocities of mode n = 1 at various axial stations for

case (3) in table 1. Inviscid quasi-cylindrical approximation fails near

z_ = 18.5.
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