NMSA
 Technical Memorandum 80297

A Thermal Vacuum Test Optimization Procedure

(HASA-TM-80297) A TBERHAL VACOUM TEST
1879-30564
OPTIMIZATIOM PROCEDURE (MASA) 230 p
HC A11/HF 101 CSCL 14D
Unclas
63/38 36082

R. Kruger and H. P. Norris
3×1979

Mational Aeronautics and
Space Administration
Coddard Space Flight Center
Greenbelt, Maryland 20771

A THERMAL VACUUM TEST OPTIMIZATION PROCEDURE

Raymond Kruger
and
H. P. Norris

June 1979

A THERMAL VACUUM TEST OPTIMIZATION PROCEDURE

Raymond Kruger
and
H. P. Norris

SUMMARY

An analytical model has been developed that can be used to establish certain parameters of a thermal vacuum environmental test program based on an optimization of program costs. This model is in the form of a computer program that interacts with a user insofar as the input of certain parameters. The program provides the user a list of pertinent information regarding an optimized test program and graphs of some of the parameters.

The model is a first attempt in this area and includes numerous simplifications. For instance, it deals only with the first flight of a unit and also is limited as to the size of the facilities in which tests take place. No solar simulation or temperature cycling testing is included.

The mociel appears useful as a general guide and provides a way for extrapolating past performance to future missions.

CONTENTS

Page
SUMMARY iii

1. INTRODUCTION 1
2. DEVELOPMENT OF THE THERMAL VACUUM TEST OPTIMIZATION MODEL 4
3. CONCLUSIONS AND REMARKS 9
4. RECOMMENDATIONS 12
5. REFERENCES 16
APPENDIX A - GSFC DATA BASE, 109 COMPONENT LEVEL TESTS A-1
ADDENDUM A-A - SAMPLE DATA FROM 109 COMPONENT LEVELTESTS A-A-1
ADDENDUM A-B - PROGRAM FOR STORING DATA FROM GSFC DATA BASE A-B-1
ADDENDUM A-C - PROGRAM FOR LISTING DATA FROM FILES A-C-1
APPENDIX B - CORRELATION OF COMPONENT FAILURE RATESWITH TEST TEMPERATURESB-1
ADDENDUM B-A - PROGRAM FOR DEFINING FAILURE RATES AS A FUNCTION OF TEMPERATURE B-A-1
APPENDIX C - DEVELOPMENT OF THE RELIABILITY GROWTH MODEL FOR COMPONENTS C-1
ADDENDUM C-A - PROGRAM FOR NORMALIZING THE DATA
FROM ADDENDUM A-A C-A-1
ADDENDUM C-B - NORMALIZED DATA FROM ADUENDUM A-A C-B-1
ADDENDUM C-C - PROGRAM FOR LEAST SQUARES SOLUTIONS FOR TEST CYCLE PARAMETERS C-C-1
ADDENDUM C-D - SAMPLE OUTPUT OF PROGRAM FOR LEAST SQUARES SOLUTION (ADDENDUM C-C) C-D-1
APPENDIX D - DEVELOPMENT OF THE OVERALL RELIABILITY GROWTH MODEL D-1
ADDENDUM D-A - MATHEMATICAL RELIABILITY RELATIONSHIPS FOR TEST AND SPA.CE PERFORMANCE D-A-1
I. COMPONENT TEST PARAMETERS D-A-2
II. SYSTEM TEST PARAMETERS D-A-2
III. SPACE OPERATION PARAMETERS AT AN ENVIRONMENTAL INTENSITY OF E_{0} D-A-3
APPENDIX E - LAUNCH COSTS E-1
APPENDIX F - ESTIMATION OF PAYLOAD WEIGHT BASED ON COMPONENT COUNT F-1
APPENDIX G - ESTIMATION OF PAYLOAD RECURRING COSTS G-1
APPENDIX H - TEST COSTS H-1
APPENDIX I - DETERMINATION OF AVAILABILITY I-1
ADDENDUM I-A - VARIABILITY OF THE CRITICALITY OF A FAILURE 1-A-1
ADDENDUM I-B - ADJUSTMENT OF ORBITAL MALFUNCTION PREDICTION TO ACCOUNT FOR NON-THERMAL VACUUM ASSOCIATED EFFECTS I-B-1
ADDENDUM I-C - PROGRAM TO OPERATE ON PRC DATA AND DATA LISTING I-C-1
ADDENDUM I-D - INTEGRATION OF INSTANTANEOUS AVAILABILITY TO DETERMINE THE AVERAGE AVAILABILITY 1-D-1
ADDENDUM I-E - DETERMINATION OF INSTANTANEOUS AVAIL- ABILITY BASED ON INTERMITTANT OPERATION DURING MISSION LIFE I-E-1
APPERNDIX J - THERMAL VACUUM TEST OPTIMIZATION COMPUTER PROGRAM (PHASE I VERSION, 1979) AND EXAMPLES J-1
ADDENDUM J-A - PROGRAM LISTING, FILE \#1 J-A-1
Page
ADDENDUM J-B - PROGRAM LISTING, FILE \#2 J-B-I
ADDENDUM J-C - PROGRAM LISTING, FILE \#3 J-C-I
ADDENDUM J-D - PROGRAM LISTING, FILE \#4 J-D-1
ADDENDUM J-K MATRIX TS 112,14$\}$ J-E-I
ADDENDUM J-F - EXAMPLE OF PROGRAM RUN J-F-I
ADDENDUM J-G - EFFECT OF LAUNCH COST J-G-1
ADDENDUM J-H - EFFECT OF AVAILABILITY J-H-1
ADDENDUM J-I - EFFECT OF TRANSITION/DWELL RATIO J-I-1
ADDENDUM J-J - EFFECT OF CYCLING J-J-1
ADDENDUM J-K - EFFECT OF TEMPERATURE J-K-1
LIST OF ILLUSTRATIONS
FigureA-1 Format of Array DI [35, 8]A-3
A-2 Format of Array AI $\{30,721$ A-4
B-1 Definitions of Subdivision of a Spacecraft B-2
B-2 Failure Rate vs. Temperature, $\mathrm{h}(\mathrm{T})=\mathrm{Ae} \mathrm{e}^{\mathrm{B}(\mathrm{T}+\mathrm{G})}$ B-5
B-3 Thermal-Vacuum Malfunctions per Spacecraft of Flight Spacecraft by Day and Eivironment B-6
B-4 Failure Rate vs. Temperature $h(T)=K(T+G)^{2}$ B-7
B-5 Bands Within Which the Probability of Failure Lies With a Confidence of $\mathbf{9 5 \%}$ (Failure Taken at Start of Time Interval) B-10
B-6 Bands Within Which the Probability of Failure Lies With a
Confidence of 95% (Failure Taken at End of Time Interval). B-11
D-1 Analytical Model Trends of Failures and Failure Rates for Test and Operational Phases D-3

LIST OF ILLUSTRATIONS (Continued)

Figure Page
D-2 Effects of I:nvironmental Intensity Factor, F, on Failure Rate D-4
D-3 Typical Failure Rates for GSFC Spacecraft D-6
F-1 Total Components per Spacecraft (1965-1969) vs Spacecraft Weight F-2
F-2 Total Components per Spacecraft (1970-1975) vs Spacecraft Weight F-3
F-3 Experiment vs. Spacecraft Gross Weight (Based on 17 GSFC Spacecraft) F-4
I-1 D* vs. Number of System Components Based on 31 PRC Spacecraft 1-6
1-2 Average Spacecraft Availability; PRC Data vs. Analytical Model I-7
1-3 Effect of Change in Exponent, $\mathbf{B}:(\mathrm{N}=$ Number of Components) 1-9
I-4 Comparison of Average and Instantaneous Availability 1-11
I-5 Instantaneous Availability as a Function of Number of Components 1-13
1-6 Average Availability as a Function of Number of Components I-14
I-B-1 Change in S/C Availability to Account for Non-TV Early Failures I-B-3
J-1 General Flow Diagram J-3
J-F-1 Typical Plot; Desired Average Availability Entered as 0 J-F-6
J-F-2 Effect of Change in System Test Duration J-F-6
J-F-3 Desired Average Availability Entered as 0.3 J-F-7
J-G-1 Effect of Launch C \boldsymbol{T}. Payload Length 10^{\prime} J-G-3
J-G-2 Effect of Launch Cost, Payload Length 5^{\prime} J-G-6
J-G-3 Effect of Launch Cost, Payload Length 0^{\prime} J-G-9
J-G-4 Effect of Launch Cost (Large Chamber), Payload Length 10^{\prime} J-G-12
J-H-1 Effect of Average Availability of 0.75 Compared to Entering 0.0 J-H-4
J-H-2 Solutions for Average Availabilities of 0.75 and 0.85 J-H-5
J-I-I Effect of Transition to Dwell Ratio J-I-4
J-J-1 Effect of Cycling J-J-3

LIST OF ILLLUSTRATIONS (Continued)

Figure Page
J-K-1 Effect of Test Temperature J-K-3
LIST OF TABLES
Table Page
B-I Single Device Failure Rates B-3
H-1 Test Cost Algorithms H-2
I-A-1 Anomaly Distribution for 33 Spacecraft from PRC Data (5000 hour increments from launch) I-A-2
I-A-2 Percentage of the Total Number of Anomalies Encountered when Counting up to 10 of a Particular Criticality I-A-3
I-E-1 Program for Computing Instantaneous Availability for Intermittant Operations During Mission Life 1-E-1
I-E-2 Typical Outputs for Program of Table I-E-1 1-E-2
J-1 Listing of Files J-2
J-2 Questions Presented and Options Available to the User J-4

A THERMAL Vacilum test optimization prochdure

1. INTRODU:TION

The development of a thermal vacuum test program* for spacecraft and their component parts has been based largely on subjective judgement. This judgement ir shaped by the experiences of the particular test program designer as modified by influences such as the availability of time and funding and the perceived importance of the mission. The intent of this study was to develop a more objective approach to the design of a thermal vacuum test program.

Because of the wide variety of requirements, materials, fabrication techniques, etc. that go into the make-up of a spacecraft, it was considered impractical (certainly in this first attempt) to approach the problem of defining the effects of a thermal vacuum test program and operations in orbit on a microscopic or piece-part level (e.g., a resistor or a transistor). Instead it was decided to proceed on a macroscopic level; that is, how do components such as transmitters and higher levels of assembly act as a group under the thermal vacuum environment.

This approach was taken with the recognition that the group of all spacecraft components is far from homogeneous in their reaction to stress. (Eventually, it is hoped that finer grained models for describing component performance can be developed to account for differences among types of components.) The same assumption, having the same shortcomings, was applied to the spacecraft system level of assembly; that is, all spacecraft were taken as constituting a homogeneous group. No intermediate level of assembly was designated (e.g., sub-assembly) because of the difficulty in assigning specific items to the groups and in collecting data bases into the different groupings.

[^0]The concept of reliability growth, that is, the decrease in component failure rate with time. was selected to describe the basic changes in the performance of items. This reliability growth is modified by the environment under which the item is operating. A decreasing component failure rate has previously been demonstrated (Ref. 1); that is, on the average, spacecraft in test and in orbit exhibit a decreasing failure rate (up to some point that may be described as wearout) rather than the classical constant failure rate.

Using concepts such as failure flow analysis (as in Ref. 17), one can hypothesize the existence of a relationship between the performance of equipment during component level test and system level test and between system level test and orbital operation. Ref. 1 describes mathematical models that simulate spacecraft performance during system test and during orbital operation. Given these relationships, one can predict the effect of a test program upon the performance of a payload in orbit.

This study has taken the single criterion of cost as the parameter upon which optimization is based. (All costs used in this study are normalized to 1978 dollars.) Only certain costs were considered relevant in this study; they include launch costs, recurring payload costs (those needed to produce a second, identical payload), and test costs. In order to utilize these costs in an optimization scheme that considers the performance of the item during its mission, the concept of "availability" was introduced.

This concept, described in Refs. 2 and 3, assigns a value to the performance of a spacecraft that can relate its capability after some number of malfunctions to its capability had there been no malfunctions. Using functions of availability and cost, a "lost value", or money lost because of less than perfect performance, was developed and used to determine the optimum program; the lowest lost value indicates the optimum program of a group that is investigated.

Because of the availability of a desktop calculator (Hewlett Packard Model 9831A) plus a few peripheral pieces of equipment and the expected simplicity of the program that would be
generated during this study, it was decided to develop the prosram using a modified form of BASIC, a computer language compatible with that machine.

Section 2 provides a continuing thread describing the development of various areas in this study. Use is made of Appendices to provide the detailed backeround in these areas.

2. DEVELOPMENT OF THE THERMAL VACUUM TEST OPTIMIZATION MODFL

As noted in Section I of this report, previous studies have been conducted into the performance of spacecraft during test and in orbit. These studies (Ref. 1, 4, 5, (1) grouped the spacecraft into a large class and dealt with the class as being homogencous. These studies, while providing analytical models deseribing performance during system test and during orbital life, described their performance on a component basis.* However, none of these studies investigated the performance of the spacectaft components when they were tested on an individual (or component level) basis.

This study conceived of decrea;ing failure rate as a process that could be intercepted at the component level and followed on through into the mission. Also, the optimization process was to include both component and system level testing. Therefore it became necessary to develop an analytical model that could be used to describe the reliability growth of equipment during the component level test phase.

Data from 109 component level tests were selected from files at the Guddard Space Flight Center (GSFC). No specific effort was made to randomize the selection of these data; the major obiectives were to determine whether the available data was usable in a study such as this and, if sn, ing this small sample, to develop a reasonable analytical model to describe the component levil test program.

Appendix A contains an example of this data and the methods of and programs for analyzing it. The data are presented as they are retained in the computerized files except that information identifying specific projects or dates has been omitted.

[^1]It was recognized that the GSFC data provided a unique opportunity to investigate not only reli,bility growth as a function of time, but also to inventigate the effects of the environmental factors operating on the item under test. The specific factors of interest were the temperatures to which the iteme were exposed and the periodicity of the temperature applications. Appendices B and C respectively deal with the development of those portions of the analytical model that deal with these two parameters.

Appendix D descrihes the development of the azalytical model used in describing the process of reliability growth through the component test phase, the system test phase, and during the orbital mission.

A basic problem inherent to the developinent of a model that performs optimizations based on cost is the establishment of parameters that describe the way in which costs are affecte ,y the other parameters. In the cevelopment of this model, the costs themselves that were co.sidered relevant were: (a) the cost of the launch, (b) the recurring costs of the paylo., , the cost to produce a second one), and (c) the thermal vacuum test cosi'

Launch costs were considered as those recurring costs associated with placing the payload in orbit. Appendix E provides a description of the methods used in establishing these costs. Mariy simplifications were employed in order not to unduly delay the completion of the overall model; most of th: major costs are believed included. The launch cost model contains options that permit the usti to consider an expendable launch vehicle (a Scout, a 2900 series Delta, or a 3900 series Delta) or the Space Transportation System with a number of the options it provides.

It can be seen that an important parameter in establishing launch costs is payload weight. The program provides for a user input as to payload weight. However, if the user is unable to provide this information, a weight is estimated internally by the program based on the number of components (as described in Appendix D), the type of mission (free-flier or not), and the
type of instrument involved. This estimating feature was particularly helpful in developing the program. Appen.tix \mathbf{F} uescribes the approach used in estimating the total payload weight.

As noted previously, the cost of the payload plays a part in the cost optimization equation. This cost is requested of the user. If the value is unknown, the program will internally generate an estimated cost based on payload weight, whether it is or is not a free flier, and the type of instrument system involved. A more complete explanation of the process is contained in Appendix G.

The last cost item that is included in the optimization equation is that of the tests costs. Test costs were derived from data obtained from aerospace and government sources. Some of the data was considered sensitive insofar as they indicated management practices of the corporations. Since it was desired that this report be distributed without restriction, the details of the evaluations of this test cost are omitted from this report. They will be included in a separate document. Appendix H provides information as to the final figures derived from the amalgamation of the industry and government data. As such, it is considered not to present any information that an industry source would be reluctant to divulge to other corporations. It does present cost figures for component testing, system level testing, and repairs including the algorithms used within the program.

One of the key items needed in the development of a cost optimization modei was a parameter that could be used to relate the performance of an item in orbit to cost. The concept of a lost value, i.e., that money that would be lost because of less than perfect performance, is one that lends itself to an optimization concept. While costs themselves can be defined (to within some degree of accuracy), the selection of a parameter that describes the performance of an item in a general way is subject to a good deal of question.

In this study, it was decided to use the concept of availability as described in Ref. 2 and 3. Essentially, this concept involves a determination of the remaining capability of an item to
perform its mission after having undergone some number of malfunctions. The basic parameter that is derived is that of "instantaneous availability" as described in Ref. 2 and 3; it is the percentage of the inicial capability of the equipment to perform its mission that remains at some point in time after a number of failures. From the instantaneous availability, A, is derived an average availability, \bar{A}, that is considered a measure of the accomplishment of the mission. Appendix 1 describes the development of the availability parameters. It also contains graphs showing how they vary with mission parameters and a description of an application.

Having developed cost data and a parameter that can describe the success of a mission, it becomes possible to derive an expression that may be minimized or maximized in order to obtain an optimum result. The expression used in this model is:

$$
\begin{aligned}
\text { Lost Value }= & (1-\overline{\mathrm{A}})\left(\text { Launch Costs }+\frac{\text { Recurring Payload Costs }}{\text { Number of Missions }}\right)+ \\
& \text { Component Test Costs }+ \text { System Test Costs. }
\end{aligned}
$$

In operation the model iterates through a number of test programs including certain user defined inputs and designates that combinations of parameters that minimizes the lost value. If a user designates a desired average availability, \bar{A}, this becomes a fixed parameter. If this is not designated, the iteration process includes a determination of $\overline{\mathbf{A}}$ and again determines a minimum lost value with a corresponding $\overline{\mathbf{A}}$.

The model currently is applicable only to single flight missions although it does treat reusable payloads to the extent that this cost is ammortized over the number of flights. Similarly, another current shortcoming of the model is that refurbishment costs are not included; this is not seen as a problem since the model does deal only with the first flight where no rufurbishment is involved. It is apparent that a very important extension of the model will be to extend the availability concept to multiple flights of the same payload so as to account for this very important STS mule of operation.

Appendix J presents information pertaining to the computer program itself including a listing of the program. The listing is heavily annotated with remark statements to assist a user; it could be significantly shortened merely by removing these statements. In addition, Appendix J contains a large number of trial cases conducted using the model. These are included to demonstrate model operation and to provide information upon which some general conclusions may be based.

3. CONCLUSIONS AND REMARKS

The analytical model that has been developed is capable of selecting a thermal vacuum test program (from among a number of alternate approaches) :hat results in an optimized cost function to a user. The model is extremely flexible in that it allows a user to investigate programs in which the test program parameters and mission parameters are variable.

The user is required to define the number of components that comprise the payload. Other parameters (such as weight and cost) can be entered by the user or he may elect to allow the model to determine these parameters. The user may also select from a number of launch options.

The model is restricted in a number of aspects; however, these restrictions are due not to the implicit design of the model but rather are due to the desire to complete a workable analytical model in a timely manner. For instance, only three expendable launch vehicles are included; there is no technical reason why all expendable launch vehicles could not be included.

The model is based in large part on assumptions of average component performance. Therefore, it is best suited to be used as a guide rather than for developing hard and fast programs. In time, the model could be greatly sophisticated to involve much less averaging.

No sensitivity studies have been conducted to define those areas in which added work would provide the greatest yield. In addition, the statistical limits of the assumptions have also not been established.

Costs of tests are based on extremely limited data. It is hoped that this data can be improved by discussions with readers of this report. Costs of the payload are based on models developed by others. The TVTO model, for expediency, has used these other models in simplified form. Costs for the launch vehicles are based on information of a preliminary nature.

However, with all of these shortcomings, given a user defined average availability, the optimum programs selected by the analytical model appear not unreasonable. When the model is
allowed to select a test program without the restriction of a fixed average availability, the optimum program results in an unexpectedly long test. While at first one might choose to disregard this solution, it is arrived at in exactly the same manner that solutions resulting from a user defined average availability are arrived at, and those yield "reasonable" results. It may then be that we must rethink our test policies and to understand what, in fact, the model indicates.

Because of the intimate relationship between test temperature and test profile within the algorithm, it is virtually impossible to predict the optimum program. However, it appears possible to make certain generalities. Most evident is the trend of decreased costs arising from extended temperature limits. Since the model assumes that no new failure modes are introduced by extending the temperature limits, one might expect this result. A user would then be advised to select the optimum temperature by selecting the widest temperature range over which the equipment is capable of operating.

The effect of the ratio of time spent during transition to time spent during dwell is not clear; however, it does appear from the case shown in Appendix J that long transition times to not yield optimum results. The case shown in Appendix J and other runs that were conducted indicate that ratios of transition to dwell times of $1: 2$ are close to optimum cases. However, the better case as seen in Appendix J was a ratio of 1:11.

The model does indicate that with the 1:2 ratio, the shorter the period, the less the lost value. The optimum test duration must be established by use of the model; it is impossible to predict the optimum program by inspection.

It appears that programs having a low cost resalt in a no-test option or a component-testonly option. The trade-off points have not as yet been established since they depend not only on the cost but on the desired availability (plus, of course, the many other variables such as component count).

The concept of availability appears to provide a way for a user to establish performance criteria that can be translated into a function usable by an analytical model.

4. RECOMMENDATIONS

Throughout the development of this model, areas for improvement became evident constantly; only the desire to reach some fixed point in time with a stable working model prevented pursuing these areas. The following is a list of some of the more important arcas that should be developed.
(1) Establish the Statistical Correlation Between Test and Orbital Performance

The current analytical model is based on the assumption that payload performance during test is related to its performance in orbit. This assumption has been used previously (Ref. 17 et al.). However, this hypothesis needs to be verified by determining the correlation between system test and orbital performance. it is believed that sufficient data exists to define that correlation. It is believed that it would be impractical to attempt a correlation between component and system performance based on past data because of the difficulty in establishing the history of individual components.
(2) Establish the Uncertainties and Sensitivities Within the Model

The variances or confidence intervals need to be established in many areas (e.g., the reliability growth expressions) as well as determining the sensitivity of the model to various parameters.

(3) Improve the Data Base

One of the most difficult aspects of the study has been to relate the model to past performance. In great part, this is because the raw data base has not been recorded in a systematic manner; every program conducts its business its own way. In many cases, the data base was developed by discussions with individuals who were associated with a program and who were asked to recall some item from memory.

Two areas in particular need improvement. First, the data base on component testing needs to be greatly expanded. The current conclusions based on the existing base (Appendix
A) are grounded on very tenuous relationships. Many more tests need to be analyzed to verify effects of the test parameters.

Secondly, the cost of testing needs to be better defined. Current accounting practices and work breakdown structures do not permit the separation of test from other costs, most notably from integration. In great part, the current model is based on data generated from estimates as to the way in which past costs should be allocated.

Consideration must be given to the need for a data base and a systematic data collection program. Old data needs to be recorded in an appropriate format and new data continually added to maintain a record of the most recent trends.

(4) Revise the Initial Failure Rates for Follow-On Units

While the cost algorithm currently contains data for follow-on units (i.e., those where a similar payload has previously been flown), the decreasing failure rate model does not. There is data from a number of programs that indicates that the failure rate for second, third, etc., similar models (up to but not including the last of a series) decreases. This change in failure rate needs to be accounted for.

(5) Include the Effect of Multiple Flights

The current optimization algorithm considers only the first mission and assumes that the availability is required for this first mission. It would be more in keeping with the STS concept to account for those cases where multiple flights are used to accomplish a mission objective. Two other factors would enter the algorithm. One is that the mission itself, even though it might not be a success, would contribute to the reliability growth of the payload and this would have to be factored into the test program. The other is that the cost of repair and refurbishment would have to be factored into the model.
(6) Introduce Greater Sophistication into the STS Cost Portion

The present model is greatly simplified insofar as establishing STS costs. For instance, only the costs that very evidently exceed $\$ 200,000$ (e.g., OMS kits) have been included.

Less apparent costs - but ones that may far exceed $\$ 200,000$ such as the cost for additional power - should be included. An opposite approach using a user provided cost input, is an alternative.

(7) Develop Marching Army Costs

The "Marching Army" costs (Appendix H) are based on very gross assumptions. It would appear relatively simple to develop more appropriate costs based on existing models for program cost as a function of time.
(8) Devise a "Finer-Grained" Model

This recommendation cuts across a number of areas and includes effort to do such things as establish component test costs for various sized chambers, adding a smaller chamber (e.g., $7 \mathrm{ft} . \times 8 \mathrm{ft}$.) to the system test group, break components into classes (e.g., experiment vs. non-experiment related or electronic, electro-mechanical, mechanical, etc.) and break payloads into various classes. This would also result in a significant change to the model itself since, with finer grained identification of components for instance, one would follow the effect of degradation in a particular area to its impact on the mission. It could result in the model treating the payload as a combination of series and parallel paths as is done in Ref. 16. It would provide a way to better tailor the test plan to a specific program.
(9) Use the Analytical Model Form for the Space Environment

The analytical model currently takes the space performance of the payload as being an average of the spacecraft in the data base. It is a relatively simple matter to input the mission values for period and temperature to more closely simulate the performance of a particular payload that is under study.
(10) The Availability Concept Should be a Subject for Further Study

As part of Appendix I, it was shown how the concept of availability could fit actual mission profile requirements. It is believed that this can be further refined to become a useful tool in itself in the development of other project criteria.

5. REFERENCES

1. Norris, H. P. and Timmins, A. R., "Failure Rate Analysis of Goddard Space Flight Center Spacecraft Performance During Orbital Life," NASA TN D-8272, July 1976.
2. Bloomquist. C. E., "Use of the Space Shuttle to Avoid Spacecraft Anomalies," PRC Systems Sciences Co., Los Angeles, CA, Report PRC R-1467, 3 May 1972.
3. Bloomquist, C. E., DeMars, D., Graham, W., and Henmi, P., "On-Orbit Spacecraft Reliability," Planning Research Corp., Los Angeles, CA, Report PRC R-1863, 30 Sept. 1978.
4. Timmins, A. R., "A Study of Total Space Life Performance of GSFC Spacecraft," NASA TN D-8017, July 1975.
5. Timmins, A. R., "A Study of First-Month Space Malfunctions," NASA TN D-7750, October 1974.
6. Timmins, A. R., Heuser, R. E., and Strain, J. C., "Analysis of Flight Model Performance During Thermal-Vacuum Tests," NASA TN D-7408, November 1973.
7. Review Copy, "Space Transportation System Reimbursement Guide," JSC 11802, Feb. 1978.
8. "NASA Rocket Statistics," Published by NASA Headquarters, Code NH-7, January 1979.
9. Clemens, D. B., Hagan, F. J., and Musick, W. J., "Cost Estimating Relationships for GSFC Unmanned Satellites," GSFC Report X-213-73-66, February 1973.
10. SAMSO Unmanned Spacecraft Cost Model," 4th Edition, Cost Analysis Division, HQ SAMSO, USAF, Feb. 1978.
11. "Scientific Instrument Cost Model (SICM)," Technicai Brief No. 40, PRC D-2136, PRC Systems Services Co., 15 Dec. 1978.
12. "Military Standardization Handbook, Reliability Prediction of Electronic Equipme \because, ," MIL-HDBK-217B, I Sept. 1974.
13. Hallander, M. and Wolfe, D. A., "Nonparametric Statistical Methods", John Wiley \& Sons, 1973.
14. "Long-Life Assurance Study for Manned Spacecraft Long-Life Hardware," Martin Marietta Corp., Denver, Report MCR-72-1 69, Sept. 1972.
15. Coppola, A., "Experimental Determination of a More Powerful Burn-In," Vol. R-27, No. 3, IEEE Transactions or Reliability, Aug. 1978.
16. Stable, C. V. and Gonglaff, H. R., "Vibroacoustic Test Plan Evaluation," General Electric Space Div., Valley I-orge, GE Document No. 76DS 4223, June 1976.
17. Abbott, R. A., "Final Report for a Failure Flow Analysis of System Test and Flight Malfunctions of the RAE-A Spacecraft," General Electric, Space System Organization, Document No. 70SD4215, 20 Feb. 1970.

APPENDIX A
GSFC DATA BASE, 109 COMPONENT LEVEL TESTS

APPENDIX A

gSFC DATA BASE, 109 COMPONENT LLEVEL TLSTS

In order to cevelop a model that is representative of a situation, one must be able to define the situation a: it exists. In the area of thermal vacuum testing, a data bank exists at GSFC that has been compiled hy the organization that has been responsible for thermal vacuum testing. This data was begun in the carly 1960's until 1970 when a reorganization took place and the data bank input changed. The data in the system prior to the reorganization contained information on all tests conducted by the group in various sized temperature chambers, thermal vacuum chambers, and solar simulation facilities. The tests were conducted at all levels of assembly of spacecraft. As time passes, data is sent to storage where it is retained for a number of years and then destroyed. Therefore, the available data includes a period of about 10 years.

The data bank itself consists of the handwritten records of the tests indicating such things as the name of the project, the name of the item tested, the dates of the test, the TAR (Test Action Request, authority for the test plus some data), the times at which temperature changes took place, and failure information.

In order to ialake this data amenable to computer operations, it was transcribed onto a magnetic tape cassette (Hewlett-Packard 9162-0061 Data Cartrige) using a Hewlett-Packard 9831A calculator (which was used for most of the analyses conducted under this study). 109 data files were so established. Addendum A-A is a listing of the information in these files (with information that identifies the particular item omitted).

The four columns listed in each data file include (a) the matrix row in whe that line of data is contained, (b) the hour of the year at which the temperature change took place, and (c) the failure status. Under "failure status," a 1 indicates that an anomaly took place some time between the hour indicated on that row and the hour of the next row; a zero indicates no
anomaly. The number " 2 " in that column indicates a break in the test, a " 3 " indicates that no functional tests were performed during the exposure, a "4" indicates the continuation of a test beyond the last entered data, and a " 5 " indicates that the anomaly occurred somewhere within the time period within which the " 5 s " are noted.

Fig. A-1 shows the format of the array in which the data is stored. In order to simplify various analyses, this data was compressed into two other arrays (72 col. $\times 50$ rows each). The format for these arrays is shown in Fig. A-2.

Addendum A-B is the program for storing the data and Addendum A-C is the program for listing the data from file.
COLUMNS

[^2]NOTES: [1,8] 1 ENTERED FOR YES, \wp FOR NO

NOTES: (a) THE8E DESIGNATIORS INDICATE THE CORRESPONDINO ELEMENT FROM AMRAY OIISEI: WHERE NO ELEMENT IS INDICATED. THE VALUE MAS EEEN COMMUTED FROM THE DATA. (b) Must be eoual on ofeaten than the number of fallungs.

Figure A-2. Format of Array AI $[50,72]$
A.DDENDUM A-A

SAMPLE DATA FROM 109 COMPONENT LEVEL TESTS

DATA FROM FILE \# 1

DATR FROM FILE * 2

Row	Hour	Tempideg C	Failure Status
5	2629	25	0
6	2635	40	0
7	2659	40	0
8	2665	-10	0
9	2677	-10	0
10	2682	40	0
11	2694	40	0
12	2699	-10	0
13	2723	-10	0
14	2726	25	0
15	2727	25	0

ADDENDUM A-B

PROGRAM FOR STORING DATA FROM GSFC DATA BASE

```
10 com II[35,8],F$[6],N$[16],L$[4],T$[5],M$[4],C$[2],0$[14]
20 REM - FROGRFM TO STORE DRTA FROM CODE }755\mathrm{ FOLIOS
30 FORMAT "TAR NO.",F3.D,",",F4.0
40 FORMAT "J.O.NO.",F4,O,"-",F3.0,"-",F3.0
SG FORMAT F3.0,2X,F3.0,1X,F3.0,1X,F3.0,3X;F5.0,6K,F4.0,8X,F2.0,11X,12,0
60 FORMAT F3.0,5K,F5.0,7X,F4.0,9K,F2.0,11K,F2.0
70 MAT D=2ER[35:8]
80 LOAD KEY 2
81 CFLRG Q
83 DISP "List data from file";
8 5 \text { INPUT A}
86 IF NOT FLRGO THEN }9
8 SFLRG 0
90 DISP "FILE NUMBER";
92 INPUT F
94 LORD IATA #1,F
96 GOTO 480
99 DISF "File Nr. for storage";
100 INFUT F
110 PRINT "File Hr.";F
1 2 0 ~ P R I N T ~ T
130 FIND F
140 DISP "TRR Nr. (RS XXKXXX)";
150 INPUT J
160 I[ 1:1]=INT(J/1000)
170 I[ [1,2]=\-1000*D[1,1]
180 DISP "Proj name (F%; 6 SPA)";
190 INPUT P$
200 TRANSFER P$ TO D[1,3]
210 DISP "J.0. Nr. (AS KXXXKXK)";
220 INPUT J
230 D[ 1,6]=INT(1/10000)
240 D[1;7]=J-10000*D[1,6]
250 DISP "Retest? 1=Y,0=N
260 INPUT D[1,8]
270 DISP "Item name (N$, 16 SFF)";
280 INPUT N$
290 TRANSFER N* TO D[ 2,1]
300 DISP "Lul of ass'Y ( }1=C,2=5S,3=5,4=TM)"
310 INPUT D[3,1]
312 IF D[ 3.1]=1 THEN 318
313 IF D[3,1]=4 THEN 320
314 DISP "HOW MANY' COMP MAKE UP THE ITEM";
316 INPUT I[ 3.7]
317 GOTO 320
318 D[3;7]=1
320 DISP "Item type <1=Hskpg,2=Exp,3=Both or ?";
330 INPUT D[3:2]
340 DISP "Maturity \1=PF,2=FT,3=TM,4=UNK,5=FltA,6=SPARE;Etc.";
350 INPUT D[3:3]
360 [ISP "Test type (1=TV,2=TC,3=TE:4=?)";
370 INFUT DI 3,4]
380 IISP "Facility Nr. (AS XMX)":
390 INFUT I[ 3,5]
400 DISF "OUPcome (1=Sat,z=Unsat,S=Indtrm`";
410 INPUT D[3,6]
42g IISP "Tmox, deg C":
430 INPUT I[ 4,2]
440 DISP "Tmim! deg C";
```

```
450 INPUT D[4,0]
160 DISP "Number of half-cyelez";
#70 INPUT IJ[4,4.]
```



```
490 WRITE (2,40)D[1,6],INT(D[1,?]/100);D[1,7]-(<INT(D[1,7]/100))*100)
500 PRINT "Project: "{P$,SPA10,"It,Em: "IN$
505 IF FLFGGO THEN }87
510 GOTO D[ 3,2] OF 560,580,600
520 60T0 I[ 3,3j OF 620,640,660,680,700,720
530 GOTO DC 3,1 j OF 740,760,780
540 PRINT "Lul of ass'Y& "iL$,"Maturity: ";M$," Type: ";T$
550 GOTO D[ 3,4 ] OF 800,820,840,860
560 T$="H&kря"
570 GOTO 520
580 T$="Exper"
590 GOTO 520
600 T$="Both "
6 1 0 ~ G O T O ~ 5 2 0 ~
620 M$="PF1t"
6 3 0 ~ G O T O ~ 5 3 0 ~
640 M方="PtYp"
6 5 0 \text { GOTO 530}
660 M$="TMOd"
670 GOTO 530
680 M$="Unkn"
6 9 0 ~ G O T O ~ 5 3 0 ~
700 M$="FltA"
710 GOTO 530
720 M$="SPR "
730 G0T0 530
740 L$="Comp"
750 GOT0 540
760 L$="SSYs"
770 GOT0 540
780 L$="S;st"
790 GOT0 540
800 C$="TV"
810 GOTO 870
820 C = = "TC"
830 GOT0 870
840 C$="TB"
850 COTO 870
860 C$="??"
870 PRINT "Trpe of test: ";C$:" Focility Nr. ";D[3:5j
880 GOTO DL 3:6J OF 950,970:990,1010
890 PRINT "Outcome of test: "10$
900 PRINT "Tmaxi"ID[4,2]i"des C. Tmin:";D[4,3j;"des C."
905 IF FLAGO THEN 1030
9 1 0 ~ P R I N T ~
920 DISP "USE FN KEYS TO CHANGE OR CONT "
930 STOP
940 GOTO 1030
950 0$="Satisfactory"
960 GOTO 890
970 0$="Unsatisfactory"
980 GOTO 890
990 0$="Indeterminate"
1000 G0T0 890
1010 0$="Unknown"
1020 G0T0 890
1030 PRINT "CW1: 1 2, 3 4 4 5"
1040 FRINT "ROW Mo DO'YM Time TEmFideg L Sun Failure Stotus"
1050 FOR I=5 T0 35
```

```
1055 IF FLHGO THEN 1220
```



```
1070 INPUT D[I,1 I,I[I,2 J, I[ I;3]
1080 IF D[I,1]=0 THEN 1240
1090 IISP "HOUR (KKKX)"I
1100 INPUT DEI,4J
1110 DISP "TemP: deg C";
1120 INPUT IFI,5J
1130 IF D[ 3,4]茾3 THEN 1160
1140 DISP "Sun on P 1=Yes, 0= No ";
1150 INPUT I[I,6]
1160 DISP "Fail btwn now and next per? l=Y,0=N, 2=Unknown";
1170 INPUT DEI;7J
1180 DISP "TEST INTRPT NOW(1=Y:O=N)";
1190 INPUT A
1200 IF A=0 THEN 1220
1210 D[I;T]=2
1215 IF D[I:1]=0 THEN 1240
1220 WRITE (2,50)I,D[I;1]:D[I,2],D[I,3],D[I,4],D[I,5],D[I,6],D[I;7]
1230 NEXT I
1240 PRINT
1245 IF FLRGO THEN 1920
1250 DISP "USE FN KEYS TO CHANGE OR CONT "
1260 STOP
1270 REM - This routine converts MoDaYr to Hour of Year <adding last
1280 REM - year if the test crosses a year.
1290 FOR I=5 TO 35
1300 IF D[I:I]=0 THEN 1730
1310 REM - This section determines whether this is the same year as at the
1320 REM - start of the test and if that was a leap year.
1330 IF D[5,3]={D[1,3]-1) FND INT(D[5;3]/4)=D[5,3]/4 THEN 1360
1340 IF D[5;3]={I[I;3]-1\rangle RND INT(D[5;3]/4)#D[5;3]/4 THEN 1380
1350 GOT0 1400
1360 Y1=366
1370 GOTO 1410
1380 Y1=365
1390 GOTO 1410
1400 Y1=0
1410 REM - This section calc the hr of the yr <adding last yr if rar'd).
1420 T1=0
1430. FOR G=1 TO 12
1440 K=D[I;1]-G
1450 IF K=0 THEN 1640
1460 IF K=1 THEN 1540
1470 IF K=2 AND INT(II[G:3]/4)-D[G:3]/4 THEN 1580
1480 IF K=2 AND INT(D[G;3]/4)#D[G,3j/4 THEN 1600
1490 IF K=3 OR K=12 THEN 1540
1500 IF K=4 OR K=6 THEN 1560
1510 IF K=5 OR K=? THEN 1540
1520 IF K=8 OR K=10 THEN 1540
1530 IF K=9 OR K=11 THEN 1560
1540 D1=31
1550 GOT0 1620
1560 I1=30
1570 GOTO 1620
1580 D1=29
1590 GOT0 1620
1604 D1=28
1614 GOTO 1620
1620 T1=T1+I1
1630 NEXT G
1640 T1=(TI+I[I,2]-1+Y1)*24
1650 H2=INT\IC 1,4 J/100)
```

```
660 REM - Rounding to the neargat whole hour.
1673 H3=<D[1,4]-H2*100)/60
1680 IF H3<0.5 THEN 1710
1690 D[1,日]=T!+H2+1
1700 GOTO 1720
1710 D[ I, 8]=Ti+H2
1720 NEXT I
1730 REM - Calculate time Tmax and Tmin; also total vest time.
1740 D[4,5]=D[4,6]=D[4,1]=L1=0
1750 FOR L=5 TO 35
1760 IF D[LI?]## THEN 1790
1770 LI=D[L+1,8]-D[L;8]+LI
1790 IF D[L,1]=0 THEN 1900
1800 REM - Compute time ©Tmax and Tmin.
1810 [F D[L,5]|D[4,2] FND D[L,5]#D[4,3] THEN 1880
1820 [F D[L,5]=D[4,2] AND D[L-1,5]=D[4,2] THEN 1850
1830 [F D[L,5]=D[4,3] AND D[L-1,5]=D[4,3] THEN 1870
1840 GOTO 1884
1850 D[4,5]=D[4,5]+D[L,8]-D[L-1,8]
1860 GOTO }188
1870 D[4,6]=D[4,6]+D[L,8]-D[L-1,8]
1880 NEXT L
1890 REM - Compute total test time.
1900 D[ 4,1]=D[L-1,8]-D[5,8]-L1
1910 PRINT
```



```
1930 PRINT "Row Hour TemR; deg C Sun Failure Status"
1940 FOR Z=5 TO 35
1950 IF D[ z,1]=0 THEN 1980
1960 WRITE (2,60)Z,D[2,8],D[2,5],D[2,6],D[2,7]
1970 NEXT Z
1980 PRINT "Total test time: "{D[4,1]!" hrs"
1990 PRINT "Time at Tmax <";D[4,2];" deg C\: ";D[4,5];" hrs"
2000 PRINT "Time at Tmin ("id[4,3];" deg C): ";D[4,6];" hrz"
2010 PRINT
2020 IISP "All OK ( }1=Y:0=N)? 0 results in STOP";
2030 INPUT A
2040 IF A=0 THEN 2090
2050 STORE DATA #1,F
2060 F=F+1
2070 MAT D=2ER[ 35,8]
2080 COTO 110
2090 STOP
2100 END
2110 DISP "USE FN KEY 6 TO RETURN TO PROG."
2120 END
```


ADDENDUM A-C
 PROGRAM FOR LISTING DATA FROM FILES


```
29 REM - FROGRAM TO LIET DATA FROM CODE TSE FOLIOE
```



```
50 MAT D=2ER[35,G]
6G IISP "ENTER Izt & LAST FILES FOR LSTIG":
70 INPUT FI,FE
80 FOR F=F1 TO FE
90 PRINT "DATA FROM FILE *":F
100 FRINT
110 LOAD IATA W,F
120 D1=1NT(DC1,71,100)
130 WRITE (2,30)D[1,1],D[1,2],I[1,6],N1,I[1,7]-I1*100,
:40 PRINT P$
150 G0T0 D[3,2] OF 200,220,240
160 GOT0 D[ 3,3 J OF 260,280,300,320,340,360
170 [OTO D[ 3,1] OF 380.400,420
186 PRINT "Level: ";L$;"; Moturity: "iM$;"; Type: ":T$:"; Irem: ";N$
190 GOTO I[ 3,4] OF 440,460,480,500
200 T$="Hskpg"
210 GOTO 160
220 T$="Exper"
230 GOTO 160
240 T$="Both
250 GOTO 160
260 M$="PT1t"
270 GOTO 170
280 M$="Ftyo"
290 GOTO 170
300 M*="TMOd"
310 GOTO 170
320 M$="Unkn"
330 GOTO 170" RE"Flt", REPRODUCIBILITY OF THE
350 GOTO 170 ORIGINAI, PAGRI, IS POOR
360 M$="Sar"
370 GOTO 170
389 L $= "Comp"
390 GOTO 180
400 L$="SSYS"
410 GOTO 180
420 L!="SyEt"
430 GOTO 180
440 C % = TY"
450 GOTO 510
460 C = ="TC"
470 GOTO 510
480 C&="TB"
490 GOTO 510
500 C $="?0"
510 PRINT "Number of components: "ID[3,7]
520 PRINT "TyPe of test: ";C&:" Facility Nr. "idLe,5IILIN1
530 G0T0 D[ 3,6] OF 560,580,600,620
540 FRINT "OUt come of test: "10t
550 GOTO 630
569 0$="Satisfactory"
500 GOTO 540
580 0$="Unsatisfactory"
590 GOTO 540
```

```
600"0%%"Undetarmined"
610 G0T0 540
620 0.j="Unk noun"
```



```
G40 PRINT "Time at Tmax <"IDE4,2J" dea Ca: "IDLA,EJI" hre"
```



```
660 FRINT
6 7 0 ~ P R I N T ~
```



```
690 FRINT "Row Ma dia yor Time Hour Tembideg a failure statua"
700 FOF: I=5 TO 35
710 IF DLI,1]=01 THEN 750
```



```
70 NEXT !
30 FRINT LINEZ
760 HEXT F
7TO ENII
```


APPENDIX B

CORRELATION OF COMPONENT FAILURE RATES WITH TEST TEMPERATURES

APPENDIX B

CORRELATION OF COMPONENT FAILURE RATES

WITH TEST TEMPERATURES

There was insufficient data in the GSFC data bank (Appendix A) to establish a significant relationship between temperature and failure rates. In view of this it was decided to take an approach that assumed a certain make-up of parts within an average component, compute failure rates of the parts as a function of temperature using thermal characteristics based on Military Handbook 217-B (Ref. 12), and thus arrive at a measure of component failure rates over a given temperature range.

A "spacecraft component," as used throughout this report, refers to a sub-section of a spacecraft system which is essentially a self-contained combination of parts performing a unique function within the spacecraft system.

General definitions of system subdivisions are given in Fig. B-1. As used herein, equivalent failure rates of components within the system are implied. In an ideal situation, all identified components would have the same failure rates or reliability characteristics. In actual practice this condition does not exist. However, good analytical results have been consistently obtained in the past using essentially a count of system components to represent the system complexity. Also, this level of assembly is a convenient unit to use since it fairly well represents che system complexity, and it is the level of assembly generally used in identifying failures or anomolies that occur in space operation.

Parts for a typical spacecraft electronic component used in an unpublished presentation by W. Smith, GSFC Product Assurance Division, were taken as a reasonable representation of a component unit, or "black box." Generic failure rates of these parts at temperatures from 20 to 100° Centigrade were then derived using the guidelines of Ref. 12. Table B-1 (output of computer program, Addendum B-A) shows the piece part composition of the "average" spacecraft

DEETNTITONS:

System - A major subdivision of a given launch vehicle such as a propulsion system or spacecraft system. The system embraces all its own subsystems including checkout equipment and servicing equipment.

Subsystem - The next functional subdivision of a system and is generally composed of two or more components designed to perform an operation.

Component - The next functional subdivision of a subsystem and generally is a selfcontained combination of assemblies performing a function necessary to the subsystem's operation.

Assembly - The next functional subdivision of a component and consist of parts and subassemblies which perform functiois necessary to the operation of the component as a whole.

Subassembly - An assembly within a larger assembly.

Part - An element of a component, assembly or subassembly which is not normally subject to further subdivision or disassembly without destruction of the designed use.

Figure B-1. Definitions of Subdivision of a Spacecraft

Table B-1
Single Device Failure Rates/1ø个6 Hrs.
TEMF.

(OC)	MONOL.	HYBRID	TRANS.	DIODES	RESIS.	CAPRE.
20	0.0257.	0.3121	0.0007	0.0002	0.0003	0.0002
30	0.0312	0.4512	0.0008	0.0003	0.0005	0.0002
40	0.0388	0.6392	0.0009	0.0003	0.0007	0.0002
50	0.0510	0.9024	0.0010	0.0904	0.0010	0.0002
60	0.0681	1.2408	0.0012	0.0005	0.0015	0.0802
70	0.0941	1.6544	0.0015	0.0006	0.0023	0.0002
80	0.1246	2.1808	0.0018	0.0008	0.0033	0.0003
90	0.1734	2.8576	0.0023	0.0011	0.0049	0.0003
100	0.2374	3.6472	0.0031	0.0017	0.0072	0.0004

TYPICAL BLACK BOX COMPOSITION

PIECE PART	NO. OF PARTIS
MICRO ELECTRONIC DEVICES-MONOLITHIC	107
MICRO ELECTRONIC DEVICES-HYBRIDS	107
TRANSISTORS	11
DIODES	43
RESISTORS	160
CAPACITORS	75
TOTRL	503

BLACK BOX FAIL. RATE/10个6 HRS.

TEMP. (0C)	MONOL.	HYBRID	TRANS.	DIODES	RESIS.	CAPAC.	TOTAL
20	2.75	33.39	0.01	0.01	0.05	0.02	36.23
30	3.34	48.28	0.01	0.01	0.08	0.02	51.73
40	4.16	68.39	0.01	0.01	0.11	0.02	72.70
50	5.46	96.56	0.01	0.02	0.17	0.02	102.23
60	7.29	132.77	0.01	0.02	0.25	0.02	140.35
70	10.06	177.02	0.02	0.03	0.36	0.02	187.51
80	13.33	233.35	0.02	0.03	0.53	0.02	247.28
90	18.55	305.76	0.03	0.05	0.78	0.02	325.19
100	25.40	390.25	0.03	0.07	1.15	0.03	416.95

END
component, along with the individual part and component failure rates over the stated range of temperatures. An exponential curve of the form, $\mathrm{Ae}^{\mathrm{B}(\mathrm{T}+\mathrm{g})}$ was fitted to the computed failure rates with the constants as shown:

$$
h(T)=7.9 \times 10^{-6} e^{0.0306(T+32)}
$$

where $T=$ temperature in degrees Celsius.
This function is plotted in Fig. B-2.

On the basis of these results, one would conclude that failure rates increase with increasing temperature, and conversely, decrease with decreasing temperatures. Results of a study of thermal vacuum test failures conducted by Timmins, Heuser, and Strain (Ref.6), show that on an average basis, hot temperature related test failures are greater than those experienced during ambient temperature conditions: however, cold temperature related test failures are also greater and moreover are essentially of the same relative magnitude as those experienced under hot temperature conditions. These conditions can be discerned from Fig. B-3 (Fig. 5 of Ref. 6). A possible explanation of this is that the temperature function thus far developed applies only to the reliability degradation of the physical/molecular mechanisms within the piece part: and that other degrading thermal forces must be acting upon the larger structure of the "black box," or component, such that there is an "equal" degradation of component reliability under colder than ambient conditions - to those higher than ambient.

Using this hypothesis, a mirror image of the temperature function was developed, (increasing failure rate with decreasing temperatures), with the failure rates equal at $20^{\circ} \mathrm{C}$. The sum of these two curves results in an expression for the total effect of temperature on the component failure rate given by:

$$
h(T)=h\left(T_{0}\right)\left(e^{0.0306(T+32)}+e^{0.0306(72-T)}\right),
$$

where $\mathrm{T}=$ temperature ${ }^{\circ}$ Centigrade and $\mathrm{h}\left(\mathrm{T}_{\mathrm{o}}\right)=$ basic failure rate at $20^{\circ} \mathrm{C}$.

Reference: NASA TN D-7408, Nov. 1973, "Analysis of Flight Model Spacecraft Performance During Thermal-Vacuum Tests," Timmins, Heuser, Strain

Figure B-3. Thermal-Vacuum Malfunctions per Spacecraft of Flight Spacecraft by Day and Environment

The net effect of this transformation is shown in Fig. B-4. While somewhat arbitrary, it is believed to be a reasonable approach to the total component temperature function, referred to in subsequent sections of the report as part of the "environmental intensity factor," E. A test of its applicability was made through an independent analysis of the data in Appendix A, using a rather unique approach.

While the data bank was insufficient to permit a straight forward determination of the relationship, it was felt that some indication could be obtained by developing an indirect approach, that is, by developing groupings that excluded certain failure probabilities.

The data was analyzed without regard to time or the number of cycles and it was assumed that the grouping was sufficiently homogeneous so that the effects of these other two stresses would apply overall. It is possible to investigate the homogeneity but this has not been done as yet.

Figure B-4. Failure Rate vs. Temperature $\mathbf{h}(\mathbf{T})=\mathbf{K}(\mathbf{T}+\mathbf{G})^{\mathbf{2}}$

A binomial approach was taken; that is, a component either passed or failed a test. If more than one failure occurred during a test, it was assigned as another component. (No more than three failures were encountered during any test; multiple failures were very infrequent.)

Since we were interested in failures (tests concerning binomial distributions generally deal with successes and we simply interchanged the terminology), a computer program was written to search through the data and determine (a) how many failures occurred out of n components tested at temperatures down to $(T-1)^{\circ} \mathrm{C}$ and (b) how many failures occurred out of n components tested up to $(T+1)^{\circ} \mathrm{C}$. This is equivalent to saying for case (a) at $\leqslant T$ and for case (b) at $\geqslant T$. A point estimator, $\overline{\mathrm{p}}$, of the probability of failure was found by dividing the number of failures by the number of components. (This nomenclature and much of the following is consistent with that found in Ref.13).

The confidence interval or band within which the true failure probability lies is (Ref. 13, Chap. 2, Sec 3)

$$
\begin{equation*}
\bar{p}-z_{\alpha / 2} \frac{\sqrt{\overline{p g}}}{n} \leq p \leq \bar{p}+z_{\alpha / 2} \sqrt{\underline{p}} \tag{B-1}
\end{equation*}
$$

where \bar{p} is the number of failures divided by the number of units tested, $n: \bar{q}=(1-\bar{p}) ; Z_{\alpha / 2}$ is a standard normal random variable; and the choice of α determines the $1-\alpha$ percent confidence interval for p, the true probability of failure. By choosing $\alpha=0.05, z_{\alpha / 2}=1.96$ and the confidence limits approach 95%; that is, we are 95% confident that p lies ,vithin the limits expressed by Eq. B-1. (This approximation becomes subject to significant error when n is small or $\overline{\mathrm{p}}$ or $\overline{\mathrm{q}}$ approach zero.)

Figs. B-5 and B-6 are graphs on which are plotted the 95% confidence bands within which the probability of failure exists. These are shown as brackets open to the right or left and indicate data based on the probability of failure above or below the temperature minus or plus one degree. It can be seen that no significant difference exists between the two figures. Also plotted
is a bar that indicates the intersection of these two confidence bands. Since one band applies to temperatures $\leq \mathrm{T}$ and the other to temperatures $\geq \mathrm{T}$, the intersection provides an indication of the location within which the probability of failure at T exists. The word "indication" must be emphasized.

Also plotted on each figure is the function

$$
\begin{equation*}
P(F)=1.0088 \times 10^{-2}[(\exp (0.0306(T+32)))+(\exp (0.0306(62-T)))] \tag{B-2}
\end{equation*}
$$

where $P(F)$ is the probability of a failure as found earlier and T is the temperature in degrees Cel sius. The numerical values were adjusted to match an indicated minimum at $15^{\circ} \mathrm{C}$ suggested by the data plotted in Figs. B-5 and B-6.

It is interesting to note that the function expressed in Eq. B-3 was developed independently of the data and that the only modification was to select the point at which the minimum failure rate occurs to be consistent with the data.

 TEMPERHTLUEE, T, DEEE C
Figure B-6. Bands Within Which the Probability of Failure Lies With a Confidence of 95\%
(Failure Taken at End of Time Interval)

ADDENDUM B-A

PROGRAM FOR DEFINING FAILURE RATES AS A FUNCTION OF TEMPERATURE

```
LOHINO:1
LIET
10 [D|A[90?]
20 F%=a
30}T=1
```



```
5日 IMTA P.G., E,G.;
G0 FONHAT FS.G
70 FOFHAT EFE.t
80 FORHAT EF&.O.FG..
96 FOM 1=1 TO '1
100 T-T+10
110 FEAII F1
120 F[1,1] ]=T
```



```
140 FEFIN F2
```



```
200 HE::T I
210 FFIINT
220 IHTA 107,107.11,43,160,75
230 FRINT TAE1E,"SIHGLE IEVIEE FHILUFE FHTES.10tE HFS.",LINZ
24G FRIHT "TEMF."
2SO FFIHT "SOCS MOHOL. HYEFID TRAHE. DIOIES FESIS. BHFAC."
```



```
270 FINEII 4
280 FOR I=1 T0 9
290 WRITE (2,EGHEI,11;
300 FOR I=2 TO P
310 WFITE (2,70)FLI,.1],
3こ0 NEXT J
300 WFITE (2.+)
310 HEST I
350 WFITE (2,+;
360 FRINT LIH1
3OG STAHIAFII
350 FRIHT THE15, "TMFIGAL ELHEt EO:: DOHFU', ITIOH", LIHI
390 FRINT TAE1G, "FIEGE FRET".TAEEG."NO. UF FARTS
400 FRINT TAE1G,"----------",THEGG,"--..........--.......
41G FRIHT TRES, "MILFO ELEETROHIG NEVILES-M1HOLITHIG",TABE4."10G"
420 FR:LT TABS, "MILRO ELEETROHIE ILEVILES-HIEFIIS",TAEG4,"1G7"
430 FRINI TRR5,"TRANSISTORS",THEGS,"11"
44日 FRINT TAES, "IIODES",TAEES,"43"
4.50 FRINT TRES,"RESIETORS"TREE4,"1EG"
460 FRINT TAES: "CAFHLITORS".THEES,"75"
470 FRINT TAB10."TDTAL",TABE4,"503",LINE
4 8 0 ~ F I : M E D ~ 2 - ~
490 FRINT TAE15,"ELARCt EO:: FAIL. FHTE 1G1E HKG.":LIHE
509 FRINT "TEMF."
```



```
500 FOR I=1 T0 G
540 FESTORE 2cG
550 WRITE (2,G0)A[1,1]:
560 FOR J=2 TO P
53G FEAI F
5BO WRITE (2,BGTA[I, 1]*F;
590 F 2=F2+F[1, ]]*F
60日 NE决 I
EIG WRITE GE,EUJFE
RFPRODUCDRITTY IF: 
n&Wri^!
620 F2=0
630 HENT I
640 WFITE (2,+)
650 FFIHT "EHD",LIHE
600 EHI
```


APPENDIX C

DEVELOPMENT OF THE RELIABILITY GROWTH MODEL FOR COMPONENTS

APPENDIX C

DEVELOPMENT OF THE RELIABILITY GROWTH MODEL FOR COMPONENTS

This section of the report covers the development of a mathematical model chosen to reflect the influence of time, temperature, and temperature cycling on the state of component reliability. The need for the model was basic to this study since it was the means by which a quantitative assessment could be made of the generation of failure and failure rates - the former required as a direct input to the cost model and the latter required for projecting component reliability to space operations.

Several published reports were reviewed to arrive at an appropriate form of a failure probability function, F / N, from which failures and failure rates during tests could be derived. The "power" functions developed in Ref. 1, with respect to time as a variable, served as the basis for this work.

Other published reports verified reliability growth through temperature tests, with the number of temperature cycles as a variable. Ref. 14 is a report of an extensive survey of aerospace industry practices for achieving high reliability including the benericial use of temperature cycling as a means to this end. High rates of change of temperature during the test were suggested. Ref. 15 is a report of experimental test results achieved by subjecting 200 units of avionics communication equipment to temperature cycling during burn-in tests at two different cycling rates; half were tested using a cyclic period of four hours and the other half using six hours per cycle. The conclusion reached was that the four hour cyclic burn-in resulted in the same effectiveness as a burn-in with six hour cycles, but in $2 / 3$ of the total test time. Unfortunately, mathematical models showing the separate effects of time and temperature along with the number of temperature cycles were not provided. These reports, however, were useful in establishing basic assumptions for determining thermal vacuum test effects on component reliability. These assumptions are as follows:
(1) Thermal-vacuum test failures can be categorized according to the phase of the temperature cycle. High temperature failures occur curing, and only during, the high temperature phase (or dwell), cold temperature failures occur only during the cold test phase, and temperature transition failures occur only during transition periods. A fourth category is included to account for those failures due to unspecified causes. Stated mathematically,

$$
\begin{equation*}
\cdots \quad F=F_{O}+F_{H}+F_{C}+F_{T} \tag{C-1}
\end{equation*}
$$

where: $F=$ total number of failures, $\mathrm{F}_{\mathrm{O}}=$ failures due to unspecified causes, and $\mathrm{F}_{\mathrm{H}}, \mathrm{F}_{\mathrm{C}}, \mathrm{F}_{\mathrm{T}}=$ failures due to the cyclic phases of hot, cold, and transitional temperatures respectively.
(2) Reliability growth takes place in each of the cyclic temperature phases, to a degree dependent on the amount of time spent in each phase. In other words, the specific failure rates decrease with total time within a specified phase using the models proposed in Ref. 1, this assumptivin is equivalent to,

$$
\begin{equation*}
h(t)_{x}=K E_{x} B t_{x}^{B-1} \tag{C-2}
\end{equation*}
$$

and

$$
\begin{equation*}
F(t)_{x}=K E_{x} N t_{x}^{B} \tag{C-3}
\end{equation*}
$$

where: $h(t)_{x}=a$ failure (hazard) rate function, $F(t)_{x}=a$ cumulative failure function, $N=$ number of components, $K=$ initial cumulative failure rate at $t=1$ hour (or day), $t_{x}=$ total time spent in a specific test phase, x, and $E_{x}=$ environmental intensity of a specific test phase, x. (See Appendix B.)
(3) Dwell times at the high and low test temperature are equal and in turn equal yp. The total time spent at the maximum and minimum temperatures is:

$$
\begin{equation*}
t_{H}=t_{C}=\frac{n}{2} y p \tag{C-4}
\end{equation*}
$$

where: $\mathrm{n}=$ the number of cycles (one cycle includes one dwell plus one transition), $\mathrm{p}=$ the time for one cycle, and $y=d w e l l$ time $/ p$.
(4) The environmental intensity factor during temperature transitions is equal to a function of the average rate of change of temperature during the portion of a cycle equal to $(1-y)$. Then:

$$
\begin{equation*}
E_{T}=G\left(\frac{T_{H}-T_{C}}{(1-y) p}\right)^{2} \tag{C-5}
\end{equation*}
$$

where: $G=$ proportionality constant, $z=$ an unknown power of the average rate of change of temperature.

These assumed conditions are believed reasonable in light of the analytical results presented in the referenced reports. In particular, Ref. 6 reports failures classified in a similar marner and shows the accumulation of failures separately for each class as a function of accumulated time within the class. A general expression for the failure probability in terms of time, temperature, and the degree of temperature cycling was developed using the relationships described above.

From assumption 1,

$$
\begin{equation*}
F / N=(F / N)_{0}+(F / N)_{H}+(F / N)_{C}+(F / N)_{T} \tag{C-6}
\end{equation*}
$$

From assumptions 2 and 3,

$$
(\mathrm{F} / \mathrm{N})_{\mathrm{H}}=K \mathrm{E}_{\mathrm{H}} \mathrm{t}_{\mathrm{H}}^{\mathrm{B}} .
$$

Letting $\mathrm{t}_{\mathrm{H}}=\frac{\mathrm{n}}{2} \mathrm{yp}$ and the total test time $\mathrm{t}=\mathrm{n} \mathrm{p}$,

$$
\begin{equation*}
(F / N)_{H}=K E_{H}\left(\frac{y}{2}\right)^{B} t^{B} \tag{C-7}
\end{equation*}
$$

Similarly,

$$
\begin{align*}
(F / N)_{C} & =K E_{C}\left(\frac{y}{2}\right)^{B} t^{B}, \text { and } \tag{C-8}\\
(F / N)_{T} & =K E_{T}(1-y)^{B} t^{B} \tag{C-9}
\end{align*}
$$

From assumption 4, since

$$
E_{T}=G\left(\frac{\Upsilon_{H}-T_{C}}{(1-y) p}\right)^{2},
$$

then

$$
\begin{equation*}
(F / N)_{T}=K G(1-y)^{B}\left(\frac{T_{H}-T_{C}}{(1-y) p}\right)^{Z} t^{B} \tag{C-10}
\end{equation*}
$$

By substituting Eqs. $\mathrm{C}-7, \mathrm{C}-8, \mathrm{C}-9$, and $\mathrm{C}-10$ in Eq. $\mathrm{C}-6$, combining terms, and simplifying, the final expression for F / N becomes:

$$
\begin{equation*}
F / N=(F / N)_{0}+K\left[\left(E_{H}+E_{C}\right)\left(\frac{y}{2}\right)^{B}+G(1-y)^{B}\left(\frac{T_{H}-T_{C}}{(1-y) p}\right)^{Z}\right] t^{B} \tag{C-11}
\end{equation*}
$$

where: $\mathrm{E}_{\mathrm{H}}, \mathrm{E}_{\mathrm{C}}=$ environmental intensity factor during the hot and cold temperature dwell phase, respectively, as defined in Appendix B. (e.g., $\mathrm{E}_{\mathrm{H}}=\exp \left(0.0306\left(\mathrm{~T}_{\mathrm{H}}+32\right)\right)+\exp \left(0.0306\left(62-\mathrm{T}_{\mathrm{H}}\right)\right.$). $)$

Solution for the unknown parameters of Eq. C-11 were obtained by first normalizing the data from Appendix A and then determining least squares solutions for K and B for each set of values of $(\mathrm{F} / \mathrm{N})_{0}, \mathbf{y}, \mathrm{G}$, and \mathbf{Z} iterated over their expected ranges. Both Chi-Sạuare and KolmogorovSmirnoff (K-S), goodness of fit statistics were computed for each set of values in order to find the best fit parameters.

The results of this exercise are given in the following equation as the solution for failure probability:

$$
\begin{equation*}
F / N=0.02+K\left[\left(E_{H}+E_{C}\right)\left(\frac{y}{2}\right)^{B}+3(1-y)^{B}\left(\frac{T_{H}-T_{C}}{(1-y) p}\right)^{1 / 2}\right](t+\gamma)^{B} \tag{C-12}
\end{equation*}
$$

where $K=424 \times 10^{-6}$ failures per unit-hour and $B=$ reliability growth factor (0.7 for component tests).

Note: The actual least squares solution included an additional "location" parameter, $\boldsymbol{\gamma}$ (gamma). While this required an additional iteration for the solution, it was felt worthwhile since the use of gamma helps to "linearize" initial time variations in the data.

Eq. C-12 is the equation used for determining the effects of component testing. It was also applied to the system test and space operations phases using the appropriate values of $\mathrm{K}, \mathrm{B}, \boldsymbol{\gamma}$, and E for each phase.

The computer program for normalizing the basic data in Appendix A is included in Addendum C-A. The output of the program is shown in Addendum C-B. The program developing the least squares solution for the unknown parameter of Eq. C-11, is shown in Addendum C-C. A sample output is shown in Addendum C-D.

In conclusion, it should be noted that the acceptability of the analytical model was assesed by using the K-S statistic. The computed value for the best fit case was 0.015 . Since it is less than the critical value of 0.086 , the ability of this model to simulate component test conditions can not be discounted on statistical grounds. Therefore, an inference exists for accepting the model for reliability determinations. It would have been more convincing had this statistical acceptance been supported by the Chi Square statistic as well; however, because of the relatively small sample size of data, compared to the number of "data cells" and the large number of variables required, the number of degrees of freedom was equal to zero. Thus, no conclusion as to goodness of fit could be reached with this statistic.

Additional data beyond the 109 files noted in Appendix A is required in order that an acceptable number of degrees of freedom can be obtained.

ADDENDUM C-A
PROGRAM FOR NORMALIZING THE DATA FROM ADDENDUM A-A

30 RET:"PROGRAM REDUCES RAW DATA FROM DI (35;8): RND COMPUTES RND STORES"
40 REM"INTERMEDIATE STRTISTICS IN RS(75,12); WITH FINFL IATA IN BS(75;12)"
50 REM:"FOR FINAL SOLUTION OF F/N=f (nst:T). THESE ARRAYS RRE THEN STORED"
60 REF"IN \#1;1 RND \#1,2 OF TAPE II"
70 DISP "DATE";
80 INFUT $\mathrm{A} \$$
90 DIGP "CHANGE TRFES(C/E)":
100 S10p
$110 \mathrm{~V}=0.0306$
120 MFTT $A=2 E R$
130 MFIT B=ZER
$140 \mathrm{FC}: \mathrm{R}=2$ TO 75
150 A[$K, 1]=6 *(K-1)$
$160 \mathrm{~B}[\mathrm{~K}, 1 \mathrm{I}=6 *\langle K-1\rangle$
170 NEXT K
$180 \mathrm{M}=0$
190 FCR I=1 TO 109
200 LTAL DATA \#1.I
$205 T=T T=0$
210 N=D[3.71
$220 \mathrm{CJ}=\mathrm{D}[4 ; 2]$
$230 C=D[4: 3]$
240 B[1,6]=B[1:6]+N
245 CFLAG 6
250 FUR K=5 TO 35
260 IF I[K.1]=0 THEN 390
270 IF FLRG 6 THEN 350
280 If $D[K ; 5]=C 1$ THEN 290
285 IF I[K,5]\#C2 THEN 380
290 SFLAG 6
$300 T_{i}=\mathrm{D}[\mathrm{K}, 8]-\mathrm{D}[5,8]$
$310 T=0$
$320 \mathrm{~A}[1,7]=\mathrm{R}[1,7]+T 7 * \mathrm{~N}$
330 R[1:9]=A[1:7]
340 GCTO 380
350 If $K=5$ THEN 380
360 IF D[K-1:7]=2 THEN 380
$370 T=T+D[K ; 8]-D[K-1,8]$
380 NEXT K
390 CF LAG 6
$400 \quad M=M+N$
$410 \mathrm{KJ}=\mathrm{INT}(\mathrm{T} / 6)$
420 IF $K 1=T / 6$ THEN 440
$430 K J=K 1+1$
440 IF K1<74 THEN 460
$450 \mathrm{KI}=74$
460 FIR $K=1$ TO 75
470 A[K, 2$]=B[K, 2]=E[K, 7]=A[K, 11]=0$
$489 \mathrm{~A}[\mathrm{~K}, 4]=\mathrm{F}[\mathrm{K}: 5]=0$
490 NE KT K
50 FiR $K=1 \quad$ TO $K 1+1$
510 A[K, 2$]=N$
520 NEKT K
330 FIF $1=5$ T0 35
540 IF I[1,1$]=0$ THEN 1040
550 If J>5 THEN 570

```
560 T1=T2=T3=T4=0
565 TCTO 1030
570 IF D[ J-1,7]=2 THEN 1930
580 Ti =T1+D[J,8]-D[J-1,8]
590 IF D[J-1,7]#1 THEN 830
600 TE={T1+T2)/2
610 IF T5 >= T7 THEN 730
620 A[1,6]=A[1,6]+1
630 FGR K=1 TO 75
640 GC.SUE 670
6 5 0 ~ N E X T ~ K .
660 GCTTO 830
670 A[K,8]=A[K,8]+1
680 IF K>K1+1 THEN 720
690 A[K:4]=A[K,4]+1
700 IF A[K,2]<=1 THEN 720
P10 A[K;2]=A[K;2]-1
720 RETURN
730 TE=T5-T7
740 T\epsilon=INT<T5/6>
750 IF T6*6=T5 THEN 770
760 TE=T6+1
770 IF T6<74.THEN }79
780 TE=74
790 FCR K=T6+1 TO 75
800 GCSUB 670
8 1 0 ~ N E X T ~ K
820 A[T T + 1,6]=A[T T + 1,6]+1
830 T < =INT(T2/6)
840 IF T4*6=T2 THEN 860
850 T = T4+1
860 IF T4<74 THEN 880
870 TC=74
880 If T1>T7 THEN 930
890 IF T2<= T? THEN 1020
900 T:=0
930 FCR K=T3+2 T0 T4+1
940 IF I[.J,5]#25 THEN 970
950 U1=23
960 GCTO }98
```



```
980 B[K,T]=C1-L2
990 A[K,11]=EKF(Y*(V1+32))+EXP(Y*(62-V1))
1000 FEXT K
1010 13=T4
1020 11=T2
1030 \EKT J
1040 FOR K=1 TO 75
1050 IISP 1;K;K1
1060 IF K`K1+1 THEN 1110
1070 F[K:5]=A[K,2]+A[K;4]
1080 IF K=1 THEN 1110
1090 E[K,B]=B[K,8]+B[K,T]*A[K,5]*E
1100f[K,:2]=A[K,12]+A[K,11]*A[K,5]*6
1110 f[K,10]=A[K,10]+A[K,2]
1120 FEKTK
1130:1= 人2= 人3=0
1140 f.FLAG 1
```

```
1150 PFLAG 2
1160 (FLAG
1170 FFLAG
1175 CFLAG 5
1178 FFLAG E
1180 FOR JI=5 TO 35
1190 1F FLAG4 THEN 1820
1200 jF D[J1,2]## THEN 1290
1210 =J1-1
1220 /F FLAG1 THEN 1250
1230 JF FLRG2 THEN 1270
1240 COTO 1820
1250 (FLAG 1
1260 C.OTO 1272
1270 (FLAG 2
1272 JF D[ J:81-X3-K1=P2 THEN 1820
1280 60TO 1540
1290 \=\1
1300 JF D[J,7]#2 THEN 1360
1310 CFLAG 1
1320 [FLAG 2
1330:2=D[J+1:8]-D[ ]:8]
1335 &FLRG 6
1340 &FLAG 3
1350 COTO 1540
1360 IF NOT FLRGI THEN 1410
1370 IF D[J,5]#C2 THEN 1720
1380 CFLAG 1
1390 SFLAG 2
1400 COTO 1540
1410 1F I[ J,5]=C1 THEN 1510
1420 IF FLAG2 THEN 1720
1430 JF IC J,5]#C2 THEN 1720
1440 &FLAG 2
1445 JF FLRGG THEN 1505
1450 %:1=D[J,8]
1460 F2=D[J:8]-I[5,8]
1470 COSUB 1740
1480 F=0
1490 F'1=1
1500 LOTO 1720
1505 [FLAG 6
1507 GOTO 1720
1510 &FLAG 1
1520 IF NOT FLAG2 THEN 1445
1530 (FLRG 2
1540 F'2=D[ J:81-X3-X1
1550 COSUB 1740
1560 IF P3<74 THEN 1590
1570 SFLAG 4
1580 f 3=74
1590 F'4=6/(P2-P)
1600 IF FLAGS THEN 1630
1610 @FLAG }
1620 F[[1,3 ]=A[1,3]+(P2-P)*N
    1630 FOR K={P1+1) TO F3
    1640 Fi[K,3]=A[K,3]+(P2-P)*A[K,5]*E
    1650 E[[K,2]=P4*A[K;5]
    1660 FENT K
    1670 IF NOT FLAGS THEN 1700
    1680 \3= %3+K2
    1690 [FLAG 3
    1700 f'=P2
```

```
1710 F1=P3
1720 HEXT JI
1730 GOTO 1820
1740 F3-INT(P2/6)
1750 IF P3=PZ/G THEN 1770
1760 F 3-P3+1
1770 FETURN
1820 P.FLAE }
1830 CFLAG 5
1840 (FLRG 3
1845 CFLAG }
1850 FOR K=2 TO K1+1
1860 E[K,3]=E[K,3]+B[K,2]
1870 NEXT K
1880 CFLAG 1
1890 (FLRG 2
1900 1:EXT I
1910 F[[1,1]=B[1,1]=A[ 1,9]/B[1,6]
1920 F[[1,3]=A[1,3]/M
1930 FOR K=2 TO 75
1940 F[K K, T]=\langleA[K,8]+A[K,10])*6
1950 lF K>2 THEN 2000
1960 Fi[K,9]=A[K,7]
1970 E[K,9]=B[K,3]
1980 E[K,9]=B[K,8]
1990 [0TO 2050
2000 F:[K,9]=A[K-1,9]+A[K,7 ]
2005 F[K,3]=A[K-1,3]+A[K,3]
2010 E[K,4 ]=B[K-1,4]+B[K,3]
2020 F[K,12]=A[K-1,12]+F[K:12]
2030 E[K,9]=B[K-1,9]+B[K,8]
2050 E[K,6]=A[K,9] A[K,1]
2955 E[K,5]=B[K,4 ] B[K,6]
2060 E[K:10]=E[K;9]/A[K,9]
2070 E[K:12]=A[K,12]/R[K,9]
2080 F:EXT K
2090 FRINT TAE55, fo,LINE
2180 FRINT ""
2120 FORMRT 5F8.0,F9.G,F8.0
2130 FOR J=1 TO 75
2140 URITE (2,2120)R[J,1],R[J,E],A[J,8],A[J,10],A[J,T],A[J, S],B[J,6]
2150 |ENTJ
2160 FRINT LINZ
```



```
2190 FORMAT FE.G,F10.4,F11.4,F9.4,F12.2,F13.3
2200 FOR J=1 T0 75
2210 +[ 1,3]=A[ 1,3], A[ 1,9]
2220 (FITE (2,2190)B[J,1],A[J,3],B[, 4,4],E[J,5],B[J,10],B[J,12]
2230 1 EKT., 
2235 FEWIHII
2240 F RINT LINE
2250 11SP "TO STORE-(CONT., ENEC.)";
2260 <TOF
2280 1ISF "CHANGE TAPES";
2290 TOP
2300 1ISF "INFUT #1 TRACK FILES";
2310 JNFIIT H1,NE
2320:TONE IIATA #1,H1,A
2390 FFINT
2340 TOFE
2S5G FFIHT "IHTA IS STOREII IH TMY OFTIMIZ. TAFE II AS FOLLOWS:"
```

C-A-4

```
2360 FRINT TAE10,"RS(75,12) INN1,"3NI
2370 FRINT TABI0,"BS(75,12) IN #1,"IN2,LIN2
2380 IISP "RUN NOW COMPLETEI!"
2385 FEWIND
2390 END
```


ADDENDUM C-B

NORMALIZED DATA FROM ADDENDUM A-A

TIME	$d f$	F	Nr	dNT	NT	Ms ${ }^{\text {P }}$
10	-'	4	198	1985		
6	5	9	197	1236	1236	205
12	4	13	192	1230	2466	206
18	2	15	187	1212	3678	204
24	0	15	182	1182	4860	203
30	2	17	163	1080	5940	198
36	4	21	161	1092	7032	195
42	0	21	156	1062	8094	193
48	2	23	152	1050	9144	191
54	1	24	148	1032	10176	188
60	0	24	134	948	11124	185
66	0	24	130	924	12048	183
72	1	25	128	918	12966	180
78	1	26	125	906	13872	178
84	0	26	123	894	14766	176
90	3	29	115	864	15630	174
96	0	29	105	804	16434	171
102	0	29	99	768	17202	169
108	1	30	91	726	17928	166
114	0	30	89	714	18642	164
120	0	30	87	702	19344	161
126	0	30	83	678	20022	159
132	0	30	78	648	20670	157
138	0	30	73	618	21288	154
144	0	30	69	594	21882	152
150	0	30	66	576	22458	150
156	0	30	65	570	23028	148
162	0	30	65	570	23598	146
168	0	30	65	570	24168	144
174	0	30	63	558	24726	142
180	0	30	57	522	25248	140
186	0	30	50	480	25728	138
192	2	32	47	474	26202	136
198	0	32	39	426	26628	134
004	0	32	39	426	27054	133
210	2	34	33	402	27456	131
216	0	34	29	378	27834	129
¢22	0	34	26	360	28194	127
228	9	34	24	348	28542	125
234	0	34	22	336	28878	123
240	0	34	22	336	29214	122
85	0	34	22	336	29550	120
55	0	34	22	336	29886	119
\%58	0	34	19	318	30204	117
¢64	0	34	19	318	30522	116
270	0	34	17	306	30828	114
876	0	34	17	306	31134	113
882	0	34	14	288	31422	111
286	0	34	14	288	31710	110
294	0	34	10	264	31974	109
800	0	34	3	222	32196	107

C-B-1

TIME	- 0 c/2)	$\mathrm{H}-\mathrm{n}$	n^{\prime}	d(o-c)	((TEMP)
10	0.0341	0.0000	0.0000	0.00	0.000
6	26.6262	63.0171	0.3059	56.65	13.028
12	26.8004	119.6549	0.5823	56.56	12.858
18	27.1386	170.7580	0.8357	56,34	12.686
24	27.2040	214.5720	1.0596	55.85	12.517
30	21.8282	259.5000	1.3106	55.53	12.363
36	28.1117	306.1180	1.5672	55.28	12.294
42	28.3350	351.9530	1.8263	55.09	12.209
48	28.6102	393.6440	2.0664	54.96	12.123
54	28.8201	429.8400	2.2810	54.83	12.039
60	29.3656	465.4570	2.5106	54.70	11.968
66	29.8794	496.3900	2.7193	54.54	11.884
72	30.5155	526.0030	2.9320	54.38	11.847
78	31.1033	556.8940	3.1313	54.23	11.827
84	31.6659	591.7060	3.3661	54.09	11.810
90	32.2330	610.7390	3.5167	53.87	11.783
96	32.8561	626.6830	3.6608	53.61	11.746
102	33.4059	641.5810	3.8043	53.34	11.754
108	33.8828	659.0150	3.9700	53.07	11.644
114	34.3447	675.8559	4.1330	52.81	11.596
120	34.9001	688.4090	4.2705	52.54	11.538
126	35.3446	701.4950	4.4146	52.30	11.488
132	35.7404	714.2580	4.5613	52.05	11.432
138	36.1158	724.1160	4.6941	51.78	11.379
144	36.4845	732.8870	4.8230	51.50	11.321
150	36.7317	742.0320	4.9561	51.23	:1.266
156	36.9637	755.6070	5.1188	50.97	11.213
162	37.1159	766.6430	5.2630	50.73	11.164
168	37.2207	777.3450	5.4036	50.50	11.111
174	37.2751	785.9440	5.5308	50.26	11.059
180	37.3367	793.5949	5.6571	50.04	11.007
186	37.4207	802.5160	5.8018	49.83	10.954
192	37.3773	810.7160	5.9407	49.63	10.905
198	37.4028	818.9160	6.0893	49.44	10.859
204	37.4177	824.9230	6.2203	49.25	10.814
C16	37.4439	829.9309	6.3478	49.07	10.768
216	37.4531	834.1680	6.4734	48.84	10.714
222	37.4303	839.0400	6.6966	48.61	10.661
228	37.4136	841.9120	6.7254	48.37	10.605
234	37.4132	844.7800	6.8453	48.14	10.549
2.40	37.4128	847.6480	5.9636	47.91	10.494
246	37.4125	850.5160	7.0805	47.68	10.440
2.52	37.3686	853.2770	7.1349	47.47	10.386
258	37.3480	856.0380	7.3123	47.25	10.334
264	37.2154	859.0970	7.4300	47.05	10.282
290	37.0929	863.9050	7.5664	46.89	10.225
276	36.9673	865.3740	7.6715	46.56	10.169
282	36.8652	866.8430	7.7796	46.31	10.112
288	36.6717	868.2500	?. 8957	46.06	10.055
294	36.4017	868.6680	7.9874	45.81	10.000
¢00	36.1833	869.080	8.0981	45.52	9.939
506	35.9679	869.59 .4	8.2074	45.24	9.879

212
$312 \quad 35.7555$
$318 \quad 35.5459$
324 330 336 342 848 354 360 366 672 278 384 390 396 402 408 414 420 426 432 438
444
35.3270
35.1240
34.9235
34.7256
34.5301
34.3370
34.1462
33.9578
33.7717
33.5878
33.4050
33.2265
33.0490
32.8737
32.7004
32.5291
32.3597
32.1923
32.0269
31.8633
31.6838
869.9220
870.3400
870.3950
870.4490
870.5038 870.5570
870.6110
870.6650
870.7190
870.7730
870.8270
870.8810
870.9350
870.9890
871.0430 871.0970 871.1510 871.2050 871.2590 871.3130 871.3670 871.4210 871.4210
8.3155
8.4222
8.5240
8.6277
8.7300
8.8311
8.9309
9.0296
9.1270
9.2233
9.3185
9.4125
9.5054
9.5973
9.6881
9.7178
9.8665
9.9542
10.0408
10.1265
10.2113
10.2951
10.3774
44.97
9.819
44.69
44.42
44.16
43.89
43.63
43.37
43.12
42.87
42.62
42.37
42.13
41.89
41.65
41.42
41.19
40.96
40.74
40.51
40.29
40.07
39.86
39.64
9.760
9.702
9.643
9.585
9.528
9.472
9.416
9.360
9.306
9.252
9.199
9.146
9.094
9.043
8.992
8.942
8.893
8.844
8.795
8.747
8.700
8.653
\qquad

30 REI＂WITH A LOGARITHMIC PROGRESIION WEIGHTING．IT THEN GIVES GOODNESS OF FIT＂
40 REF＂STATISTICS（CHI SQUARE，NDLI．DHI SU．，FHI NOLMOGOROU－EMIRHOY？FOR
50 RET＂EACH OF THE URLUES USEI IH THE ITERATIVE SOLUTION．
60 III $A S[75,12], E S[75,12], C[2,2]$ I［ 2,1$], E[2,1], F S[75,12], H \neq 20]$

80 DISF＂ILATE＂；
90 INFUT $f=$
100 LC．AI IATR \＃1，5，F
110 LSAI IATA \＃1，E，E
$129 N!=39$
130 REDIM A［N1：12］
140 REDIM E［N1，12］
150 REIIM F［N1：12］
$160 \mathrm{~N}_{\mathrm{c}}=34$
165 reT0 190
170 MFT PRINT A：
180 MFT PRINT E；
190 D1SP＂IF ERROR－1，OK－O＂；

290 It FUT 2 ． 117 ！

210 If $2=0$ THEN 233
220 IJSP＂MAKE CHGE：－CONT．，EXEC．；
230 S10P 233 MISP MRK．TIME＂；
234 It PUT T8
$240 \mathrm{E}[2,1]=0.6$
$245 \mathrm{FE}-\mathrm{A}[1,8]$
250 FIRMAT F5． $2, F 7.2, F 7.2$

265 FiR Z＝0．5 T0 1．5 STEF 0.2
270 FF INT LIHE
280 PFINT TAES50HF，LIHZ
290 FFINT THE 2 ，＂GSFC COMFONENT T ST DATA FRFAHETEFS＂，LIH1
300 PFINT TAEES，＂$\% 10+6$ ）＂，TAE45，＂IULL＂
316 FFINT＂$\%$＂；

330 PF INT＂－－．－．＂；

370 PFINT＂2＂；THE9，＂㣙＂
300 FF INT＂－－－－＂：TRE9，＂－
382 WF ITE（2，25日）こロ解
$385 \mathrm{Ht}=100$
390 FIR Y4＝0．9 TO 0.9 STEF 0.1

420 FRR G $=-0.8$ TO 0.4 STEP 0.1
430 FCR Y5＝1 TU 2
440 IISF Z；ANA！G
450 MF T $F=F$
460 GT 5118540
470 GTSUE 759
480 HE XT Y5
490 NEXT
500 HE \％T 44
510 NEXT A
520 HE KT 2
530 Tr．T0 1174
$540 \mathrm{~F}:=11=\% 1=F 2=42=\because 2=F=13=M=1=0$

```
550 GTT0 570
560 L=0
500 FGR I=2 TO H1
580 L=L+LOT(E[I,1]+G)
5 9 0 M = M + L
600 F[I,5]=(A[I,8]-FB),E[I,6]
\epsilon10 F=LO[\F[I,5])
620 E=(E[1,10]/(A[1,3]*(1-Y4)))\uparrow2
630 E=E*R*(1-Y4)tE[2,1]
640 E=E+B[I,12]*2*(Y4/2)TE[2,1]
650 F[I,4]=E
660 X=LOG(F[I,4])
670 F=F-K
600 F1=F1+L*F
690 Y=LOG(B[I,1]+G)
700 YI=Y1+L*Y
710 F:=F3+L*F*''
720 Y =Y % L*Y*Y
730 NEXT I
740 RE TURN
750 C[1,1]=M
760 [[ 1,2]=Y1
700 D[1,1]=F1
780 D[2,1]=F3
790 C[2,1]=Y1
800 [[ 2,2]=Y3
810 MFT C=INV(C)
8 2 0 ~ M F T T ~ E = C * I I ~
830 IF E[1,1]>200 OR E[1,1]<-200 HEN 980
840 E[1,1]=EXP(E[1,1])
850 GOSUB 990
890 M1=M1-5
900 D1=1.22/(20010.5)
910 H1=2*N2,E[2,1]
920 REM"DI=K-S* FOR 0.1 LEVEL OF ;IGNIFICANCE"
930 REM"H1=NULL CHI SQ. URLUE"
940 IF H>H5 THEH 980
950 WFITE (2,260)Y4,G,E[2,1], (E[1 1]*10ヶG),H,M1,H1,S1,D1
960 Ht= =H
980 RETURN
990 M1=S1=H=0
1000 F 1=F3=0
1010 FOR .11=2 T0 N1
1020 lisp 2;A;Y4;G;J1
1030 F=E[1,1]*F[ 11,4]*(E[..1,1]+G) E[ 2,1]
1040 \2=AES<F-F[J1,5])
1050 IF S2<S1 THEN 1070
    1060 & 1=52
    1070 F=F*E[ J1,E]
    1080 F=F-F1
    1090 JF FS5 THEN 1150
    1100 F1=F1+F
    1110 F2=A[J1:8]-F3-F8
    1120 H:=H+((F2-F) \ 2)FF
    1130 F 3=F3+F2
    1140-1=M1+1
    1150 IEXT .11
    1160 FETURN
    1170 FRINT LIN1
    1180 FRIHT "tmax=";E[H1,1];"HRS." TFE45,(2*Nz);"DEG. FREEIOM",LINE
    1190 1.1SP "WANT COMPARISON WITH IMTA-(C,E)";
    1200 STOF
    1210 IIIGP "IHFUT:Y酉,Et,K*(1Q\uparrowG)"
    1220 JHFUT 'Y4,G,E2,K
    1230 1=K101E
    1240 lISP "EHTER:2,A ";
```

```
1250 JNPUT Z:M
1260 FRINT LINZ
1261 FRINT TAB5S, H*
1262 FRINT "PARAMETERS FRE:",LINI
126.3 FRINT "Y=";Y4
1264 FRINT "G=";G
1265 FRINT "B=";E2
1266 FRINT "K=";K:"*10\uparrow-6"
1267 FRINT "Z=";Z
1268 FRINT "A=";A
1270 FRINT "F/N(E,P,T)=F/NO+K*(2E Y/2)+E+A(1-Y)\uparrowE(TX-Tn)<(1-Y)F
1280 FRINT " TIME FNNdata F/N(E;T)"
1300 FORHAT F6.0.2F11.3
1310 FOR I=2 TO NI
1320 E=(B[I;10]>((1-Y4)*A[I,3])) \:-
1338 E=E*R*<1-Y4) TB2
1340 E=E+2*B[I,12]*(Y4,2)\uparrowB2
1350 F=F8/B[1,6]+K*E* (B[I,1]+G) +E:?
1360 URITE (2,1300)A[I,1],A[I,8]/B[I,6],F
1370 HEXT I
1380 FRINT "THIS IS IT!!!",LINS
1390 STAMDARD
1400 FEWIND
1410 END
```


ADDENDUM C-D
 SAMPLE OUTPUT OF PROGRAM FOR LEAST SQUARES SOLUTION (ADDENDUM C-C)

GSFC COMPONEMT TEST DATA PARAMETERS

PARAMETERS AREI

```
\(Y=0.9\)
\(G=-0.4\)
\(B=0.657\)
\(K=4.24000 \mathrm{E}-04 \quad * 10 \uparrow-6\)
\(z=0.5\)
\(A=3\)
\(F / N(E, N ; T)=F / N O+K *(2 E(Y / 2) \uparrow B+R(1-\uparrow) \uparrow B(T \times-T n)<(1-Y) p) \uparrow z)(T+G) \uparrow B t\)
    TIME F/Nelata \(F / N(E, T)\)
    -
        12
        18
        24
        31
        36
        42
        48
54
        48
54
        64
        66
        78
        78
        84
        94
        96
    102
        \(10 \varepsilon\)
        114
        120
        126
        132
        138
        144
        150
        156
        162
        \(16 \%\)
        174
        180
    186
    192
    198
    204
    210
    216
    22:
    22!
                        0.044
0.063
        \(\begin{array}{ll}0.044 & 0.044 \\ 0.063 & 0.059\end{array}\)
                    0.073
                            0.059
                                0.070
                                \(0.074 \quad 0.080\)
            0.086
            0.089
0.098
            0.886
0.108
            0.109
            0.105
            0.121
            0.113
            \(0.127 \quad 0.119\)
            \(\begin{array}{ll}0.129 & 0.126 \\ 0.121\end{array}\)
            \(0.131 \quad 0.132\)
            0.139
            0.138
            0.146
            0.144
            0.148
0.167
            0.150
            \(0.167 \quad 0.155\)
            \(0.169 \quad 0.161\)
            0.172
            0.181
            0.166
0.170
            0.183
            0.175
            0.183
0.186
            0.180
            0.186
            0.184
            0.1920 .188
            \(0.194 \quad 0.192\)
            0.1970 .196
            \(0.200 \quad 0.200\)
            0.203
            0.204
            0.206
            0.208
            0.209
            0.211
            0.211
            0.215
            \(0.214 \quad 0.218\)
            0.217
            0.218
0.222
            0.222
            \(0.234 \quad 0.225\)
            0.234
            0.229
            0.238
            0.241
0.260
            0.232
                    0.260
                    0.235
                    0.264
                    0.235
0.238
                    0.268
            0.241
            0.272
            0.244
```

APPENDIX D
DEVELOPMENT OF THE OVERALL RELIABILITY GROWTH MODEL

APPENDIX D

DEVELOPMENT OF THE OVERALL RELIABILITY GROWTH MODEL

Component reliability growth functions within each thermal vacuum test phase are discussed in Appendix C. This appendix, D, covers the concept and development of mathematical expressions which transfer reliability growth from one phase to another, (e.g., component level testing to system level testing and on to space flight).

There are two approaches that may be used for this purpnse. One method assumes a continuous function with time measured from the beginning of component testing all the way through to the end of life;'other function parameters are associated with given phases and are used as needed. In the second method, separate functions are used to represent component reliability within each phase, and appropriate adjustments are made at the beginning of each phase based on the end conditions of the preceding phase.

The first method results in a smooth transition of failure rates and total failures. In the second method, a new time base is established for each phase. This results in a failure rate at time $\mathbf{t}=\mathbf{0}$ that theoretically approaches infinity: this is followed by a rapid drop so that at time $t=1$ the failure rate is equivalent to the final value achieved in the previous phase. As a consequence, there is a slight increase in the number of failures over those generated when using only one continuous time variable.

The second method is believed to represent the process that occurs between the three phases considered in this study more correctly: it has been used for the following reasons:
(1) The functions for failure rate, $\boldsymbol{h}(\mathrm{t})$, and cumulative failures per component. F / N, for each phase were initially derived independantly, (Ref. 1 and Ap. C). The computed values of the location parameter, gamma ($\boldsymbol{\gamma}$), used in each case did not indicate the need for further adjustments to the time base.
(2) Ref. 1 infers a correlation between final system test failure rate and the space failure rate function at time $t=1$. Mathematically, this can be expressed as:

$$
\begin{equation*}
h(t)_{T E S T}=(K E B)_{S P A C E} \tag{D-1}
\end{equation*}
$$

where K, E, and B are the reliability growth function parameters defined in Appendix C.

Also, as in Eq. C-2 of Appendix C (but with $t+\gamma$ substituted for t), the function

$$
\begin{equation*}
h(t)=K E B(t+\gamma)^{B-1} \tag{D-2}
\end{equation*}
$$

describes the failure rate at any time, t , during system test (see Ref. 1).
(3) The ability of the model to simulate an increase in the number of failures at the start of system test and also during space flight is a highly desirable feature that accounts for those defects introduced because of the interactive effects of one component on another (resulting, perhaps, from system integration and the disruptive or transient thermal stresses present during the launch). In the techniques used in "failure flow analysis," these perturbations are taken into account and added to the defect population in subsequent events (Ref. 17).

In the approach of the second method described above, an allowance for these initial anomalies is automatically included at each successive phase. The first method does not simulate this situation.

A graphical representation of this process is shown in Fig. D-1 (using a constant environmental intensity). Both failure rate, $\mathrm{h}(\mathrm{t}) \times 10^{4}$, and cumulative failure per component, (F / N) x 100 , are plotted. Had these functions been plotted using full logarithmic coordinate paper, system, they would both appear as straight line functions of time. (This is a convenient characteristic of a "power distribution" or the Duane growth model.) Note that there is a continual decrease in failure rate (increase in reliability), except for the time between successive phase.

As noted above, Fig. D-1 represents a reliability process with the environmental intensity held constant for each phase. If the intensity factor in any phase were increased, the failure rate

Figure D-1. Analytical Model Trends of Failures and Failure Rates for Test and Operational Phases
would be higher and more failures would be expected in a given period of time. A corollary to thes statement is that the same number of failures in a test will result in a shorter period of time if the environmental intensity is increased.

An interpretation of this relationship is represented graphically in Fig. D-2 which shows the relationship between time and failure rate on a lowarithmic scale. Total failures are represented
as the areas under the curves. Using the concepts of failure flow analysis and the above, we can write the following relationship:

$$
\begin{equation*}
(F / N)_{1}+(F / N)_{\| I}=(F / N)_{1}+(F / N)_{I I} \tag{1}
\end{equation*}
$$

where (F / N) is the number of bailures per component and the Roman numeral nubseript indicates the appropriate enclosed area in liz. D-2.
d^{\prime} is chosen such that

$$
\begin{equation*}
(F / N)_{u}=(F / N)_{\|} \tag{1}
\end{equation*}
$$

Substituting the equations for F / N developed as a function of F and t (Appendix C , A:q. (-3) into F.q. D-3, leads to the solution of the equivalent time. d^{\prime}, a function of envirommental intensity E .

$$
\begin{equation*}
\mathrm{d}^{\prime}=\left(\frac{\mathrm{E}}{\mathrm{~F}^{\prime}}\right)^{1 \mathrm{~B}} \mathrm{~d} \tag{1}
\end{equation*}
$$

Figure D-2. Effects of Environmental Intensity Factor. E. on Failure Rate
D-4

Thus, the failure rate of an item under test at an environmental intensity of E for a duration a^{\prime} results in a failure rate of the item at an intensity of E^{\prime} of

$$
\begin{equation*}
h\left(t, E^{\prime}\right)=K E^{\prime} B\left(\frac{E}{E^{\prime}}\right)^{\frac{B-1}{B}}(t+\gamma)^{R-1} \tag{D-6}
\end{equation*}
$$

where $\mathrm{t}+\boldsymbol{\gamma}=\mathrm{d}$.
As can be seen from Fig. D-2, the immediate effect of increasing environmental intensity is an increase in the inherent failure rate inferring a decreased failure rate (and a commensurate increase in reliability) in subsequent operation assuming that the operating environmental intensity is returned to the lower value, E. (It is assumed that no unrealistic failure modes are introduced by the various values of the environmental intensity.)

This philosophy, together with Eqs. D-5 and D-6, was used in deriving the mathematical relationship for component failures and failure rates from component testing through space operation. These relationships are given in Addendum A to this appendix. They are used within the total algorithm contained in the computer program (see Addendum J-C) which, in turn, is designed to compute component teliability parameters in space as a function of the component and system test plan.

Fig. D-3 is a plot of failure rates generated by the analytical model. Typical parameters as observed in the analysis of actual data from GSFC spacecraft programs from 1960 to 1970 were used to generate these graphs. The results are in good agreement with the average values of the data sample of 57 spacecraft (Ref. 1).

An environmental intensity factor for space of 14.26 is used in this model. This value was arrived at as follows. First, a set of assumptions was made as to the average orbital conditions. These were:
(a) The temperature ranges between $5^{\circ} \mathrm{C}$ and $35^{\circ} \mathrm{C}$,
(b) It takes six months to go from one temperature to another,
(c) The temperature varies linearly with time,
(d) There is no short-term thermal cycling effect.

Figure D-3. Typical Failure Rates for GSFC Spacecraft

In view of the very slowly varying temperature ($30^{\circ} \mathrm{C}$ in six months), it was considered more appropriate to apply an "average temperature" approach to deriving an environmental intensity. Eq. D-A-4 (of Addendum D-A) provides an equation for the environmental intensity at constant temperature as

$$
\begin{equation*}
E_{H / C}=e^{0.0306\left(T_{H / C .}+32\right)}+e^{0.0306\left(62-T_{H / C}\right)} \tag{D-7}
\end{equation*}
$$

(The subscript H / C indicates a maximum or minimum temperature condition as appropriate.)

Over the range of $5^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}, \mathrm{E}_{\mathrm{H}}$ is approximately equal to E_{C}. One can then say that $E_{H}+E_{C}$ is equal to twice some average environmental intensity, \bar{E}, that can be expressed as

$$
\begin{align*}
\bar{E} & =\frac{1}{\Delta T} \int_{T_{1}}^{T_{2}} E_{H / C} d T \tag{D-8}\\
& =\frac{1}{\Delta T}\left[\int_{T_{1}}^{T_{2}} e^{0.0306(T+32)} d T+\int_{T_{1}}^{T_{2}} e^{0.0306(62-T)} d T\right]
\end{align*}
$$

so that the environmental intensity can be expressed as:

$$
\begin{equation*}
\mathbf{E}_{\mathbf{H}}+\mathrm{E}_{\mathrm{C}}=2 \overline{\mathrm{E}} \tag{D-9}
\end{equation*}
$$

Although the temperature profile actually consists only of very long transitions (of six months duration) and zero length dwells, the value for y is selected as unity. This is done in consonance with the concept that the very long transitions induce a stress comparable to that which would arise from the application of an average temperature; the long transitions then become essentially dwell times at the average temperature. What would normally be considered dwell time (the time spent at a constant temperature) is zero for the triangular temperature functions. Iherefore, this triangular function results only in a dwell (equal in length to the time to go from one temperature extreme to the other) and no transition. Since p is defined as transition plus dwell time and y is defined as dwell time divided by p, y then equals unity.

The bracketed term on the right hand side of Eq. C-12 of Appendix C may be seen to be the total environmental intensity factor. Substituting Eq. D-9 and the value for y of unity into this expression yields, as the total environmental intensity.

$$
\begin{equation*}
E_{\text {TOTAL }}=(2 \bar{E})\left(\frac{1}{2}\right)^{B}+3(1-y)^{B}\left(\frac{T_{H}-T_{C}}{(1-y) p}\right)^{1 / 2} \tag{D-10}
\end{equation*}
$$

The second term in the right hand side of Eq. D-10 actually accounts for stresses in the transition phase and since, as shown before, the transition time is taken as zero, this term becomes zero.

Performing the integration of Eq. D-8 yields, as the solution for the average environmental intensity,
$E=\frac{1}{0.0306\left(T_{H}-T_{C}\right)}\left[e^{0.0306\left(T_{H^{+32}}\right)}-e^{0.0306\left(62-T_{H^{\prime}}\right.}-e^{0.0306\left(T_{C}+32\right)}+e^{0.0306162-T_{T}}\right]$

Taking $\mathrm{T}_{\mathrm{H}}=35^{\circ} \mathrm{C}$ and $\mathrm{T}_{\mathrm{C}}=5^{\circ} \mathrm{C}$ yields a value of $\mathrm{E}_{\mathrm{TOTAL}}=14.26$.

It is recognized that this method yields only an approximate solution for the space environmental intensity. However, because of time limitation and a lack of data, further effort in this area was not possible. Continued study and refinement should be pursued in the final phase of study so that the parameter, E, may be determined for any specified orbital condition.

ADDENDUM D-A
MATHEMATICAL RELIABILITY RELATIONSHIPS FOR
TEST AND SPACE PERFORMANCE

ADDENDUM D-A
 MATHEMATICAL RELIABILITY RELATIONSHIPS FOR
 TEST AND SPACE PERFORMANCE

Definitions:

B, Reliability growth parameter; equal to the slope (on a log-log graph) of the relationship between cumulative failures and time. ($\mathrm{B}_{2}=0.7, \mathrm{~B}_{1}=0.6, \mathrm{~B}_{0}={ }^{`} 314$)

E, Environmental intensity
h(), Hazard or failure rate
K, Initial cumulative failure rate at time $=1$
N, Number of components
p, Dwell time + transition time; dwell time is the time that the item spends at the hot or the cold temperature (taken as equal), transition time is the time that the item takes in going from the hot to the cold condition or vice versa (taken as equal in the two cases)

T, Temperature, degrees Celsius
t. Time within a specific phase (test or orbital): hours or days as appropriate
y, \quad Dwell time/p
$\boldsymbol{\gamma}$. Gamma, location parameter: applied to a particular function so that it may more closely represent initial variations in data. ($\boldsymbol{\gamma}_{2}=-0.4 \mathrm{~h}, \boldsymbol{\gamma}_{1}=-0.8$ days, $\boldsymbol{\gamma}_{0}=3$ days)

Subscripts:

2, 1, 0, Component test, system test, or orbital phase related (respectively)
4, Transformation to space environmental intensity and time units in days
H, Maximum temperature condition
C, Minimum temperature condition
H / C, A convention indicating the maximum or minimum case depending on whether the H portion or the C portion is considered

1. COMPONENT TEST PARAMETERS

1. Failure (Hazard) Rate (see Eq. D-2)

$$
\begin{equation*}
h\left(t_{2}, E_{2}\right)=K_{2} E_{2} B_{2}\left(t_{2}+\gamma_{2}\right)^{B_{2}-1} \text { failures per unit hour* } \tag{D-A-1}
\end{equation*}
$$

2. Failures (see Eq. C-12)

$$
\begin{equation*}
\mathrm{F}_{2}=0.02 \mathrm{~N}+\mathrm{NK}_{2} \mathrm{E}_{2}\left(\mathrm{t}_{2}+\gamma_{2}\right)^{\mathrm{B}_{2}} \text { failures } \tag{D-A-2}
\end{equation*}
$$

3. Environmental Intensity

$$
\begin{gather*}
E_{H / C}=e^{0.0306\left(r_{H / C}+32\right)}+e e^{\left.0.030666-T_{H / C}\right)} \tag{D-A-3}\\
E_{2}=\left(E_{H}+E_{C}\right)\left(\frac{y}{2}\right)^{B_{2}}+3(1-y)^{B_{2}}\left(\frac{T_{H}-T_{C}}{(1-y) p}\right)^{1 / 2} \tag{D-A-4}
\end{gather*}
$$

4. Failure Rate Related to the Environmental Intensity of Space, E_{0}, (from Eq. D-6)

$$
\begin{equation*}
h\left(t_{2}, F_{0}\right)=\left(24^{B_{2}}\right) K_{2} E_{0} B_{2}\left(\frac{E_{2}}{E_{0}}\right)^{\frac{B_{2}-1}{B_{2}}}\left(t_{2}+\gamma_{2}\right)^{B_{2}-1} \tag{D-A-5}
\end{equation*}
$$

where $24^{\mathrm{B}_{2}}$ is necessary to convert failure rate units from hours to days, letting

$$
\begin{equation*}
K_{4}=\left(24^{B_{2}}\right) K_{2}\left(\frac{B_{2}}{B_{1}}\right)\left(\frac{E_{2}}{E_{0}}\right)^{\frac{B_{2}-1}{B_{2}}} \tag{D-A-6}
\end{equation*}
$$

then, the final failure rate can be expressed as

$$
\begin{equation*}
h\left(t_{2}, E_{0}\right)=K_{4} E_{0} B_{1}\left(t_{2}+\gamma_{2}\right)^{B_{2}-1} \tag{D-A-7}
\end{equation*}
$$

II. SYSTEM TEST PARAMETERS

A. Without Component Test

1. Failure rate related to an environmental intensity of space, E_{0},

$$
K_{1}=K_{4}
$$

[^3]then,
\[

$$
\begin{equation*}
h\left(t, E_{0}\right)=K_{1} E_{0} B_{1}\left(\frac{E_{1}}{E_{0}}\right)^{B_{1}-1}\left(t_{1}+\gamma_{1}\right)^{B_{1}-1} \tag{D-A-8}
\end{equation*}
$$

\]

2. Failures

$$
\begin{equation*}
F_{1}=0.02 N+N K_{1} E_{1}\left(t_{1}+\gamma_{1}\right)^{B_{1}} \tag{D-A-9}
\end{equation*}
$$

B. With Component Test

1. Failure rate related to an environmental intensity of space, $\mathrm{E}_{\mathbf{0}}$

$$
\begin{equation*}
K_{1}=K_{4}\left(t_{2}+\gamma_{2}\right)^{B_{2}-1} \tag{D-A-10}
\end{equation*}
$$

where t_{2} is the final time of component test. Then,

$$
\begin{equation*}
h\left(t_{1}, E_{0}\right)=K_{1} E_{0} B_{1}\left(\frac{E_{1}}{E_{0}}\right)^{\frac{B_{1}-1}{B_{1}}}\left(t_{1}+\gamma_{1}\right)^{B_{1}-1} \tag{D-A-11}
\end{equation*}
$$

2. Failures

$$
\begin{equation*}
F_{1}=N E_{1} K_{1}\left(t_{1}+\gamma_{1}\right)^{B_{1}} \tag{D-A-12}
\end{equation*}
$$

III. SPACE OPERATION PARAMETERS AT AN ENVIRONMENTAL INTENSITY OF E 0_{0}
A. No System Test
(a) No component test

1. Failure rate; using K_{4} from Eq. D-A-6,

$$
\begin{gather*}
K_{0}=K_{4}\left(B_{1} / B_{0}\right) \tag{D-A-13}\\
h\left(t_{0}\right)=K_{0} E_{0} B_{0}\left(t_{0}+\gamma_{0}\right)^{B_{0}-1} \tag{D-A-14}
\end{gather*}
$$

2. Failures

$$
\begin{equation*}
F_{0}=0.02 N+N E_{0} K_{0}\left(t_{0}+\gamma_{0}\right)^{B_{0}} \tag{D-A-15}
\end{equation*}
$$

(b) With component test:

1. Failure rate

$$
\begin{equation*}
K_{0}=K_{4}\left(B_{1} / B_{0}\right)\left(t_{2}+\gamma_{2}\right)^{B_{2}-1} \tag{D-A-16}
\end{equation*}
$$

where t_{2} is the time at the end of component test

$$
\begin{equation*}
h\left(t_{0}\right)=K_{0} E_{0} B_{0}\left(t_{0}+\gamma_{0}\right)^{B_{0}-1} \tag{D-A-17}
\end{equation*}
$$

2. Failures

$$
\begin{equation*}
F_{0}=N_{0} E_{0} K_{0}\left(t_{0}+\gamma_{0}\right)^{P_{0}} \tag{D-A-18}
\end{equation*}
$$

B. With System Test
(a) With or without component test

1. Failure rate

$$
\begin{equation*}
K_{0}=K_{1}\left(B_{1} / B_{0}\right)\left(\frac{E_{1}}{E_{0}}\right)^{\frac{B_{1}-1}{B_{1}}}\left(t_{1}+\gamma_{1}\right)^{B_{1}-1} \tag{D-A-19}
\end{equation*}
$$

where t_{1} is the time at the end of system test

$$
\begin{equation*}
h\left(t_{0}\right)=K_{0} E_{0} B_{0}\left(t_{0}+\gamma_{0}\right)^{B_{0}-1} \tag{D-A-20}
\end{equation*}
$$

2. Failures

$$
\begin{equation*}
F_{0}=N_{0} K_{0} E_{0}\left(1_{0}+\gamma_{0}\right)^{B_{0}} \tag{D-A-21}
\end{equation*}
$$

APPENDIX E
LAUNCH COSTS

APPENDIX E

LAUNCH COSTS

The analytical model provides t^{\prime} : user with the ability to determine the cost of launching a payload, it includes a large number of options. Either an expendable launch vehicle or the Space Transportation System can be selected. Payload project launch costs (e.g., manpower) are not included.

In order to keep the program simple, only three expendable launch vehicle options are included, the Scout, the 2900 series Delta, and the 3900 series Delta. Other options can easily be added to the model since they are simply fixed inputs.

Using the value of the 1978 dollar as a basis, the cost of a Scout launch (obtained from a project that uses a Scout launch vehicle) is taken as 2.4 million dollars (abbreviated in this report as $\$ 2.4 \mathrm{M}$) of which $\$ 2.2 \mathrm{M}$ was for vehicle costs and $\$ 0.2 \mathrm{M}$ for support services.

The cost of using the 2900 series Delta (Castor 11) was estimated as $\$ 15.4 \mathrm{M}$ and the 3900 series Delta (Castor IV) as $\$ 19.0 \mathrm{M}$. Both of these costs were obtained as rough estimates from the GSFC Delta project office; the costs include support service costs from the contractor.

STS costs were derived from Ref. 7. This reference describes the way in which STS costs may be assessed against a user and contains a large number of options. The descriptions contained in Ref. 7 lend themselves to an interactive computer approach and this approach was followed.

Again, in the interests of simplicity, only certain of the options are included in the analytical model. Basically they include:
(a) a dedicated or a shared mission,
(b) frec-flier atiached, or Spacelab payload configurations (small, self-contained payloads are not included),
(c) if Spacelab, a dedicated or shared element. Also, whether pallets only or pallets and the pressurized module are used.
(d) Orbital Maneuvering Systems (OMS) kits are available in the free-flier or attached payload configuration options (OMS kit weight and length are internally added as payload parameters).

The model is designed to construct costs hased on either weight or length depending on which parameter is determined as governing within the model. The volume parameter applicable to the Spacelab payload configuration was not included in the interests of simplicity.

The model assum s a $\mathbf{6 0 , 0 0 0}$ pound STS capability and develops costs based on this. Also, the user is considered as Civilian, U.S. Government. In the Spacelab configuration, only the long pressurized module is considered. The number of pallets required is a user input and checks are made internally to determine that Spacelab element weight constraints are not exceeded.

The user is also provided the option of adding an upper stage to an STS payload. Five configurations are available. Estimates as to cost, weight, and length were obtained verbally from NASA lleadquarters. They include support services. The values used (normalized to 1978 dollars) are:
(a) SSUS-D: $\$ 3.2 \mathrm{M}, 7.500 \mathrm{lbs}, 7.5 \mathrm{ft}$.
(b) SSUS-A: $\$ 3.6 \mathrm{M}, 12,200 \mathrm{lbs}, 8 \mathrm{ft}$.
(c) IUS-two stage: $\$ 12.4 \mathrm{M}, \mathbf{3 2 , 0 0 0} \mathrm{lbs}, 16.4 \mathrm{ft}$.
(d) IUS-t win stage: $\$ 14.5 \mathrm{M}, 48,700 \mathrm{lbs}, 21.8 \mathrm{ft}$.
(c) IUS-t win stage + spinner: $\$ 15.3 \mathrm{M}, 55,900,27.2 \mathrm{ft}$.

The section of the program that deals with launch costs is contained in File \#2 and runs from step 25 to step 2113 and subroutines from step 5990 to 7240 and from step 8000 to 9680 .

APPLEN $\mathbf{X F}$

ESTIMATION OF PAYLOAD WEIGHT BASIED ON COMPONI:NT COUNT

APPISNDIX F

ISTIMATION OF PAYLOAD WIEIGIIT BASID ON COMPONIENT COUNT

In instances where the payload weipht is unknown, it may be estimated based solely on eomponent count. This in ohvously a very rouph approximation but provides a nser with a way of exercising the propratm.

The estimating aleorithon was deroved by comparing the number of eomponents in a number spacecraft (taken from Refs. 1, 4, 5, and of with the total spaceraft weipht an listed in Ref. 8.

$$
\begin{equation*}
y=c \cdot \exp (111 x) \tag{1:-1}
\end{equation*}
$$

Inasmuch as the data from lig. l-2 were the more recent and therefore felt to be more representative the equation:

Payload Weight, pounds - $118.28 \cdot \exp (0.0 .301 \times$ Ntiaber of (omponents) (F-2)
was used as the algorithon to establish payload weight for a free-flic: paykoad.

The instrument portion of a free-flier payload was taken to be $1 / 4$ of the total payload weight. This proportion was arrived at from data taken from Table 1 of Ref. 9 . Yable 1 also provides data ungross weight and experiment weight for 17 (iSFC spacectaft. This data is plotled in Fig. F-3 together with the straight line describing the relationship. This line is iitted by cye.

If the payload is an STS attached or Spacelab payload, the entire weight, as computed by 1:y. 1:-2 is taken as the instrument weight.

The pertion of the program that performs the estimating is contained in the subroutine steps 4000 to 4300 in rite \#?.

> NR OF COMPONENTS PER S/C
> Figure F-2. Total Components per Spacecraft (1970-1975) vs. Spacecraft Weight

APPENDIX G

ESTIMATION OF PAYLOAD RECURRING COSTS

APPENDIX G

ESTIMATION OF PAYLOAD RECURRING COSTS

The model requires ar input of payload recurring costs. If the user is unable to provide this as an input, it is internally generated based on the payload weight, the type of instrument involved, and whether the payload is a free-flier or not.

If the payload is a free-flier, the payload weight is distributed as $\mathbf{3 / 4}$ to the platform and $1 / 4$ to the instruments. The platform cost is then computed using the equation:

$$
\begin{equation*}
\text { Platform Cost, M }=0.02498\left(\text { Platform Weight, lbs) }{ }^{0.81}\right. \tag{G-1}
\end{equation*}
$$

This relationship is taken from the recurring cost estimating relationship for the first unit as found on page IV-29 of Ref. 10.

Exhibit 5-1 of Ref. 11 provides cost estimating relationships (for the first flight unit, less design, development, test and evaluation) for 18 types of instruments. 17 of these are based on weight and one on power. In order to simplify the program, the relationship based on power was omitted and the remaining 17 divided among three groups. The user of the program can compare his particular case to the three groups (which name the instrument types) and select the best fitting relationship. If none of the groups seem to fit as the instrument is unknown (as was the case in developing the program), the user is instructed to select the average case.

If the payload is attached to the STS or a Spacelab mission, the entire weight is considered as instrument and the cost computed accordingly.

The subroutine, steps 4430 to 4940 , in File \#2 performs the cost estimating portion of the program.

APPENDIX H
TEST COSTS

APPENDIX H

TEST COSTS

Table H-I has been prepared based on data received from aerospace industry and government sources. Since the basic data provided by the contractors contains information on the internal company operations and since it was desired that this report be generally available, the data on which Table H-1 is based has not been made part of this report; it is contained in a separate document.

The nominal complexity of the payload indicated in the table is basically that of an earthorbiting, scientific spacecraft with a one to three year projected lifetime. It would be similar to previous ones although requiring entirely new structure. However, very few, if any, entirely new housekeeping function designs would be needed. Experiment instrument requirements during test would be modest during test insofar as stimuli or test configuration constructions; for instance, no critical alignments or special movements are needed. The spacecraft would contain some 40 housekeeping components plus eight to ten instruments.

As a first approximation for simplicity, algorithms have been devised that base test costs on the maturity of the item (i.e., protoflight, first flight unit, or follow-on unit) and on the number of components contained in the item. Table H-1 is constructed from adjusted costs of nominal complexity tests in 50000 ar ${ }^{\boldsymbol{1}} 1500 \mathrm{cu}$. ft . facilities and average component test costs in a $\mathbf{5 0} \mathbf{~ c u}$. ft. facility, it presents the actual algorithms.

One cost that is included under test but is not immediately apparent is sometimes referied to as a "marching army" cost. This is a cost arising in other project areas due to a delay caused by the test program. The present algorithm contains only a rough estimate of this cost. It is based on $\$ 120,000$ per week for a payload having 84 components or $.120 /(84 \times 7$) million toilars per component per day.

Test Cost Algorithms
I. Component I.evel Tessa: (50 cu ft chamher)

1. Protufight or Qualification Unit or Follow.On unit
```
COst, S = (N9 + F2) }\times(\mathbf{R68}+25.2\timesT2)+F2\timesO
```

2. First Fight Unit Costs $=2 \times$ Qualification unit component test costs

II. System Level Tests:

A. Large Chamber ($\mathbf{3 0 , 0 0 0}$ to $50,000 \mathrm{cu} \mathrm{ft}$)

1. Protoflight or Qualification Unit:

$$
\begin{aligned}
\text { Cost, } \mathrm{S} & =(\mathrm{N} 9 \times 3,400+147,000)+\mathrm{Tl} \times(\mathrm{N} 9 \times 177+17,000)+\mathrm{Q} 2 \times(\mathrm{N} 9 \times 158+6,160)+\mathrm{F} 1 \times \mathrm{Q} 1 \\
& +\mathrm{Q} 3 \times \mathrm{N} 9(\mathrm{~T} 1-\mathrm{T} 1 / 1,34)
\end{aligned}
$$

2. First Flight Unit:

$$
\begin{aligned}
\text { Cost, } \S= & \text { Cost for a qualification unit test (same times and fallures })+(\mathrm{N} 9 \times 861+40,300)+\mathrm{Tl} \times(\mathrm{N} 9 \\
& \times 44.5+7,000)+\mathrm{Q} 2 \times(\mathrm{N} 9 \times 158+6,160)+\mathrm{F} 1 \times \mathrm{Q} 1+\mathrm{Q} 3 \times \mathrm{N} 9(\mathrm{~T} 1-\mathrm{T} 1 / 1.34)
\end{aligned}
$$

3. Follow-On Unit:

$$
\begin{aligned}
\text { Cost, } \mathrm{S} & =(\mathrm{N} 9 \times 158+6,160)+\mathrm{Tl} \times(\mathrm{N} 9 \times 44.5+7,000)+\mathrm{Q} 2 \times(\mathrm{N} 9 \times 158+6,160)+\mathrm{F} 1 \times \mathrm{Q} 1 \\
& +\mathrm{Q} 3 \times \mathrm{N} 9(\mathrm{TI}-\mathrm{TI} / 1.34)
\end{aligned}
$$

B. Medium Sized Chamber: (1,000 to $2,000 \mathrm{cu} \mathrm{ft})$

1. Protoflight or Qualification Unit:

$$
\begin{aligned}
\text { Cost, } \$ & =(\mathrm{N} 9 \times 2,86 \mathrm{C}+69,800)+\mathrm{Tl} \times(\mathrm{N} 9 \times 96.4+1,240)+\mathrm{Q} 2 \times(\mathrm{N} 9 \times 133+2,920)+\mathrm{F} 1 \times \mathrm{Q} 1 \\
& +\mathrm{Q} 3 \times \mathrm{N} 9(\mathrm{TI}-\mathrm{TI} / 1.34)
\end{aligned}
$$

2. First Flight Unit:

Cost, $\$=$ Cost for a qualification unit test (same times and failures) $+(\mathrm{N} 9 \times 679+19,100)+\mathrm{Tl} \times$ (N 9 $\times 24.2+516)+\mathrm{Q} 2 \times(\mathrm{N} 9 \times 133+2,920)+\mathrm{F} 1 \times \mathrm{Q} 1+\mathrm{Q} 3 \times \mathrm{N} 9(\mathrm{~T} 1-\mathrm{T} 1 / 1.34)$
3. Follow-On Unit:

$$
\begin{aligned}
\text { Cost, } \mathrm{S} & =(\mathrm{N} 9 \times 133+2,920)+\mathrm{T} 1 \times(\mathrm{N} 9 \times 24.2+516)+\mathrm{Q} 2 \times(\mathrm{N} 9 \times 133+2,920)+\mathrm{F} 1 \times \mathrm{Q} 1 \\
& +\mathrm{Q} 3 \times \mathrm{N} 9(\mathrm{~T} 1-\mathrm{T} 1 / 1.34)
\end{aligned}
$$

Legend:

N9 a Number of Components
T2 $=$ Test duration, hours; $\mathbf{F 2}=$ Nr. of failures in component test
T1 = Test duration, days; $\mathrm{Fl}=$ Nr. of failures in system test
Q1 = Repair Costs/fallure $(\$ 5,300)$
Q2 = (Nr. of system tests with retests)/(Nr. of system tests with and without retest)
$=27 / 39$; based on GSFC data base
Q3 = Estimated Marching Army cost, $\$ 120 \mathrm{~K} / 84$ component system/weck $=\$ 120 /(84 \times 7)$

APPENDIX 1

DETERMINATION OF AVAILABILITY

APPENDIX I

DETERMINATION OF AVAILABILITY

In Ref.2, the Planning Research Corporation developed a parameter that they termed "availability"* to deseribe the usefulness of a spaceeraft system as the mission progresses. A. the instaneous availability immediately after the $\boldsymbol{n}^{\text {th }}$ anomaly, was defined in terms of the degradation due to the anomalies up to the point as

$$
\begin{equation*}
A={\underset{i=1}{n}\left(1-D_{i}\right), ~(1)}^{n} \tag{1-1}
\end{equation*}
$$

where Di was defined as the mission degradation that results from the anomaly when compared to a perfectly functioning system.

This approach allows for the continuing operation of a payload even with a number of degrading anomalies.

For simplification, each anomaly was assigned a mission effect code with a corresponding degradation as follows:

Mission Effect Code	Degradation (Pur Cent)
1	2.5
2	20
3	50
4	80
5	97.5

Ref. 4 presents data based on a study of 57 spacecraft (all under GSFC cognizance). In Fig. 5 of Ref. 4, the author presents a chart indicating the criticality of the total space malfunctions (analogous to the PRC term "anomaly") of the 57 spacecraft in the form of bar graphs.

Note* This usage of the term "availability" is different than that eenerally found in standard rellability texts.

The criticality of each maltunction is divided as follows:

\quad Criticality	Percentage Loss
1. Catastrophic	>90
2. Major Loss	$50-90$
3. Suhstantial Loss	$10-50$
4. Minor Looss	$0-10$

The data is presented in Ref. 4 considering the existing conditions i.e., with sucla redundancy as existed during the mission and without redundancy. In the case including redundancy, the values shown are:

Criticality	Percentage of Malfunctions
1	2.1
2	1.9
3	11.4
4	84.6

Addendum I-A presents data concerning the variation of the criticality of malfunctions with time; while a formal proof was not undertaken, it was felt that there was sufficient evidence to support the thesis that the criticality of a malfunction was invariant with time. With this hypotheses, one should be able to describe a single value of criticality, D^{*}, that can be assigned to each malfunction of a particular spacecraft such that

$$
\begin{equation*}
\left(1-D^{*}\right)^{n}={\left.\underset{i=1}{n}\left(1-D_{i}\right), ~\right)}^{n} \tag{I-2}
\end{equation*}
$$

where n is the number of malfunctions up to some time.

If D_{i} assumes m number of different values of which any one can occur w to z times, then Eq. (I-1) may be expanded and written as:

$$
\begin{equation*}
A=(1-a)^{w} \times(1-b)^{x} \times \ldots \times(1-m)^{2} \tag{1-3}
\end{equation*}
$$

Recognizing that $n=w+x+\ldots+2$, we may take the logarithms of Eq. I-3 and I-2 and by dividing one by the other and rearranging terms, we can find the value of the criticality, D^{*}. based on actual data as

$$
\begin{equation*}
D^{*}=1-\exp \left[\frac{1}{n}(w \ln (1-a)+x \ln (1-b)+\ldots+x \ln (1-m))\right] \tag{1-4}
\end{equation*}
$$

Substituting this value into Eq. I-I the availabibily can be cxpressed as

$$
\begin{equation*}
A=\left(1-D^{*}\right)^{n} \tag{I-5}
\end{equation*}
$$

Ref. I provides the bridge needed to determine spacecraft availability as a function of time. Eq. 3 of Rei. : expresses a relationship (based on a study of 57 spacecraft programs having an average oi soine 65 c.amponents pir spacecraft) that determines a curnulative failure rate as:

$$
\begin{equation*}
\lambda_{\Sigma}=\frac{F}{N(t+\gamma)}=K_{0}(t+\gamma)^{-a} \text { failures per day } \tag{I-6}
\end{equation*}
$$

where: F is tie number of failures during time t. N is the average number of components per spacecraft, $\boldsymbol{\gamma}$ is a "location parameter" similar to that used to tit a Weibuli distribution, and α is the slope of the line (a growth rate).

The negative sign in the exponent is based ci_{i} a convention of referring to α as positive in sign. However, the sign of α in the reliability growth case is negative and so the sign in Eq. I-6 should : :tually be positive. To maintain the mathematical treatment correctly, Eq. I-7 which follows It the rest will consider the sign as positive. Therefore, rewriting Eq. I-6 we have,

$$
\begin{equation*}
\frac{F}{N(t+\gamma)}=K_{0}(t+\gamma)^{\alpha} \tag{I-7}
\end{equation*}
$$

Multiplying both sides by $\mathrm{N}(\mathrm{t}+\boldsymbol{\gamma})$,

$$
\begin{equation*}
F=N K_{0}(t+\gamma)^{1+a} \tag{I-8}
\end{equation*}
$$

Again remembering the change in the sign convention for α, Ref. 4 defines a term

$$
\begin{equation*}
\beta=1+\alpha \tag{1-9}
\end{equation*}
$$

and substituting this in E. . I-R yields

$$
\begin{equation*}
F=N K_{0}(1+\gamma)^{\beta} \tag{1-10}
\end{equation*}
$$

This equation was derived for failures: however, it can be modificd for malfunctions (i.e., any performance outside specified limits) by determining the ratio of malfunctions to failures. From Fig. 2 of Ref. 1 it appears that the ratin of malfunctions (M) to failures (F) is relatively constant with time. Since Ref. 4 indicares 4.38 malfunctions of which 239 were failures, one may define malfunctions in terms of failures for that group of spacecraft as,

$$
\begin{equation*}
M=\frac{438}{239} F=1.833 F \tag{1-11}
\end{equation*}
$$

Also. Ref. I defines values for γ as $\mathbf{3}$ (using days as the unit of time) and β as 0.311 . The value for K_{0} in that report is given as $\mathbf{0 . 0 0 9 1 8}$. This was based on an analysis considering an average of 65 components per spacecraft. More recent analysis indicates that a value of 67.54 components per spacecraft would better suit the data. Since $K_{0} N$ is a constant, then the value for K_{0}, based on $\mathrm{N}=67.34$, is 0.00886 .

Substitution of these values in Eq. 1-10 yields, as the number of mand atione T,

$$
\begin{align*}
M & =1.833 \times 0.00886 \mathrm{~N}(\mathrm{t}+3)^{0.311} \\
& =0.01624 \mathrm{~N}(\mathrm{t}+3)^{0.311} \tag{I-12}
\end{align*}
$$

The development of the factor $\boldsymbol{\gamma}$ in Ref. 1 stemmed from a need to account for a large number of early failures. Without this apparently high initial rate, the expression to describe the later failure parameter could exclude the $\boldsymbol{\gamma}$. Since early failures can be expected to include the preponderance of failures due to the mechanical stresses of launch (vibration, shock, etc.) and the later failure can be considered as representative of the thermal vacuum environment, the $\boldsymbol{\gamma}$ factor is deleted in this study in order to characterize those failures arising from the thermal vacuum environment.

Addendum 1-B provides additional information as to this assumption.

Combining Eq. I-S and I-12 and deleting the $\boldsymbol{\gamma}$ factor, the insta:taneous availability payloads can be described as

$$
\begin{equation*}
A=\left(1-D^{*}\right)^{0.01624 N\left(t^{0.311}\right)} \tag{1-13}
\end{equation*}
$$

One apparent problem with the model for availability described by Eq. I-13 is the fact that the availability is so directly tied to the number of components. One would intuitively believe that as the number of components increased, the apparent criticality of a failure would decrease.

In order to develop a model to describe this phenomenon, it was decided to use 31 of the 33 spacecraft contained in the PRC model; the two that vere omitted failed shortly after launch and were felt to be not part of a family intended to describe thermal vacuum associated anomalies.

The data plotted in Fig. I-1 depicts the expected criticality of a failure for each of the 31 spacecraft as a function of the number of components in that spacecraft. Through that data was fitted an exponential curve and the best fit was found to be described by the equation

$$
\begin{equation*}
D^{*}=0.273 \exp (-0.0086 \mathrm{~N}) \tag{I-14}
\end{equation*}
$$

Substituting this function in place of the coefficient ($1-D^{*}$) in Eq. I-13 (determined as in Eq. I-5), the following equation is developed:

$$
A=[1-(0.273 \exp (-0.0086 N))]^{0.01624 N\left(t^{0.311}\right)}
$$

Fig. I-2 presents a comparison between an average instantaneous spacecraft availability and the analytical expression shown as Eq. I-13. The plot indicated as "PRC data" was constructed from information obtained from PRC on 31 spacecraft that were contained in the GSFC data base. This permitted a common ground for comparison purposes. The plot was constructed by developing an instantaneous spacecraft availability for each of the 31 spacecraft and then averaging these individual instantaneous spacecraft availabilities. If a spacecraft fell below a 5% availability, it was maintained as part of the sample at whatever availability it had although it was

NUMBER OF COMPONENTS PER SYSTEM
Figure I-1. E($\left.\mathbf{L}_{\mathbf{i}}\right)$ vs. Number of System Components Based on 31 PRC Spacecraft
considered as being basically "dead." In other cases, data was unavailable beyond some point in time. In these cases, the spacecraft was removed from the sample and a new average computed from that time forward; such a drop-out is indicated by an " x " plotted on the graph. The plot was terminated when the number of spacecraft fell below 10. Addendum I-C contains a listing of the progra.n used to generate the plots and the data that was taken from the PRC data sheets.

It is felt that this comparison indicates a good correlation between the model which, except for the function defined in equation I-14, was derived independently from the anomaly criticality analysis performed by PRC.

One may describe a term A_{0} based on Eq. I-14 as

$$
\begin{align*}
A_{0} & =1-D^{*} \tag{1-16}\\
& =1-0.273 \exp (-0.0086 \mathrm{~N}) \tag{1-17}
\end{align*}
$$

The instantaneous availability, A, at the end of some time T, in orbit can be expressed as:

$$
\begin{equation*}
A=A_{0}(1.833 \mathrm{KEN})\left(\mathrm{t}^{\mathrm{B}}\right) \tag{1-18}
\end{equation*}
$$

where: $K=$ cumulative failure rate at day one, $E=$ environmental intensity of space*, $N=$ number of components that comprise the system, and $B=1 / 3^{* *}$.

If one were to define a desired instantaneous availability at some time t, then the value for K can be derived from Ec. I-1 6 and 1-18 as

$$
\begin{equation*}
K=\ln A /\left(1.833 E N \ln A_{0} t^{B}\right) \tag{1-19}
\end{equation*}
$$

[^4]

The value of instantancous availability, A, cannot be directly used in the optimization model. Moreover, it is a rather difficult concept to convey or to use in defining mission parameters. An average availability, \mathbf{A}, is a much more useable form of the availability concept. It can be looked at as that portion of the information that is obtained by the payload as a function of that portion that would have been obtained had there been no malfunctions. This then is a parameter that can be used to define the effectiveness of a mission or its cost effectiveness if one can attribute costs in an acceptable manner. It is also more tractable as a concept as to the performance of an item during its mission.

The total availability, A_{t}, may be defined in terms of the instantaneous availability as:

$$
\begin{equation*}
A_{t}=\int_{0}^{t} A d t \tag{1-20}
\end{equation*}
$$

where the limits of the integration go from launch (time $=0$) to some time, t, considered the end of mission life.

The average availability, $\overline{\mathbf{A}}$, would then be

$$
\begin{equation*}
\bar{A}=\frac{A_{t}}{t} \tag{1-21}
\end{equation*}
$$

It can be seen then that if there were no failures $\overline{\mathbf{A}}$ would equal 1 ; if the item failed completely at launch, $\overline{\mathrm{A}}$ would equal 0 . The average availability then can range between 0 and 1 and depends on the number of failures accumulated by time t and their significance. The development of the criticality of a failure, D^{*}, from Eq. I-17 permits one to proceed without assigning differing effects to each failure.

Addendum I-D contains the integration indicated in Eq. I-23 and I-24. Fig. I-4 is a graph on which is plotted both average and instantaneous awilabilities. Fig. 1-5 is a graph of the instantancous availability as expressed by the equation

$$
\begin{equation*}
A=[1-(0.273 \exp (-0.0086 N))]^{0.01624 N\left(t^{1 / 3}\right)} \tag{I-22}
\end{equation*}
$$

showing its variability with the number of components.

Fig. 1-6 is a graph of the corresponding average availability, $\overline{\mathbf{A}}$, as derived in Addendum I-D. Since it is based on data from GSFC missions, it may be used as a point of reference for one who wishes to select a particular average availability for a mission.

Addendum I-E contains the results of a short study into the development of an approach for assigning an average availability for a mission in which the payload is operational for the entire length of the mission but opportunities for taking data are limited. Of thosc opportunities for obtaining data, only a portion is required in order to achieve mission objectives. For instance, the first case noted on Tabi- 1-E-2 is one in which the mission is 14 days long (such as on the STS). 42 opportunities for observation present themselves during this period with each opportunity 2 h long; a total of 8 h of successful observation is needed for mission success. The program for determining the average availability (Table I-E-1) depends on an iterative process and so the results are not exact but the closeness of the resulting solution (successful observing time $=$ 7.979 h) to the desired performance of 8 h seems satisfactory. This addendum then presents a way of applying the availability concept.

ADDENDUM I-A

VARIABILITY OF THE CRITICALITY OF A FAILURE

ADDENDUM I-A

VARIABILITY OF THE CRITICALITY OF A FAILURE

The following data was derived from information received from the Planning Research Corporation regarding 33 spacecraft that are part of the $\mathbf{5 7}$ that make up the GSFC sample.

While a formal statistical test has not been performed due to time limitations, the data does appear to demonstrate a consistency as to the distribution of the criticality of malfunctions based either on a function of time or on a count of malfunction. The two following tables provide some of the data.

Table 1-A-1 was developed by counting the number of anomalies of the various classifications for 5,000 hour time increments and determining the percentages among them. Table 1-A-2 was developed by counting up 10 anomalies for each category and determining what percentage they form of the total. In Table I-A-2 only categories 1,2, and 3 are depicted since less than 10 category 4 or 5 anomalies exist in the sample.
Table I-A-1

Time Interval (hours)	Anomaly Criticality Code									
	1		2		3		4		5	
	Number of Anomalies	Percent								
0-5000	124	0.554	80	0.357	14	0.063	3	0.013	3	0.013
5000-10000	30	0.625	13	0.271	3	0.063	1	0.021	1	0.021
10000-15000	18	0.600	9	0.300	2	0.067	1	0.033	0	0.0
15000-20000	6	0.600	3	0.300	1	0.100	0	0.0	0	0.0
20000-25000	3	0.273	5	0.455	2	0.182	0	0.0	1	0.091
25000-30000	1	0.500	1	0.500	0	0.0	0	0.0	0	0.0

1-A-2

Table 1-A-2
Pereentage of the Total Number of Anomalies Encountered when Counting up to 10 of a Particular Criticality iPRC Data on 33 (iSFC Spacecraft)

Time a Which 10 are Counted (hours)	Percentage of All Anomalies in the Interval
Catcgory 1	
$\begin{array}{r} 1 \\ 7 \\ 120 \\ 385 \\ 790 \\ 1150 \\ 1500 \\ 1800 \\ 2300 \\ 2880 \\ 3631 \\ 4380 \\ 7130 \\ 7934 \\ 8760 \\ 11520 \\ 14300 \\ 23040 \end{array}$	$\begin{aligned} & 0.556 \\ & 0.500 \\ & 0.588 \\ & 0.556 \\ & 0.500 \\ & 0.714 \\ & 0.667 \\ & 0.476 \\ & 0.588 \\ & 0.556 \\ & 0.435 \\ & 0.769 \\ & 0.416 \\ & 0.769 \\ & 0.769 \\ & 0.455 \\ & 0.769 \\ & 0.476 \end{aligned}$
Category 2	
$\begin{array}{r} 1 \\ 100 \\ 462 \\ 1330 \\ 2000 \\ 2664 \\ 3400 \\ 4800 \\ 8700 \\ 13140 \\ 23400 \end{array}$	$\begin{aligned} & 0.345 \\ & 0.417 \\ & 0.417 \\ & 0.286 \\ & 0.250 \\ & 0.526 \\ & 0.400 \\ & 0.357 \\ & 0.263 \\ & 0.313 \\ & 0.370 \end{aligned}$
Category 3	
$\begin{array}{r} 1790 \\ 18650 \end{array}$	$\begin{aligned} & 0.072 \\ & 0.058 \end{aligned}$

1-A-3

ADDENDUM I-B

ADJUSTMENT OF ORBITAL MALFUNCTION PREDICTION TO ACCOUNT FOR

 NON-THERMAL VACUUM ASSOCIATED EFFECTS
ADDENDUM I-B

ADJUSTMENT OF ORBITAL MALFUNCTION PREDICTION TO ACCOUNT FOR NON-THERMAL VACUUM ASSOCIATED EFFECTS

Eq. 1-12 of Appendix I has within it a term, " $(t+3)$." The number 3 was found by the analysis in Ref. 1 to provide a reasonable fit to the empirical data used in the preparation of that document. This term is similar to the location parameter (generally designated by the Greek letter gamma and herein referred to as " G ") of the Weibul distribution. Its use infers the start of a process at some time other than that indicated by the time function.

In the case of Ref. 1, the later period data seemed to be part of some common process: that is, it complied with a particular function of decreasing failure rate. However, the failure rates encountered during the early portion of the mission did not appear to foilow this same function and seemed to be of a different family. In order to describe both of these phenomena with a common equation, a gamma of $\mathbf{- 3}$ was employed. (The form of the equation is generally given with the value as ($D-G$) and so a value of -3 would yield ($D+3$).)

It would appear reasonable to take those early failures as some evidence of launch failure phenomena such as those arising from vibration or acceleration. They would be generally evidenced immediately after the equipment was activated. On the other hand, that class of failures that would occur after some period of time in orbit could be ascribed to the class of thermal vacuum failures (recognizing that there would be sone residual number of failures due to the launch environment and due to non-thermal vacuum causes such as electromagnetic interference).

Failures due to the thermal vacuum space environment are taken as very broad in scope as are those failures uncovered during thermal vacuum testing. Many of these failures are due to neither the temperature nor vacuum environments nor to a combination of both, but many may be due to operating procedures, faulty parts, design error, or similar problems. However, since
this type of nroblem forms a significant part of that group uncovered during thermal vacuum testing, they are considered as being detectable in that environment. It is possible that one might develop separate functions that separate failures due to the environmental stresses from those that are simply uncovered during environmental exposure; however, the data used in preparing this report did not permit such a differentiation.

In order, then, to describe failure rates in orbit that vere ascribable to the thermal vacuum environment, the factor gamma, or G, was set to zero and in that way the function is believed to best describe those failures due to the thermal vacuum environment. Fig. 1 (based on 67.34 components) shows the effect of setting $G=0$ when establishing spacecraft availability. It is interesting to note that the availability, although larger during the early periods with $G=0$ as opposed to $G=-3$, does not go to 1.0 for the first day. Rather, the equation indicates some number of failures occuring during the first day. This appears quite reasonable since one would not expect that only the launch mechanical stress environments would cause early failures. One would expect other failures to be evidenced and the model exhibits this characteristic.
LN3）\＆3d JALITIE甘71日A日 $3 / 5$

ADDENDUM I-C

PROGRAM TO OPERATE ON PRC DATA AND DATA LISTING

Prosram used to operate on PRC dota．

```
10 REM- Eall UR FRC data (stored in filel5 as matrix B), compute dotas and plot.
20 REM: Plot Routine, semi-107 plot
30 IIM A \(\$[32]\), Es [32], X \(5[32], \gamma+32]\)
40 REM- Label statements set for 6 in . hi \(\times 9\) in. wide fiela.
50 IISF "Erter plot title, 32 space max.
60 IHPIUT \({ }^{\circ} \$\)
70 DISP "Line 2 ? 32 max. Enter spo if no.";
80 IHPUT \(\mathrm{E} \$\)
90 辣 \(="\)
                                    TIME, HOURS"
100 "等=" S/C RVAILABILITY, PER CENT"
\(110 Y 1=-0.2\)
\(120 \quad Y 2=1 . \dot{Z}\)
\(130 \quad Y 3=0\)
\(140 \quad Y 4=1\)
\(150 Y 5=0\)
\(160 \times 1=0.1\)
\(17082=1000000\)
\(180 \times 3=1\)
\(190 \times 4=100000\)
\(200 \times 5=1\)
210 S \(1=10\)
\(2<952=0.1\)
236 SCRLE LOGX1, LOGX2,Y1,Y2
240 DISF "PLOT TITLES? Y-260. N-30日"
250 STOP
260 PLOT LOGX5+LOGS1:Y4+S2,1
270 CPLOT 0,0
280 LABEL (*) A
290 LABEL 《*)E \(\$\)
300 DISP "PLOT FOOTNOTES? Y-320, N-390
310 STOP
320 FLOT LOG2,0.25
330 LABEL (*, 1.5,2,0,0.67)"NOTES:"
```



```
350 LABEL (*)" OF SAMPLE"
360 L
370 LRBEL \((*) "\) PRC ITRTA ENIIS WHEN NIMBER OF"
380 LABEL 《*)" S 1 C IN SAMPLE FALLS T0< \(10^{\circ}\)
390 IISP "PLOT SCRLES? Y-410, N-680
400 STOP
410 XAXIS Y5, LOGS1, LOGX3,LOGX4
420 FOR \(I=2\) T0 10
430 PLOT LOG (I*X3), S2/20
440 FLOT LOG \((I * X 3): 0,-1\)
450 NEXT I
460 YRXIS LOGX5,52,Y3,Y4
470 LABEL ( \(\%, 1,7,2,0,0,67\) )
480 FOR \(X=L O G X 3\) TO LOGX4 STEP LOGS
500 CPLOT \(-2.5 ;-1.5\)
510 LREEL (*)EXPX
520 NEXT \(X\)
530 FLOT LOGX5+LOGS1: Y3, 1
540 CPLOT \(0:-3.5\)
550 LAEEL (*)
560 FOR \(Y=\{Y 3+82\) ) TO (Y4-S2) STEP S2
570 PLOT LOGX5:Y:1
500 CFLOT -6.-G. 3
590 LABEL (*)Y
690 LREEL
610 LABEL (*, 1.5,2,F1/2,0.67)
620 FLOT LOUX5; Y5 5 S2, 1
```

```
6 3 0 \text { CPLOT G.5}
640 LABEL (*)Y$
650 LABEL (*,1,5,2,0,0.67)
G60 DISP "TO COMP AND PLOT, cONT G80
670 STOP
680 REM- Analysis of PRC datal mean availability based on
690 REM- the average of all the S'C availability ot o siven time.
70日 FORMRT "SOC:",F3.G,3X,"H:",F6.0.2K,"EC:",F2.0.3K,"E:",FE.5,3X,"COMF E:",FB.5
710 DIM BS[360,4]
720 MAT B=ZER[360.4]
70 J=0
740 LOAD DATA 15,E
750 DISP "SORT #1: EY S/C, BY TIME";
760 SORT B,C:1,2
770 REM- Find hishest 5/C # (= nr. of S%C).
780 FOR I=1 TO 360
790 N=B[I,1]
800 DISF N
810 IF N<= J THEN 830
820 J=N
8 3 0 ~ N E X T ~ I ~
840 REM- PRINT "MAX S/C # =";J,LIN1
850 REM- Determine individual S/C cumulative effectiueness
860 A=0
870 FOR I=2 T0 360
880 B[I,2]=B[I,2]+A
890 A=A+0.00001
900 IF B[I,1]*E[I-1,1] THEN 920
910 B[I;4]=B[ I;4]*B[I-1,4]
920 NEXT I
930 REM- Compute average S<C availability as f(time) where
940 REM- I=sum of all availabilities, M=averase availability=D/J
950 IISF "SORT #2, BY HOIJR";
360 SORT B,C,2
970 CFLAG 0
980 [I=」
990 REM- Compute dug effectiveness, EC:6 = still running, }7=\mathrm{ dead
1 0 0 0 ~ F = 1
1010 FOR I=1 TO 360
1020 IF <<10 THEN }134
1030 D15F I
1040 REM- Jiminish divisor by 1 when B(I,3)=6
1050 IF E[I,3]=6 THEN 1070
1060 GOTO 1110
1070 J= J-1
1080 IF J<10 THEN 1340
1090 D=II-B[1,4]
1100 GOTO 1200
1110 REM- Find next, orior time S/C # apeears in the matrix
1120 FOR B=1-1 TO 0 STEP -1
1130 #ISP 1.E
1140 IF B=0 THEN 1180
1150 [F B[I,1]#B[B,1] THEN 1310
1160 C=E[E;4]
1170 GOT0 1190
1180 C=1
1190 D=D-C+B[ I, 4]
1200 M=D/J
1210 FEM- PLOT:(this time, last avail.),(this time, this ovail.)
1220 PLOT LOGE[I,2],F
1230 FLOT I.OGE[I,2],M
1240 F=N
1250 IF B[I,3]#G THEN 1320
1260 PRINT "SAC #";B[I;1];"drows out ot";IHTE[I,2];" hours."
1270 CPLOT -0.3,-0.3
1280 LAEEL (*)"X"
```

```
1290 IPLOT 0.0
1309 GOTO 1320
1310 HEXT E
1320 NEXT I
1330 PRINT
1340 PEH
1350 END
1360 FOR \(I=1\) T0 15 STEF 0.2
1370 T=EXPI
\(1360 \mathrm{I}=\mathrm{T} / 24\)
\(1390 \quad A=0.8438 \uparrow(67.34 * 0.00886 * 1.833 *(1)+3) \uparrow 0.311)\)
1400 IF R 80 THEN 1440
1410 IF \(T>100000\) THEN 1440
1420 PLOT LOGT, A
1430 NEXT I
1440 PEN
1450 ENJ
```


Row	Sct \#	Time, h	E:	(1-Eff.)
1	1	1	1	0.975
2	1	1	2	0.800
3	1	1776	3	0.500
4	1	1968	2	0.800
5	1	2304	3	0.500
6	1	2305	2	0.809
$?$	1	2664	2	0.800
8	1	3048	2	0.800
9	1	3480	2	0.800
10	1	4512	2	0.800
11	1	5592	2	0.800
12	1	7488	2	0.800
13	1	8679	1	0.975
14	1	10469	4	0.200
15	1	21696	2	0.800
16	1	22727	5	0.025
17	1	22728	7	1.000
18	2	252	1	0.975
19	2	720	2	0.800
20	2	17592	6	1.000
21	3	3320	2	0.800
22	3	3530	2	0.800
23	3	3820	2	0.800
24	3	37671	6	1.000
25	4	1	2	0.800
26	4	5	2	0.800
27	4	1440	2	0.800
28	4	5040	2	0.800
29	4	5760	2	0.800
30	4	6570	2	0.800
31	4	13900	2	0.800
32	4	17500	2	0.800
33	4	20180	2	0.800
34	4	29510	6	1.000
35	5	1	1	0.975
36	5	1	1	0.975
37	5	1	2	0.800
38	5	1	1	0.975
39	5	10609	2	0.800
40	5	12134	6	1.090
41 42	6	46	2	0.800
42	6	190	2	0.800
43	6	2920	2	$0.80{ }^{0}$
44	6	3220	2	0.800
45	6	4000	3	0.500
46	6	4760	2	0.800
47	6	5740	2	0.800
48	6	7220	5	0.025
49	6	7221	7	1.000
50	7	154	2	0.800

I-C-5

117	9	2050	1	11．975
118	9	2160	6	1.0196
119	10		？	0.990
120	10	490	1	9．97E
121	10	1446	2	1，804
122	10	15010	1	19．975
123	10	1670	E	1． 1 ¢0
124	11	1	1	11．975
125	11	$\stackrel{3}{1}$	i	－9 ${ }^{\text {a }}$
126	11	130	1	19.975
127	11	158	1	9．97
128	11	216	1	0.935
129	11	520	1	8.975
180	11	940	1	0.975
121	11	956	2	6． 600
132	11	1380	2	0.396
193	11	1809	2	6． 080
134	11	1850	i	6． 975
135	11	1912	1	0.975
136	11	2159	2	8.808
137	11	2170	2	0.800
138	11	2868	1	6． 975
139	11	2920	1	6．975
149	11	3329	1	日． 975
141	11	3824	1	18.975
142	11	4230	1	1． 975
143	11	4670	2	0.800
144	11	4750	1	0.975
145	11	4780	1	6.975
146	11	4781	6	1.600
147	12	1	4	6． 200
148	12	1	2	0.800
149	12	890	1	日． 875
150	12	2350	1	6． 975
151	12	2809	1	6． 975
152	12	3767	1	0.975
153	12	？ 151	1	0.975
154	12	8609	1	0．975
155	12	8769	1	0． 975
156	12	11300	1	8.975
157	12	13520	1	6． 975
158	12	27040	2	日． 808
159	12	32700	1	8． 975
160	12	40560	1	0.975
161	12	40561	6	1.098
162	13	1	4	1．200
163	13	1	2	0.800
164	13	660	2	日． 800
165	13	1136	1	0.975
166	13	1210	1	6．975
167	13	1775	1	0.975
168	13	1777	1	0.975
169	13	1786	2	0.800
170	13	1790	3	0.500
171	13	1800	1	0.975
172	13	1801	1	0.975
173	13	2208	1	0.975
174	13	2524	2	0.800
175	13	2754	1	0.975
176	13	2880	1	6． 975
177	13	2881	1	0.975
178	13	3391	1	0． 975
179	13	3993	1	0.975
180	13	3631	1	0.975
181	13	3650	1	0.975

1－C－6

$1 \mathrm{H}_{2}$	13	3790	1	11.935
103	13	4519	1	0.975
10.4	13	F60.0	3	6. 5961
18,	17	6.596	1	1. 975
1:38	13	Q330	?	11. 800
189	13	9509	3	11.800
16id	13	5 Ban	?	11. 800
164	1	10650	\therefore	0. 0.090
19.1	11	13140	2	0.000
191	13	13151	1	8.975
192	13	1414.4	$\stackrel{\rightharpoonup}{3}$	1.909
19.1	1.4	-	\because	0.8601
194	1.4	11010	3	4. 5690
195	14	4300	1	9.975
191:	14	4400	2	6. 8001
19	1	7650	1	1.975
198	14	21306	2	0.806
199	14	23240	1	1.975
269	1.4	393019	E	1.000
26	15	16	1	0.975
36	15	190	2	0.800
204	15	2650	1	0.975
205	15	10500	1	6.975
206	15	10539	1	0.975
207	15	11529	1	0.975
308	15	11890	1	0.975
299	1.5	12968	8	0.500
219	15	14300	2	0.800
311	15	16209	1	0.975
212	15	18650	3	9. 500
313	15	22920	E	1.000
214	16	60	2	0.800
215	16	101	1	0.975
216	16	720	1	0.975
317	16	1320	1	0.975
218	16	7609	1.	0.975
219	16	7970	1	0.975
220	16	10608	1	0.975
221	16	11009	1	0.975
222	16	12860	1	0.975
223	16	14309	1	8.975
224	16	17060	1	0.975
225	16	20206	1	0.975
226	16	23040	1	0.975
227	16	23909	1	0.975
228	16	24000	6	1.000
229	17	1	1	0.975
230	17	120	1	0.975
231	17	304	2	0.800
232	17	609	1	0.975
233	17	2830	1	0.975
234	17	4060	1	0.975
235	17	4360	1	0.975
236	17	7320	1	0.975
237	17	3050	1	0.975
238	17	10340	2	0.800
299	17	10800	3	0.500
240	17	13900	6	1.098
241	18	546	2	0.800
242	18	612	3	0.509
243	18	760	1	0.975
244	10	1490	4	0.200
245	18	1520	3	0.500
246	18	1660	3	0.500
247	18	2280	1	Q.975

1-C-7

248	18	3049	2	0.800
249	18	3941	7	1.0010
250	19	23	2	6. 809
251	19	120	1	0.975
252	19	060	2	0.801
253	19	1690	1	0.975
254	19	2949	1	0.975
255	19	3380	1	0.475
266	19	11520	E	1. 10.14
257	50	120	2	9.0010
259	20	966	1	6.975
259	20	1790	1	0.975
269	29	5909	1	6.975
261	29	7350	1	10.975
26	29	8199	1	10.975
263	20	9804	1	Q.975
264	20	10125	2	0.806
265	20	11500	2	0.800
86	20	14950	1	9.975
267	29	15000	1	19.975
268	20	18200	1	0.975
269	20	20250	2	0.800
270	20	20251	ϵ	1.000
271 272	21	720	1	0.975
272 273	21	865	1	0.975
273	21	1030	2	0.800
274 375	21	1150	1	0.975
275	21	3089	1	0.975
276	21	3400	2	0.800
277	21	5090	3	0.500
278	21	6000	1	0.975
279	21	7270	1	0.975
280	21	9000	1	0.975
281	21	12000	1	0.975
282	21	22630	E	1.000
283	22	998	1	0.975
284	22	1800	1	3.975
285	22	1896	1	0.975
286	22	6576	6	1.000
287	23	48	1	0.975
288	23	2304	1	0.975
289	23	3160	1	0.975
290	23	3161	6	1.000
291	24	1	1	0.975
292	24	1	1	0.975
293	24	1	2	0.800
294	24	1464	1	0.975
295	24	1750	2	0.800
296	24	2309	1	0.975
297	24	7934	1	0.975
298	24	7958	1	0.975
299	24	8159	1	0.975
309	24	15120	1	0.975
301	24	16300	2	0.800
302	24	19518	6	1.000
303	25		2	0.800
304	25	1728	2	0.800
305	25	2930	2	0.809
306	25	2973	2	0.800
307	25	4809	2	0.800
308	25	5809	2	0.800
309	25	8800	2	0. 800
310	25	9000	6	1.000
311	26	1	2	0.800
312	25	8760	1	0.975
313	20	8761	6	1.000

I-C-8

314	27	1	1	0.975
315	27	1	1	11.975
316	27	4601	E	0.600
317	27	1960	1	0.975
318	27	1091	2	0.609
119	-	2040	E	0.6009
120	-	2609	2	0.806
3 E	?	2950	2	0, 960
3\%	2	2984	2	0.8189
3	2,	3651	3	9. 509
324	27	E204	6	1.989
325	8	1	3	D. 5609
326	88	30	2	9. 0.64
327	23	385	1	0.975
38	38	436	3	0.5019
29	28	2 cta	1	0.975
330	28	3859	1	0.975
331	28	7704	4	0.304
132	28	8604	$?$	1.690
333	29	1	1	0.975
334	29	1339	z	0.808
335	29	1760	3	9.509
336	29	4650	1	9.975
337	29	8760	2	6.800
388	29	9300	3	0.504
339	29	9801	6	1.060
340	30	576	2	9.804
341	30	2930	2	6. 800
342	30	4930	3	0.500
343	30	8760	1	0.975
344	30	12240	1	0.975
345	30	16329	,	0.975
346	30	20469	3	0.5014
347	30	23000	6	1.000
346	31	1	1	0.975
349	31	1	2	0.808
350	31	350	2	0.808
351	31	543	1	9.975
352	31	3600	2	0.600
353	31	8000	2	0.809
354	31	13150	1	0.975
355	31	16090	2	0.804
356	31	17598	6	1.060
357	32	1	5	0.025
358	32	2	7	1.0009
359	33	1	5	0.025
360	33	2	7	1.000

ADDENDUM I-D

INTEGRATION OF INSTANTANEOUS AVAILABILITY TO DETERMINE THE AVERAGE AVAILABILITY

ADDENDUM I-D

INTEGRATION OF INSTANTANEOUS AVAILABILITY TO DETERMINE. THE AVERAGE AVAILABILITY

The initial program contained a value for B (see Appendix I) of 0.311 . In order to determine the average availability, $\overline{\mathbf{A}}$, a numerical integration method was introduced. Because of the relatively long integration time that it required, it was decided to accept the error introduced by setting $B=1 / 3$ so that a closed form solution could be developed. The following analysis provides that solution.

From Eq. I-20 of Appendix I,

$$
\begin{equation*}
A_{t}=\int_{0}^{t} A d t \tag{1-C-1}
\end{equation*}
$$

From Eq. I-18 of Appendix I,

$$
\begin{equation*}
\mathrm{A}=\mathrm{A}_{0}(1.833 \mathrm{KEN})^{\left(\mathrm{t}^{\mathrm{B}}\right)} \tag{I-C-2}
\end{equation*}
$$

or,

$$
\begin{equation*}
\ln A=1.833 \operatorname{KEN}\left(\mathrm{t}^{\mathrm{B}}\right) \ln \mathrm{A}_{0} \tag{I-C-3}
\end{equation*}
$$

Let

$$
\begin{equation*}
C=1.833 \mathrm{KEN} \ln \mathrm{~A}_{0} \tag{I-C-4}
\end{equation*}
$$

then,

$$
\begin{equation*}
A=e^{C^{B}} \tag{I-C-5}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{t}=\int_{0}^{t} e^{c_{t}^{B}} d t \tag{I-C-6}
\end{equation*}
$$

If one lets $u=t^{B}$, then

$$
\begin{equation*}
d u=\frac{B t^{B}}{t} d t \tag{I-C-7}
\end{equation*}
$$

but $\mathbf{t}=\mathbf{u}^{\mathbf{l} / \mathrm{B}}$,
then Eq. I-C. 7 can be rewritten as:

$$
\begin{align*}
d u & =\frac{B u}{u^{1 / B}} d t \tag{I-C-8}\\
& =B u^{(1-1 / B)} d t
\end{align*}
$$

and

$$
\begin{align*}
d t & =\frac{1}{B u^{(1-1 / B)}} d u \\
& =\frac{u^{(1 / B-1)}}{B} d u \tag{1-C-9}
\end{align*}
$$

If now $B=1 / 3$, then

$$
\begin{equation*}
d t=\frac{u^{2}}{B} d u \tag{I-C-9}
\end{equation*}
$$

Substituting this value for dt into $[-C-6$, one obtains:

$$
\begin{equation*}
A_{t}=\frac{1}{B} \int_{u_{(0)}}^{u(t)} u^{2} e^{c u} d u \tag{I-C-10}
\end{equation*}
$$

Integrating,

$$
\begin{align*}
A_{t} & =\frac{1}{B}\left\{\frac{u^{2} e^{C u}}{C}-\frac{2}{C} \int_{u_{(0)}}^{u(t)} u e^{C u} d u\right\} \tag{I-C-11}\\
& \left.=\frac{1}{B}\left\{\frac{u^{2} e^{C u}}{C}-\frac{2}{C}\left(\frac{e^{C u}}{C^{2}}(C u-1)\right)\right\}\right]_{u_{(0)}}^{u(t)}
\end{align*}
$$

Substituting for u, cu, and e^{cu},

$$
\begin{equation*}
\left.A_{t}=\frac{1}{B}\left\{\frac{t^{2} B A}{C}-\frac{2 A}{C^{3}}(\ln A-1)\right\}\right]_{0}^{t} \tag{1-C-12}
\end{equation*}
$$

Since, from Eq. I-C-5,

$$
\begin{equation*}
\ln A=c t^{B} \tag{I-C-13}
\end{equation*}
$$

Eq. I-C-12 may be rewritten as:

$$
\begin{align*}
A_{T} & \left.=\frac{1}{B}\left\{\frac{t^{2 B}}{C}-\frac{2}{C^{3}}\left(C t^{B}-1\right)\right\} e^{C^{B}}\right]_{0}^{t} \tag{1-C-13}\\
& =\frac{1}{B}\left\{\left[\frac{t^{2 B}}{C}-\frac{2}{C^{3}}\left(C t^{B}-1\right)\right] e^{C^{B}}-\frac{2}{C^{3}}\right\} \tag{I-C-14}
\end{align*}
$$

From Eq. I-21 of App. 1,

$$
\begin{equation*}
\bar{A}=\frac{A_{t}}{t}=\frac{1}{B t}\left\{\left[\frac{t^{2 B}}{C}-\frac{2}{C^{3}}\left(C t^{B}-1\right)\right] e^{C^{B}}-\frac{2}{C^{3}}\right\} \tag{I-C-15}
\end{equation*}
$$

For an initial number of failures, $\mathrm{F}_{\mathbf{0}}$,

$$
\begin{equation*}
\bar{A}=\frac{A_{0}{ }^{F_{0}}}{B t}\left\{\left[\frac{t^{2 B}}{C}-\frac{2}{C^{3}}\left(C^{B}-1\right)\right] \cdot e^{C t^{B}}-\frac{2}{C^{3}}\right\} \tag{1-C-16}
\end{equation*}
$$

If $\overline{\mathbf{A}}$ is given and \mathbf{C} is known, Eq. I-C-15 may be rewritten as:

$$
\begin{equation*}
A=\left(B t \bar{A}+2 / C^{3}\right) /\left(\left(t^{2 B} / C\right)-\frac{2}{C^{3}}\left(C^{B}-1\right)\right) \tag{I-C-17}
\end{equation*}
$$

If C is unknown, we may let $C=\ln A / t^{B} \quad$ Therefore, the average availability may be solved as:

$$
\begin{align*}
\bar{A} & =\frac{1}{B}\left[\left(\frac{1}{\ln A}-\frac{2}{(\ln A)^{2}}+\frac{2}{(\ln A)^{3}}\right) A-\frac{2}{(\ln A)^{3}}\right] \tag{1-C-18}\\
& =\frac{A}{B(\ln A)^{3}}\left[(\ln A)^{2}-2 \ln A+2-\frac{2}{A}\right] \tag{I-C-19}
\end{align*}
$$

ADDENDUM I-E

DETERMINATION OF INSTANTANEOUS AVAILABILITY BASED ON INTERMITTANT OPERATION DURING MISSION LIFE

Table I-E-1

Program for Computing Instantaneous Availability for Intermittant Operations During Mission Life

```
10 FORMAT F10.0.2F10.3
20 DISP "ENTER NR COMPONENTS";
30 INPUT NG
40 DISP "ENTER MISSION DURRTION:DRYG";
50 INPUT O9
60 DISP "ENTER TOTAL NR OBSERYATIONS.";
70 INPUT M
80 DISP "ENTER TOTRL OBSERU.HRS AVAIL";
90 INPUT O
100 T=0/M
110 P=09/M
120 DISP "ENTER OBGERY. HRS REQUIRED";
130 INPUT R
135 PRINT "NR OF COMPONENTS=";NG
140 PRINT "MISSION IURRTION=":O9:" IAYS"
150 PRINT "NR OF OBSERV. IS=":M
160 PRINT "DUR. OF EA.OBSERY="!T;"HRS."
170 PRINT "TOTAL HRS OBSERV.AYAIL=";0;"HRS."
180 PRINT "TIME BETWEEN OBSERU.IS=":P*24
190 FRINT "OBSERUATION HOURS REQD=";R
200 E=14.26
210 K=(8850/E)
220 B=0.314
230 C8=1-0.273*EXP(-0.0086*N9)
240 K5=1.833*N9*E*K*10个(-6)
250 D=0
260 FOR I=1 T0 M
270 A=T*C8\uparrow(K5*< F*I)\uparrowB)
280 D=D+F
290 NEXT I
300 FIXED 3
310 IISP filimiNT(K)
320 IF I>0.998*R AND D<1.008*R THEN 360
325 I=I+(R-D)/2
330 Y=LOG(R/D)/(K5*LOG(C8))+1
340 K=Y*K
350 GOTO 240
360 PRINT LIN1
365 PRINT TAE7,"K":TRE15:"AVAIL:":TAE25,"TOT.H"
```



```
370 WFITE <2,10)K,F,D
380 FRINT LIN2
390 ENI
```


Table I-E-2

Typical Outputs for Program of Table I-E-1

MISSION DURATION= 14 DAYS
NR OF OBSERU. IS= 42 DUR. OF EA. OBSERV=2 HRS. TOTAL HRS OBSERY, RVAIL $=84^{\circ}$ HRS. TIME BETWEEN OBSERU.IS $=8.000000000$ OBSERYRTION HOURS REQD= 8

K	AYAIL.	TOT. H
$\mathbf{1 0 5 7 8}$	0.073	$\mathbf{7 . 9 7 9}$

MISSION DURATION = 14 DAYS NR OF OBSERU. IS= 20 DUR, OF EA. OBSERV=4.2 HRS. TOTRL HRS OBSERV. AVAIL= 84 HRS. TIME BETWEEN OBSERU.IS= 16.8 OBSERVATION HOURS REQD= 8

K	AVAIL.	TOT. H
$\mathbf{1 0 3 2 5}$	0.166	7.984

MISSION DURATION= 14 DAYS NR OF OESERV. IS $=10$ DUR. OF ER. OBSERV $=8.4$ HRS. TOTAL HRS OBSERY. AVAIL= 84 HRS. TIME BETWEEN OBSERU.IS= 33.6 OBSERYATION HOLRS REQD $=8$

K	AVAIL.	TOT.H
-9957	0.373	7.989

APPENDIX J

THERMAL VACUUM TEST OPTIMIZATION COMPUTER PROGRAM (PHASE I VERSION, 1979) AND EXAMPLES

APPENDIX J

THERMAL VACUUM TEST OPTIMIZATION COMPUTER PROGRAM (PHASE I VERSION, 1979) AND EXAMPLES

The program is written in an expanded form of BASIC devised by the Hewlett-Packard Company. The calculator used is a Hewlett-Packard 9831A with an attached 9866B printer. An expanded memory (7677 word nominal capacity) is needed. The plotting routines use a HewlettPackard 9862A Calculator Platter (which requires a 98223 Matrix-Platter ROM). The program is stored on magnetic tape (Hewlett-Packard 9162-0061' Data Cartridge) which is also used for storing the data developed by the program. The programs are stored in four files on track \#0 of the tape: track \#1 is marked for a minimum of 21 files of 350 words each for matrix storage. Table $\mathrm{J}-1$ is a listing of data as stored on the tape.

Addenda J-A through J-D contain listings of the four files that together make up the Thermal Vacuum Test Optimization (TVTO) computer program. Addendum J-E provides the format of the matrix in which the data is stored.

The program is written to be user interactive: certain information is provided the user, questions are posed, and answers are requested from the user. The user inputs may be the answers yes or no (which are input to the program as a one or a zero) or a numerical data input. When questions are not applicable, the user is requested to enter a zero: a zero entry also indicates a need for the computer to develop a result (such as payload weight) internally.

The program automatically proceeds from one file to the next under internal control (LINK statements). Fig. J-1 provides a general flow diagram indicating the major portions within each segment of the overall model.

Table J-2 contains a list of questions options that are presented to the user as he proceeds through the program. Not all options are available in all cases (for instance, the user may not add an upper stage to a Spacelab mission); the program selects the appropriate questions.

Table J-1
Listing of Files
File File $\frac{\text { File Size }}{\text { Gibs } \frac{\text { Current }}{\text { Words }} \text { Line Numbere }}$

TLIST\#』

0	3	2000	13	10	20
1	3	3000	2020	10	1020
2	3	6500	5925	10	9680
3	3	6000	5185	10	5600
4	3	4000	2836	10	6230
5	0	0	0	0	0

TLIST\#1

0	0	350	0	0	0
1	2	350	336	1	0
2	2	350	336	1	0
3	2	350	336	1	0
4	2	350	336	1	0
5	2	350	336	1	0
6	2	350	336	1	0
7	2	350	336	1	0
8	2	350	336	1	0

(Continued for 100 files for storuse)

Legend:
File Type 0: Unused
File Type 2: Iata
File Type 3: Frosram

Addendum J-F is the output of a typical run. The calculator has been placed in the PRINT ALL mode; this results in statements that are normally only displayed being printed. This is seen as a statement or question followed by a question mark and followed again by the user input. This PRINT ALL mode was retained until a point in file \#3 where it would have resulted in a lengthy (but not informative) output; this is noted by an asterisked statement. The pages are in the order in which they are printed by the printer. Page J-F-4 is the summary output of the first run; page J-F-6 the summary of a variation.

Table J-?
Questions Presented and Options Available to the User (The numbers opposite the statement indicate the appropriate program line number)
File \#1:

90 Additional information needed to execute the program?
360 Number of components in the payload"?
400 Minimum acceptable average availability (zero to be entered if no minimum is
440 Mission duration
520 Component test transition time and dwell time at temperature?
650 System test transition time and dwell time at temperature?
850 System level minimum and maximum test temperatures?.
920 System level test chamber size?
950 Maturity of the payload (protoflight, first flight unit, or follow-on unit)?
File \#2:
70 An STS or an expendable launch vehicle mission?

- (If an expendable launch vehicle is selected, only question from line 9560 is

9560 posed regarding launch)

- Scout, 2900 series Delta, or 3900 series Delta vehicle?
posed)
290 Free-flier, an attached payload or a Spacelab payload?
301 Will the payload be reflown?
306 How many reflights?
340 Is the mission shared or dedizated?
420 The percentage of the payload weight on the pallets?
470 Are Spacelab elements dedicated or shared?
706, 900 Number of pallets if a long, pressurized module is involved?
800, 950 Number of pallets with no pressurized module?
8030 Is upper stage required?
8070 SSUS-D?
8100 SSUS-A?
8130 IUS two stage?
8160 IUS twin stage?
8190 IUS twin stage plus spinner?
8310 How many OMS kits are needed?
4090 Payload length?
4150 Payload weight?
4350 Payload cost (1978 millions of dollars)?
- (lf payload cost is unknown. the following additional question is posed: line

4600 Instrument class (based on data presented in the program)?

Table J-? (Continued)
File \#3:
130 Date?
190 Maximum number of component test hours to be investigated?
210 First file numier into which data will be stored?
250 Is a reliability data printout desired?
300 Is a cost data printout desired?

- Iff File \#3 has been accessed from File \#4, questions from lines 2162 to 2400 are posed)
2162 Try a new average availability?
2168 Input a new desired average availabiln; (must be greater than 0.04).
2178 Try new test temperature conditions?
2210 Enter new system minimum and maximum test temperature conditions.
2260 Enter a new increment difference between component and system test temperatures.
2280 Change test transition or dwell times?
2360 Enter new component test transition and dwell times.
2400 Enter new system test transition and dwell times.
File \#4:
5800 Input the starting and ending file numbers to be plotted.
6170
Further plots desired?

Figure J-F-1 is typical of the plot that results when zero is entered in response to the first question as to the desired average availability. The ordinate (lost value in millions of dollars) is scaled so as to maximize resol:tion and the abcissa length is set equal to the maximum number of component test hours to be investigated. The abcissa is divided into 24 or 48 hour periods. Two curves are automatically plotted. The first is the one that results from having no system level test: this is indicated by the " 0.0 " following the curve under the heading "PLANNED SYS TEST DAYS." The " X " indicates the minimum computed point on the curve (recognizing that the curve is based on 10 computed points).

The second curve is drawn from the files and is the one that contains the minimum value of all the values that were computed. This point toc is indicated by an " X " on the curve labeled '58.3" days planned for the system test. Page J-F-4 indicates that this data is located on File \#26.

Figure J-F-2 contains the same data but has. in addition, plotted data from other files. These files contained system tests oi2.3 , 4.7, $: 6.7$, and 93.3 days. The minimum points of these combinations are all greater than the one on File $\# 26$. It can ne seen that as the system best leneth is increased. the lost value decreases until a leneth of 59.3 days is reached: after that point. costs increase with increased test time more quickly than any pain due to inereaned averape availability. In general then, as the test program length increases, the average availability in orhit increases: however, overall costs reach a minimum at some point during this continual availability increane.

The plot on lig. J-F-3 results from the user's having input a desired average availability. Whereas on Fig. J-F-2, availability is constantly varying, in Fig. J-F-3, availability is fixed. In Fig. J-F-3, individual points are plotted against an abcissa of component test hours. Each point has associated with it a number that indicates thes number of planned test days; the combination of system test days and component test hours results in the desired average availability. The optimum point is again marked with an " X " plotted over the " + " mark used to designate th: point. The data that is plotted is contained on page J-F-5 and the corresponding parameters for the optimum program are contained on page J-F-6.

If the optimum program is listed in the last file, it is an indication that longer test times may be needed. This may be done by entering a longer maximum component test length or increasing the system test transition or dwell times.

If one operates the program so that the average availability is initially entered as zero and then subsequently changed to some trial value, the points as plotted in Fip. J-F-3 may be owrlaid on the curves as plotted in Fig. J-F-2.

This overlay format can be seen in Addendum J.C. In that addendum, the payload paramecers have been held constant except for length. A variation in length results in varying the STS launch costs. The lengths have been entered as 10 feet. 5 feet, and 0 feet (the latter resulting in
a launch cost based on payload weight). The resulting data may be seen on pages J-G-1, J-G-2. and Fig. J-G-1, pages J-G-4, J-G-5, and Fig. J-G-2, and pages J-G-7, J-G-8, and Fig. J-G-3 respectively. The average availability required for optimization can be seen to decrease with the launch cost as does the minimum lost value. In the foregoing cases, a medium sized chamber was selected for the system test: pages J-G-10 and J-G-11. and Fig. J-G-4 show a case with a large chamber for a 10 ft . long payload.

Addendum J-H presents a case where the average availability is varied. Fig. J-H-1 shows the case of an average availability of 0.75 as comparec to the case where the overall optimum was sought; no system level test is found to be required for the 0.75 average availability. In Fig. J-H-2, average availabilities of 0.75 and 0.85 are compared. It is interesting to note that by increasing the required availability, a sysiem level test was found needed to achieve optimization. The apparent discontinuity in going to the no-system-test optio 1 is due to the deletion of startup costs for the system level test.

One of the test parameters accounted for within the analytical model is the test cycle, that is the time the unit takes to go from one temperature extreme to the other (the transition time) and the time spent at temperature (the dwell time). These may be entered in any combination by the user. If the user enters " 0,0 ", indicating no particular choice, the program with automatically enter a 3 hour transition and a 6 hour dwell time for the component test and an 8 hour transition and a 12 hour dwell for the system level test. There is no apparent "best choice" to input based on inspection of the algorithm inasmuch as temperature levels enter into the consideration. Addendum J-1 contains a comparison of three combinations, all summing to the same period.

Addendum J-J presents data for a case in which the ratio of transition to dwell time is constant but the period is different. As indicated elsewhere (Ref. 14 et al.), one would expect the shorter period (resulting in a greater number of cycles over a given time) to result in a more effective program and this is indicated by the data in Addendum J-J.

Inspection of the algorithm would indicate that savings could be accomplished by increasing the range over which the test temperature is cycled. This is evidenced in Addendum J-K. It should be recognized that the model assumes that no new failure modes are introduced by increasing the temperature (in fact, by any test program parameter change). In practice, one would have to make sure that this is in fact true.

This Appendix can be extended indefinitely because of the infinite number of variations that the model can accomodate. However, it is considered that the foregoing data provides an insight as to the way in which the analytical model operates and depicts some trends indicated by the model.

ADDENDUM J-A
PROGRAM LISTING, FILE \#1

```
LOADI
LIST
10 REM: #1 FILE FOR TVTO PROGRAM, PHASE-I VERSION (1979)
15 DIM R$[19];TS[12,14]
20 FIMED D
30 REM: FLAG a affects print-out of informotion
40 CFLAG O
50 REM: FLAG 1 set when P/L length =0; deletes comparisons bosed on length
60 CFLAG 1
70 A=A9=B9=C5=DT=DE=N9=09=TS=T4=TT=TB=0
90 DISP "If you need gen'l infos enter 1 ";
100 INPUT A
110 IF A=1 THEN 130
120 SFLAG 0
130 PRINT LIN1
140 IF FLAGG THEN 360
150 PRINT "In order to use this frosram; the user must know or estimate a "
160 PRINT "number of items to be used ls prosram inputs."LINI
180 PRINT "As a minimum, the user must know:"
190 PRINT "a) the number of components in the raxload (P/L)"
210 PRINT "b) the mission time in orbit"
220 PRINT "c) the type of item; prototlight, first flight items or follow-on"
230 PRINT "d) whether an Expendable launch vehicle (ELV) or Shuttle (STS)"
240 PRINT " is involved; if the lotter, whether its a Free-Flier or a."
250 PRINT " Spacelab missior.""
260 PRINT "e) the minimun and moximum test temperatures.";LIN1
270 PRINT "The user will also be asked to input vorious other
280 PRINT "anewers ar.l also be asked to input various other data. If the
280 PRINT "answers are unknow, the user should input 0; in this case the"
290 PRINT "prosram will provide averoge value estimates or will skip over"
309 PRINT "that item."LINI
310 PRINT
320 P
330 PRINT "
40 PRIN
340 PRINT "When two volues are reauested, enter them with a commo inbetween"LINI
** * * * MLIN2
37 INPUT Nr. of components in the P/L";
379 INPUT N9
380 PRINT "The P/L hos";N9;"components."LIN1
390 PRINT "Input minimum acceptable P"L av\nierage availability as a decimol;"
395 PRINT "input a if unkmown or full optimization run desired. "LIN1
400 DISP "Minimum occeptabie avg. avail.:;
4 0 2 ~ I N P U T ~ A G ~
404 IF A9=0 THEN 430
406 IF A9>0.07 THEN 412
408 f4=f9/2
410 GOTO 414
412 A4=A9-0.0.5
414 A3=LOGA4
416 DS=(3*R4/R3\uparrow3)*(A3\uparrow2-2*R3+2-2/R4)
418 IF ABS(13-A9)<= 0.0004 THEN 424
420 A4=A4-(D3-A9)/2
422 GOTO 414
424 ET=A9
4 2 6 ~ P R I N T ~
428 A9=R4
429 GOTO 440
430 PRINT "The minimum occertable ovoilability infut as";A9*100:"%"LIN1
440 PRINT "Input mission time in orbit."LIHI
450 DISP "Mission time in orbit cdoys)":LIH1
450 DISP "Mission time in orbit \doys`";
460 INFUT 09
470 PRINT 09;"davs reauired in orbit."LINI
490 PRINT "Input the estimated minimum time on average component will tale to"
500 PRINT "get from one temperature extreme to the other during test and the"
510 PRINT "minimum dwell time ot temperoture. Enter g's where urknoun. '.INI
```

```
520 IISP "Comm:Trans time, Iwell time (h)";
540 INPUT TP,DT
40 IF TT=0 THEN 560
550 GOTO 570
560 T7=3
570 IF D7=0 THEN 590
580 GOT0 600
590 17 =6
600 PRINT "Component test profile contains"iTP;" hour transition times"
610 PRINT "and";DF;"hour lons dwell times."LIN1
630 PRINT "Input the estimated minimum tume it will take the P/L system to"
630 PRINT "get from one temperature extreme to the other during test arid the"
650 DISP "Sys: Trans dwell time at temperature. Enter a's where unknown. "LINI
650 DISF "Sys: Trans time, Dwell time (h)":
670 IF T8=0 THEN 690
680 G0T0 700
690 T8=8
l00 IF I8=0 THEN }72
720 D8=12
740 PRINT "System level test profile contains";T8;"hour transition"
740 PRINT "times and"iD8; "hour lons dwell times."LIN1
830 PRINT "InNut the general minimum and maximum system level test"
840 PRINT "temperatures in des C."LIN1
850 DISP "Sys lul test TmingTmax (deg c)";
860 INPUT T3,T4
870 IF T3>T4 THEN }89
880 GOT0 910
890 PRINT "Tmin must not exceed Tmax."LIN2
900 G0T0 830
910 PRINT "System test temp. levels: Tmin=";T3;"; Tmax=";T4;"des C"LIN1
912 GOTO 916
914 PRINT "A 1 OR A 2 MUST BE ENTERED. "LINZ
916 PRINT "System level tests can be conducted in a large chamber"
917 PRINT "(in the order of 30 ft in diameter and 60 ft high), enter a ls"
918 PRINT "or in a medium sizect chomber"
920 PRINT "(in the order of 12 ft in diameter and 15 ft hish), enter a 2."LIN1
920 IISP "Large (1) or medium (2) chamber";
924 FRINT C5; "has been entered. "LIN1
926 IF C5#1 AND C5#2 THEN 914
930 PRINT "The P/L may be a protoflight (enter 1), a first flight"
940 PRINT "unit (enter 2), or a follow-on unit (enter3)."LIN1
950 DISF "Pflt. (1), Flt#1 (2), or F-0 (3)";
90 INPUT B9
970 IF }89=1\mathrm{ OR B9=2 OR B9=3 THEN 1000
980 PRINT "YOU MLUST SELECT EITHER 1:2, OR 3."LIN2
970 G0T0 950
l000 PRINT E9;"has been selected."LIN1
1020 END
```

KREF
A 15

TS[1 15

A	70	100	110							
	79	70	402	404	406	408	412	418	420	424

B9	70	960	970	970	970	1000		
$C 5$	70	922	924	926	926			
D7	70	530	570	590	610			
D8	70	660	700	720	740			
N9	70	370	380					
09	70	460	470					
T3	70	860	870	910				
T4	70	860	870	910				
T7	70	530	540	560	600			
T8	70	660	670	690	730			
A4	408	412	414	416	416	429	420	
A3	414	416	416	416				
D3	416	418	420					
B7	424	435						

ADDENDUM J-B

PROGRAM LISTING. FILE \#2

10 REM: \#2 FILE FOR TUTO PROGRAM, PHASE-I YERSION (1979)
20 REM: This portion develops P / L and launch costs
39 REM: Decision as to type of launch vehicle
35 CFLAG?
37 CFLAG 8

41 N9=N9

$4515=1,302$
50 PRINT LIN1, "The following auestions pertain to the launch vehicles"
60 PRINT "Shuttie (STS) or an experdable launch vehiele (ELY). "LINI
70 DISP "STS (enter 1) or ELV (enter 2)";
30 INPUT YG
90 IF $\forall 9=1$ QR $V 9=2$ THEN 120
100 PRINT "YOU MAY ENTER ONLY 1 OR 2"LINZ
110 GOTO 70
120 IF V9=2 THEN 1090
130 GOTO 150
140 PRINT "YOU MAY ONLY ENTER 1, $2, ~ O R ~ 3 " L I N Z ~$
150 PRINT "This is an STS mission. "LIN1
160 PRINT LIN1
170 IF FLAGQ THEN 260
180 FRINT "This prosrom considers only payload weight and length. Full"
190 PRINT "computation of STS launch costs includes considerotion of payload"
200 PRINT "volumei this has been omited to simplify the effort. If leneth"
210 PRINT "was entered as on only weisht will be considered. "LIN1
220 FRINT "OMS kits are only considered for Free-Flier and attached"
230 PRINT "non-S/L payloads in this model. "LIN1
240 REM: Iimensions should be: weight-lbs; length-f:

260 PRINT "This may be a Free-Flier P/L (F-F), enter i,"
270 FRINT "an attached but not spocelab P / L (Att), enter $2, "$
289 PRINT "or a Spacelab P/L (S八L), Enter 3."LIN1
290 IISP "F-F (1), fit (2), or S/L (3)";
300 INPUT C9
301 IISP "Will P/ be reflown";
302 INFUT R5
303 RS $=25+1$
394 IF RS $=1$ THEN 310
305 PRINT "If the number of reflights is unknown enter 1. "LINI
306 DISP "How many reflights";
307 INPUT A
308 RS $=$ R $5+R-1$
309 FRINT (RS-1);"reflights are expected. "LIN1
310 IF C9\#1 AND C9\#2 AHD C9\#3 THEN 140
320 PRINT "The flisht may be dedicoted to this PFL (enter 1),"
330 PRINT "or shared with other F/L's (enter 2). "LIN1
340 DISP "Dedicated (1) or shared (2)";
C50 INFUT DI
$\therefore 60$ IF C9\#3 THEN 1000
370 REM: spocelab computations
380 REM: Foll subroutine to develop F/L wt, Ingth, and cost
390 cosus 4004
409 PRINT "This model makes decisions on pallet and pressurized module factors"
402 FRINT "bosed on weieht distributions. If there is no pressurized module,"
404 FRINT "assume oll the weight is on the pallets even thought some may"
406 FRINT "be in the aft flight deck. Enter fraetion of weight on the eallet"
419 PRINT "rius the aft flight deck as 0.8 E (ar 1.00 if aperopriate). "LINI
$4 \subset 0$ IISF "\% wt on pallet (s), enter os x.
430 INPUT $\stackrel{P}{\circ}$
440 IF $11=1$ THEN 850
450 FRINT "S"L elements (pallets or eress. nod.) con be"
460 FRINT "dedicated to the F L enter 1) or shored with others (enter a)"INl

```
470 DISP "Dedicated (1) or shored (2)";
480 LHFIUT EG
490 IF E9=1 THEN 650
500 IF F`O THEN 540
510 605010 6200
520 C3=(\L3*22)+(L4*1.67))*15
50%0T0 2000
540 IF F:=1 THEN 620
550 cosue 600a
560 cosule 6200
50 IF L1+L3>1 THEN 600
589 [3=(CL1+L2)*22+(L4*1.67)+(L2*D.33))*15
590 GOT0 2000
600 C3=(22+(L4*1.67)+(L2*0.33))*I5
610 GOTO 2000
620 G0SUE 6000
630 C3=(<L1*20.3)+(L2*0.33))*15
640 G0T0 2000
650 IF P>O THEN 690
660 G0SUB 6600
670 C3=(L2*22+1.67)*15
680 G0T0 2000
690 IF P=1 THEN 790
700 PRINT "S/L missions with the long pressurized module ma; hove"
703 PRINT "no more than 2 pallets."LIN1
706 IISF "Number of pollets (<=2)";
710 INPUT H
720 G0SUB 6400
30 GOSUB 6600
740 IF (L1+L2)>1 THEN 770
750 C3=(< L 1+L2)*22+1.67+(N*0.33))*15
760 GOTO 2000
770 C3=(22+1.67+{N*0.33))*15
780 GOTO 2000
790 PRINT "S/L without pressirised module may have no more thon 5 pallets."LINI
800 IISP "Number of pallets (<=5)";
8 1 0 ~ I N P U T ~ I T ~
820 GOSUE 6400
830 C3=(<L1*20.3)+(H*0.33))*I5
840 GOT0 2000
850 IF P>0 THEN 800
860 C3=(22+1.67)*I5
870 GOT0 200日
880 IF F=1 THEN 940
8 9 0 ~ P R I N T ~ " S / L ~ w i t h ~ l o n s ~ o r e s s u r i z e d ~ m o d u l e ~ m o v ~ l i o u e " ~
895 PRINT "no more than 2 pollets."LINI
900 IISF "Number of sallets (<=2)";
910 INFUT N
920 C3=(22+1.67+(N*0.33))*I5
930 GOTO 2000
940 FRINT "S/L without pressurized module moy have no more than 5 pallets"LIN1
950 DISP "Number of pallets (<=5)";
960 INFUT N
970 C3=(20.3+(N*日.33))*15
980 G0T0 2000
990 REM: Free-Fliers or attached P\L's
1000 G0SUB 8000
1010 G0SUB 4000
1026 IF D1=2 THEN 1050.
1030 C3=18*15
1040 GOTO 2000
1050 G0SUE P000
1060 C3=A*18*15
1070 G0T0 2000
1080 REM: ELV operotions
1090 [0SUE 9500
```

1100 GOEUE 4900
1110 GOTO 2000
2090 FEM: Out Fut miser on costs
2019 FL KED 3
2015 IF $V 9=2$ THEN 2100
2020 PRINT LIND
$2025 T=13+6+F+k B$
2930 PRINT "STS LAINHCH COST IS":T;" MILLION (1978) DOLLARG":LIHI
2040 IF C9=3 THEN 2090
2045 IF $8=0$ THEN 2055
2050 PRINT "Upper eatage portion $=": 6$
2055 IF $\mathrm{Kg}=0$ THEN 2079
2060 PRINT Kg;"OMs Kits; total cost $=" ; k e$
2070 IF ReD THEN 2116
2080 FRINT "Revisit cost is included at"; R" million (1978) dollars. "LIN1
2090 GOTO 2120
2100 PRINT LIN 1
2110 PRINT "ELy LAUNCH COST IS"; T;" MILLION (1978) IOLLRRS"LIN1
2113 TOTO 2120
2116 PRINT LINA
2120 PRINT "PAYLOAD COST IS": 19 ; "MILLION (1978) IOLLARS."LIHi
2130 IF C $9=2$ OR C $9=3$ THEN 2160
2135 IF FLAGS THEN 2160
2140 PRINT "Instrument cost $=$ "; $1 / 7$
2150 PRINT "Platform cost $=$ "; 48
2160 PRINT LINZ
2210 LINK 3
2220 END
4000 REM: Subroutine for determining F/L dimensions and cod ts **************
4010 FIXED 0
4020 FRINT "F/L dimensions are to be determined."LIN1
4030 IF $V 9=2$ OR C $9=3$ THEN 4130
4040 PRINT "Freram internally adds oms kit and upper stage data payload"
4050 PRINT "westht or length inputs should not include these factors. "LIH1
4060 PRINT "Enter F/L length (in feet); if unknown enter 0 . This model does"
4070 PRINT "not estimate P/L length when g is entered; all subsequent STS"
4080 PRINT "computations are bused on weight alone."LIN1
4090 DISP "F/L length (feet.)";
4100 INPUT LG
4110 PRINT "F/L length (feet) entered as"; Lg.LIN1
4120 TOTO 4140
4130 Lg 90
4140 PRINT "Enter F/L weight (lbs); enter 0 if unknown. "LI N1
415 DISP "F/L weight (las)";
4160 INPUT WO
4170 IF W9\#0 THEN 4300
4189 REM: Develop P/L wt from component count based on
4190 REM: regression of $268 / \mathrm{C}$ from the period 1970-1975 whose
4200 REM: component count is established.
$421(\mathrm{WG}=118.26 * E \mathrm{EP}(0.0301 * \mathrm{~N} 9)$
4220 IF C $9=2$ OR $\mathrm{C} 9=3$ THEN 4270
4230 PRINT "Estimated Platform weight absi:"iN9*3/4
4240 PRINT "Estimated instrument weight (lb s):"iWg/4
4250 PRINT "Estimated total F/L weight (lbs) :"; W9,LIN
4260 GOTO 4310
$4270 \quad \mathrm{H}=\omega 94$
4280 FRINT "Estimated Fin weight (las):";WS,LIN1
4280 PRINT ES
4300 FRINT "F/L weight (lbs) input as"; WG
4310 REM: Foll determines F/L costs
4320 FIXED 3
4330 PRINT "Enter F/L cost in millions of 1978 dollars; if the amount is"
4340 FRINT "unknown, enter g."ILINI
4350 II SP "P~L cost (1975 M) ";
4360 INPUT US
4370 IF U9*ด THEN 4390

```
4360 G0T0 4420
4390 SFLAG 2
4400 FRINT "P/L cost (1978 Mt) infut as";U9,LIH1
4410G0T0 4940
4 4 2 0 ~ R E M : ~ G e n e r o t e ~ t h e ~ F / L ~ c o s t .
4425 IF FLFGO THEN 4E0G
4430 REM: Recurring Flatform coets (ig, less inetramentz, per SAMg0 moudel
4440 PEM: "Unmonmed Spacerroft Eost Model", TF-7e-El, Feb 1gre
4450 REM: Data odjuEted to 1978 GoEt E
4460 REM: Instrument gosts based on Flarming Fegeoreh Gom. Tech Eraet Ho. ta
447g KEM: "Seifntifie instrument Cost Model", FFC LI-213E, IES. 15,197e
4480 REM: Datn fromGSFE K-213-73-6E, FEb 1973 andicates wnEtrument welatat
4 4 9 0 ~ R E M : ~ i s ~ r o u g h l y ~ 1 / 4 ~ o f ~ t h e ~ F / L ~ w e l a h t . ~
4500 PRINT LINI, "Instrument costs may be estimuted Lased on the type"
4510 FRINT "ordd weight of the inst rument."
4520 FRINT "The following elosses refly:"
4530 PRINT " Elose 1: Interferometers"
4540 PRINT " Elass 2: Telescoee, Sfectroheliogruph, Fusejue MaErowave"
4550 FRINT " Rodiometer, Fhotometer, Seectrometer; T-y Lomero,"
4560 PRINT " Masnetometer"
4570 PRINT " class 3: Active Microwave, Moss Measurenent, Plosma Frobe"
4589 PRINT " Charge Detector, Film Camero"LIHI
4590 PRINT "If type is unknowm, use closs z as an overoge."LINI
4600 IISP "Instrument closs, 1, 2, or 3";
```



```
4620 IF I }9=1\mathrm{ OR I }9=2\mathrm{ OR I I =3 THEN 4650
4630 PRIHT "OHLY THE NUMEERS 1, 2, OR 3 MR`' BE SELECTEI"LINE
4640 toT0 4600
4650 FIMED G
4660 PRINT "Instrument class"iIF;"is selecteq."LIH1
4 6 7 0 ~ F I X E D ~ 3 ~
4680 REM: If attached or S/L F'L, branch over
4690 IF C9=2 OR C9=3 THEN 4790
4700 W7=W9/4
4710 GOSUE I9 OF 4850,4890,4920
4720 PRINT "EEtimated instrument cost <197S Nt` :":117
4730 REM: SmMS0 model, u8= olatform cest, wt = F.L+3/4
4740 U8=(0.02498*(69*3/4)个0.81)*1.558/1.307
4750 PRINT "Estimated olatform cost (1978 M事):":US
4760 U9=1JE+U?
4770 FRINT "Estimated total F/L cost (1978 |"):";U9,LIN1
4780 G0T0 4940
4790 REM: Compute costs for attoched or S.L P.L
4800 WT=WS
4810 G0SUE I9 OF 4850,4890,4920
4820 FRIHT "Estimated F.LL cost (1978 M= :"iUT,LIN!
4830 U9= U7
4 8 4 0 ~ R E T U R N
4850 REM: Compute cost of an instrument bused on class
4860 REM: closs 1
4870 1JP=0.027*H7T0.953
4 8 6 0 ~ R E T L I R N ~
4890 REM: closs 2
4900 17=0.03*47个0.776
4 9 1 0 ~ R E T U R N
4920 REM: class 3
4930 UP=0.0.37*WPT0.65c
4940 RETURN
4 9 5 0 ~ E N I ~
5990 REM: Subroutines for Load Factors & Lpod Fractions ************************
6000 REM: Fallet, Shored Element, Lood Foctor & Lood Froction
6010 W=W1>(19559*0.75)
6020 M=0.01
6030 A=W
6040 GOSUB 6800
6050 LI=A
```

```
6060 N=W1 (4890*0.75)
6070 M=0.04
6080 A=|
6090 GO8UE 6800
6100 L2=A
6110 A=0
6120 RETUNRH
6130 EHLI
6200 REM: Fressurized Module, Shared Element, Lood Foctor a Lood Fraction
Gこ10 W=Wこと(14065%日.75)
6220 M=0.01
6230 H=H
640 50801, 6800
6250 L3=F
6260 W=W2.(14065*0.75)
6270 11=0.014
6280 H=W
6290 GOSUE E800
6309 L4=H
6310 A=0
6 3 2 0 ~ R E T U R N
6330 ENI
6400 REM: Follet(s), IEdicated Element, Lood Factor
6410 W=(N1+(2747*N) (32000*0.75)
6420 M=0.01
6430 A=W
6440 G05UE 6800
6450 L1=A
6460 N=0.2*N/0.75
6470 M=0.01
6480 A=W
6490 G08UE 6800
6500 IF L>H THEN 6520
6510 LI=R
6520 A=0
6530 RETURH
6 5 4 0 ~ E N D ~
6600 REM: Fressurized Module, Iedicoted Element, Lond Factor
6610 W=(W2+17934)/32000*0.75)
6620 M=0.01
6630 A=W
6640 G0SUE 6800
6650 L2=A
6660 IF L2>0.62/0.75 THEN 6680
6670 L2=0.62/0.75
6680 H=0
690 RETURN
6700 ENII
6800 REM: Subroutine to det'm'n if 1<=R<=M and adjust as reaumred
6810 IF R\1 THEN 6840
6820 IF R\M THEN E860
6830 G0T0 6870
6840 A=1
6850 G0T0 6870
6860 A=M
6870 RETIJFN
6 8 8 0 ~ E N D ~
700日 FEM: Subroutine to develog F-F and Rt+. F.L Load Factors *+*********+*****
7010 FEM: Compute totol P.L churaecble weight
7020 IF L.9#0 THEN T050
7030 L=0
7040 60T0 7050
7050 L=L9+K9*9+L5
7060 W3=49+W4+W5
7070 REM: Lood Factars
T000 W=W3.40000640.75)
```

```
7090 IF L9=0 THEN ?110
7100 V= L +0.5)/(620/12):0.75)
7110 M=0.067
```



```
7.30 IF }|=0\mathrm{ THEH T220
7140 IF LG=0 THEH }719
7150 IF W>V THEN }719
7160 A=V
7170 G081JE E000
7180 G0T0 7230
7190 H=W
7200 GOSUE 6000
7210 G0T0 7230
7220
7 2 3 0 ~ R E T U R N
7240] EHD
```



```
8010 IF C9=2 THEN 8250
802и REM: SSUE-D, SEUS-A, IUS
8030 IISF "Is LFFer stage reauired";
8040 S=0
8050 INFUT S
8060 IF S=0 THEN 8240
8075 D1SP "SSUS-1゙";
8080 INFUT A
8090 IF A=1 THEN 8490
8100 DISP "SSUS-H";
8 1 1 0 ~ I N F U T ~ H ~
8120 IF f=1 THEN 8540
8130 DISP "IUS two sta`e";
8140 INFUT A
8150 IF R=1 THEN 8600
8160 IISP "IUS twin stage";
8170 INPUT A
8180 IF f=1 THEN 8660
8190 DISP "IUS twin Etage +spinmer";
8200 INFUT A
8210 IF A=1 THEN 8720
8220 FRINT LINI:"THERE ARE NO OTHEF EHOICES IH THIS MODEL",LINE
8230 G0T0 8030
8240 FRINT "No upper stage is UEEd.",LINI
8250 REM: P/L revi=it
8260 REM: DISF "Does mission need F/L revisit";
8270 REM: INFUT R
8280 REM: IF R=0 THEN 8310
8290 REM: PRINT "There is a F/L renisit Elanmed for this miseion.":LINI
8300 REM: R=0.35*15
8310 DISF "How many OHS kits (ur to 3)";
8 3 2 0 ~ I N F U T ~ K G ~
8330 IF KG=0 THEH 9450 (at: 1, 16302, 2) 29468, 3) 430033
8340 REM: OMS kits weight: leed lomg
8360 G0T0 KG OF 8370,8390,8410
8370 W4=16802
8380 GOT0 8420
8390 N4=29468
8400 r JT0 8420
8410 W4=43033
8420 PRINT KG;"OMS kits ore used in this mission.",LIH1
8430 REM: Kit + installotion time costs
8440 < < k k*0.22*15+((k9*44)-24)*(0.01375*I5)
8450 RETUFN
8460 ENI
    8470 REM: ROUtine for UPRer stage informetion
```


J-B-6

40	307	368	1050	6096	6.510	E696	6160	E11:	8280	6250
6280	6300	6916	6436	8.450	6480	0.509	6510	Es2a	Et30	6.50
6030	6810	6820	6840	6850	7160	7196	7200	3085	8090	0110
8120	8140	8150	8176	8180	8206	8216	7..ct	-0.	0u90	O110

03	$\begin{aligned} & 40 \\ & 970 \end{aligned}$	$\begin{aligned} & 520 \\ & 1050 \end{aligned}$	$\begin{aligned} & 580 \\ & 1060 \end{aligned}$	$\begin{aligned} & 600 \\ & 2025 \end{aligned}$	630	670	750	770	8.30	860	920
09	$\begin{aligned} & 40 \\ & 4220 \end{aligned}$	$\begin{aligned} & 300 \\ & 4690 \end{aligned}$	$\begin{aligned} & 310 \\ & 4690 \end{aligned}$	$\begin{aligned} & 310 \\ & 8010 \end{aligned}$	310	364	2340	2130	2130	4030	4220
111	40	350	440	1020							
IS	40	9570	9580								
ग16	40	8495	8555	8615	8675	8735					
E8	49										
E9	40	489	490								
15	$\begin{aligned} & 40 \\ & 920 \end{aligned}$	$\begin{aligned} & 45 \\ & 970 \end{aligned}$	$\begin{aligned} & 520 \\ & 1030 \end{aligned}$	$\begin{aligned} & 580 \\ & 1060 \end{aligned}$	$\begin{aligned} & 609 \\ & 84 \cdot 90 \end{aligned}$	$\begin{aligned} & 630 \\ & 8440 \end{aligned}$	670	750	770	830	860
19	40	4610	4620	4620	4620	4660	4710	4810			
$k 8$	40	2025	2060	8440							
Kg	40	2055	2060	7050	8320	8330	8360	8420	8440	8440	
L	40	6500	7030	7050	7100						
L1	40	570	580	630	740	750	830	6050	6450	6510	
L2	$\begin{aligned} & 40 \\ & 6670 \end{aligned}$	580	580	600	630	670	740	750	6100	6650	6660
L3	40	520	570	6250							
L4	40	520	580	600	6300						
LS	40	7050	852a	8580	8640	8700	8760				
19	40	4190	4110	4130	7020	7050	7090	7140			
M	40	6020	6070	6220	6270	6420	6470	6620	6820	6860	Tild
N	$\begin{aligned} & 49 \\ & 6460 \end{aligned}$	710	750	770	810	830	910	920	960	970	E.410
Ng	41	41	4210								
F	42	430	500	540	650	690	850	880			
R	42	2025	2070	2080							
RS	42	302	303	303	304	308	308	309	9515		
5	$\begin{aligned} & 42 \\ & 8740 \end{aligned}$	2025	2045	2050	8040	8850	8060	8504	8560	8620	8684
T	42	2925	2030	2110	9600	9630	9600				
117	42	2140	4720	4760	4820	4830	4870	4300	495		
48	42	2150	4740	4750	4760						
19	42	2120	4360	4370	4400	47E0	4730	4630			
V	42	7100	7150	7160							

!-B-8

V9	42	00	90	90	120	2015	4090				
W	42	$\begin{aligned} & 6910 \\ & 6480 \end{aligned}$	$\begin{aligned} & 6930 \\ & 6510 \end{aligned}$	$\begin{aligned} & 6060 \\ & 66.30 \end{aligned}$	$\begin{aligned} & 6080 \\ & i 080 \end{aligned}$	$\begin{aligned} & 6210 \\ & 7130 \end{aligned}$	$\begin{aligned} & 6290 \\ & 7150 \end{aligned}$	$\begin{aligned} & 6260 \\ & 3190 \end{aligned}$	6200	6410	6430
W1	42	6010	6060	6410							
W2	42	6210	6260	6610							
W3	42	7960	7080								
W4	42	7060	8370	8390	8410						
W5	42	7060	8510	8570	8630	8690	8750				
WT	42	4700	4800	4870	4900	4930					
W9	$\begin{aligned} & 42 \\ & 4700 \end{aligned}$	$\begin{aligned} & 4160 \\ & 4740 \end{aligned}$	$\begin{aligned} & 4170 \\ & 4800 \end{aligned}$	$\begin{aligned} & 4210 \\ & 7060 \end{aligned}$	4239	4240	4250	4270	4270	4280	4300

ADDENDUM J-C
PROGRAM LISTING, FILE \#3

LORD3
LIST

```
10 REM: \#3 FILE FOR TUTO PROGRAM: FHASE-S YERSION <1979
20 REM: Program computes number of component test foilues 5 , ine ond \(x=t\) em
30 REM: test time and failures for either a fixed launclifailure rate or iar
40 REM: a failure rate based on a given instantameous aualability
50 ค \(2=R 5=\mathrm{A} 6=F 5=M 1=M 2=M 3=14=15=146=R 6=0\)
60 D4 \(=5\)
70 CFLAE 1
80 CFLRG 2
\(90 \times 7=0\)
\(100 \times 8=29=10 \uparrow 9\)
\(110 \times 9=0\)
120 IF FLAGT THEN 2160
130 DISF "DATE";
140 INPUT A \(\$\)
150 PRINT LIN2
160 PRINT 1AB55, R \(\$\), LINE
170 PRINT "Enter maximum number of component test hours to be investigated."
180 PRINT
190 DISP "MAXIMUM NR COMP TEST HOURS";
209 INPUT TS
210 DISP "FILE NR. FOR \(15 T\) DRTA ARRAY";
220 INPUT Fg
225 REM: F9 IS A FILE NUMBER COUNTER FOR STORING EACH URRA'Y
230 F8=F9
240 A1=A9
250 IISF "WANT RELIRBILITY IRTA PRINTOUT";
260 INPUT 2
270 IF \(2=1\) THEN 290
280 SFLAG 1
\(290 Y 2=D 7<(T 7+D 7)\)
300 IISP "WANT COST/PROJ. DATA PRINTOUT";
310 INPUT 2
320 IF \(2=1\) THEN 340
330 SFLAG 2
340 MAT \(T=2 E R\).
\(350 \mathrm{C} 2=T 4+144\)
\(360 \mathrm{Cl}=\mathrm{T} 3-14\)
\(370 \mathrm{E} 2=\mathrm{EXP}(0.0906 *(\mathrm{C} 2+32))+E \mathrm{FP}(0.0306 *(62-12))\)
\(380 E 1=E X P(0.0306 *(C 1+32))+E X P(0.0306 *(62-C 1))\)
\(390 E 2=E 1+E 2\)
\(400 \mathrm{~B} 2=0.7\)
```



```
\(420 \quad K 2=424 * 10+(-6)\)
\(430 \mathrm{H2}=\mathrm{K} 2 * \mathrm{E} 2 * E 2\)
440 REM: K2 = EXPECTED YALUE OF INITIAL CUMULATIVE FAILUI: RATE FOR INTESTEI"
459 REM: COMPONENTS.
460 FIXED 1
470 REM: PROGRAM INITIRLL' SETS COMPONENT TEST TEMPERRTIFLS TO SYSTEM TEST
480 REM: TEMPERATURES +/- 5 des C
490 T[1,1]=C1
509 T[1,2]=ce
510 T[1:3]=T3
520 T[1:4]=T4
530 T[1:5]=T?
540 T[1;6]=07
550 T[ 1,7\(]=T 8\)
560 T[1, 3\(]=18\)
\(570 \mathrm{~T}[1.9]=\mathrm{A} 9\)
530 T[ 1,10\(]=H 2\)
\(590 \mathrm{~T}[1,11]=\mathrm{E} 2\)
595 T[1.13] \(=87\)
\(600 Y 1=18(T E+118)\)
\(610 E 4=E \times(0.0306 *(T 4+32)+E N F(0.0366 *(62-T 4))\)
```

```
620 ES=EXP(0.0306*(T3+32))+EXF(0.0306*(6E-T3))
630 E1=E3+E4
640 B1=0.6
```



```
660 T[1,12]=E1
670 E=14.26
680 K=(8850*101(-6))/E
690 E=0.314
70日 CE=1-0.273*EKP(-0.0066*49)
71G REM: FROGRAM NOW COMFUTES COMF. TEST FAILURES VS. # OF CHCLES, FHIL INITIHL"
720 REM: SYSTEM TEST K(DRYS)
730 FORMAT FG.1,2FG.0.FE.1,F9.1,F10.1,F10.2,F7.3
740 IF FLAISI THEN }79
742 FIXEI 2
743 PRINT "E(COMF)=";E2;TAB20,"E(SYE)=";E1;TAE40,"E(SPA :E)=";E
7 4 5 \text { FRINT}
750 PRINT "C.TEST <HRS) PLANHEI (DAYS)
```



```
700 PRINT
80日 Y=FG=1
810 CFLAG }
820 IF TB+D8>24 THEN 850
830 P9=2
850 FOR J=0 T0 40 STEF P9
870 H1=0
910 FOR A=0 TO T5 STEP (T5/10)
915 K4=(24\uparrowE2)*K2*(B2)B1)*(E2/E)\uparrow((B2-1)/B2)
920 IF A#0 THEN 990
930 T2=1=F2=0
950 F3=0.02* *9
960 K1=K4
980 GOTO 1110
990 T2=f-10
1000 F2=0.02*N9
1010 FS=0
1030 IF T2<= 0.4 THEN 1060
1032 F2=F2+H9*K2*E2*(T2-0.4) TEZ
1034 I=T2/(TT+IT>)
1040 IF T2>1.4 THEN 1090
1060 I=0
1070 K1=K4
1080 GOTO 1100
1090 K4=K4*(T2-0.4)T(E2-1)
1095 K1=K4
1100 T2=T2+10
1110 IF A9=0 THEN 1690
1112 K=(E*LOG(C8)*1.833*N9*(09)+E)
1114 K5=(LOG(R9)-0.02*N9*LOL(C8))/K
1115 A7=R9
1120 K=LOG(A9)/K
1122 IF K*B \= (K1*E1) THEN 1140
1124 IF Y>1 THEN 1270
1126 IF (K5*B)<(K1*B1*(E1/E)\(<E1-1)/B1)) THEH 1270
1128 T1=1
1130 PS=F4=0
1132 SFLRG }
1134 F1=F3
1136 GOTO 1370
1140 SFLAG }
1150 T1=F1=P5=0
1152 IF A=0 THEN 1220
1153 F4=0
1154 IF (T2-10) >= 1.4 THEN 1160
1156 T2=10
```

```
1157 F2=0.02*49
1158 I=0
1159 [0T0 1370
1160 T2=(K*B)(K2*E2*(24+E2))) (1,(B2-1))
1170 T2=((E/E2) T(1/E2))*T2+0.4
1180 1=T2/(T7+17)
1190 T2=T2+10
1195 IF T2<10.4 THEN 115?
1200 F2=0..02*N9+N9*K2*E2*(T2-10.4)+E2
1210 G0T0 1370
1220 F4=0.02*N9
1240 COT0 1370
1270 T1= (K*E/(K1*B1))\uparrow(1/(E1-1))
1280 TI={(E/E1)T(1/E1) )*T1
1290 T1=T1+0.8
1300 T1=T1/1.34
1310 F5=INT(T1*24/(T8+D8))
1320 IF P5=T1*24/(T8+18) THEN 1340
1330 P5=P5+1
1340 T1=T1*1.34
135g F1=F3+N9*K1*E1*(T1-0.8) TB1
1360 F4=0
1370 GOSUB 1390
1380 GOTO 1870
1390 H1=K1*E1*B1
1400 H=K*E*B
1410 F=F4+N9*K*E*(09) tB
1420 R3=1-K*E*(09) \uparrowB
1430 E6=LOGA?
1440 D={3*A7/E6\uparrow3)*(E6 \ 2-2*E6+2-2/A7)
1450 D=1-D
1470 DISP I;J;D;FG
1480 A1=C8\uparrow(F4+1.833*K*E*N9*09\uparrowR)
1490 Y=Y+1
1500 T[Y,1]=1/2
1502 IF NOT FLAG9 THEN 1516
1506 T[Y,2]=T2
1509 GOTO 1520
1510 T[Y,2]=&
1520 T[Y,3]=F2
1530 T[Y,13]=D
1540 T[Y,5]=P5/2
1550 T[Y,6]=T1
1560 T[Y,T]=F1
1570 T[Y,8]=H1
1580 T[Y,10]=H
1590 T[Y;11]=A1
1600 T[Y,12]=F
1610 IF FLAG1 THEN 1660
1620 WRITE <2,730)I,T[Y,21,P5,T1,F2,F1,F1,D
1630 N1=N1+1
1640 IF N1<5 THEN 1670
1650 PRINT
1660 N1=0
1670 RETURN
1680 END
1690 T1=1.34*.1*(T8+D8)/24
1700 P5=\
1710 IF J#U THEN 1760
1720 K=(K1*E1/B)*<E1/E):(<B1-1)/B1)
1730 Fl=9
1740 F4=F3
1750 GOTO 1850
1760 IF T1>1.8 THEN 1810
1770 F1=F3
1780 F4=0
```

J-C-3

```
1790 K=(K1*B1/B)*(E1/E)T((B1-1)/B1)
1800 G0T0 1850
1810 F4=0
1820 K={K1*E1/B)* (E1/E)\uparrow((B1-1)/B1)
1830 K=K*(T1-0.8) 个(B1-1)
1840 F1=F3+N9*K1*E1*(T1-0.8) TE1
1850 AT=CET(1.833*(F4+K*E*NG*09巾B))
1855 GOSUE 1390
1870 NEXT A
1880 Y=1
1885 CFLAG g
1890 GOSUB 4000
1900 GOSUS 5000
1910 STORE DATA #1,F9;T
1920 FOR I=2 TO 12
1930 FRR II=1 TO 14
1940 1.:I:IIJ=0
1950 MEXT II
1960 NEXT I
1970 F9=F9+1
1980 IF FLAG1 THEN 2000
1990 PRINT LIN1
2000 IF R9#0 THEN 2100
2010 IF FLAG1 THEN 2070
2 0 1 2 ~ F I X E D ~ 2 ~
2015·PRINT
2017 PRINT
2020 PRINT "C.TEST (HRS) PLANHED (DHYS)
2030 PRINT "NO.OF 1/2 COMP. SYSTEM SYS.T COMFONEN, SYSTEM TMIL MISSIONENII"
2050
2050
                                    TEST FAII. TEST FAIL AVAIL,FACTOR
2070 NEXT
2080 PRINT LIN1
2100 FIKED 0
2110 PRINT "RUN(S) COMPLETE.",LIN2
2120 PRINT "LAST DATA ARRAY" IS STORED ON TERCK#1,FILE # (F9-1),LINZ
2130 LINK #D:4
2140 CFLAG 1
2 1 5 0 ~ C F L A G ~ 2 ~
2160 PRINT
2162 DISP "CHANGE RYG. RVRILREILITY";
2164 INPIUT A3
2166 IF A3=0 THEN 2178
2168 DISP "NEW RWG, RYAIL. (must be >0.04) ";
2170 INPUT A9
2175 GOSUB 2470
2178 DISP "Try new temperature conditions";
2180 INPUT Z
2190 IF z=0 THEN 2280
22g0 PRINT "Current min, max system test temperatures, feg. C:";T3;",";T4,L.IN1
2210 DISP "Enter new sustem test. Tmin, Tmox ";
2220 INPUT T3,T4
2230 PRINT
2240 PRINT "Component test temps are now incremented";D|;"deg. E hagher lower"
2250 PRINT "than the system test temperotures, Input mutump. inerement "LIN1
2260 DISP "Enter new comf. temp. increment ";
2270 INPUT II4
2280 DISP "Change tronsit'n or dwell times":
2290 INPUT A
2300 IF A=1 THEN 2330
2310 IF Z=0 ANI R }3=0\mathrm{ ANI R=0 THEN 2430
2320 GOTO 210
2330 FIXED G
2340 PRINT LINI:"Current component test tronsition ard dwell times (hours: are";
2350 PRINT TT:",":DP:LIN1
2360 DISP "Comf test trons, dwell t1mes, n":
```

J-C-4

2370 INPUT TP:D7
2380 PRINT LIN1"Current system test tronsition and dwel. times (hours) are";
2390 PRINT T8:","II8,LIN1
2400 JISP "Sys test trons, duell times, $h "$
2410 INPUT TB:IB
2420 GOTO 210
2430 PRINT "END", LIN2
2448 CFLAG
2450 CFLAG 8
2460 END
2470 2=13
2475 IF $19>0.97$ THEN 2500
2480 A4 2 R9/2
2490 GOTO 2510
2500 A4 $=$ A9-0.05
2510 R3=LDGA4
$2520 \mathrm{D} 3=(3 * A 4 / A 3 \uparrow 3) *(A 3 \uparrow 2-2 * R 3+2-2 / A 4)$
2530 IF $\operatorname{RBS}(\mathrm{D} 3-\mathrm{Ag})<=0.0004$ THEN 2560
2540 A4 $=$ R $4-(D 3-R 9) / 2$
2550 GOT0 2510
$2560 \mathrm{BT}=\mathrm{AS}$
2570 A9=R4
2575 A3=2
2580 RETURN
4000 REM: Subroutine for developing test costs
4010 REM: Q1 = repair costsifailure; 02, based on histor.cal datas $=$
4020 REM: (sys tests with retests)<(sys tests with and without retests)
4030 REM: $Q 3$ is estimate for marching-army costs of 1201 per week for 84 comp.
4040 Q1 $=5300$
4050 Q2=27/39
4060 Q3 $=120000$ ($84 * 7$)
4070 FOR I=2 TO 12
4080 REM: Comp level test costs; 1.78 comp/test already included
4090 IF T[1,2]井O THEN 4120
4100 T[1,4]=0
4110 GOTO 4150
4120 T[1,4$]=(\langle N 9+T[I, 3]) *(T[I, 2] * 25.2+868)+(T I I, 3] * Q 1)) \cdot 10 \uparrow 6$
4130 IF B9\#2 THEN 4150
4140 T[I, 4$]=2 * T[I, 4]$
4150 REM: Sys level test costs
4160 IF T[I,6]\#G THEN 4190
4170 T[1,9$]=0$
4180 GOTO 4510
4190 IF C5 $=2$ THEN 4220
4200 GOTO 89 OF $4230,4270,4330$
4210 REM
4220 G0T0 B9 OF 4370,4410,4470
4230 REM: Large chamber, Protof light unit 17000$)+02 *(N 9 \cdot 158+6160)+$ T[I, 7]*21
4240 T[$1: 9]=N 9 * 3400+147000+T[1: 61 *(N 9 * 1 \div 7+17000)+6$
4260 GOTO 4510
4270 REM: Larse chambers Qual tests + Flt unit \#l
4280 T[1,9$]=N 9 * 3400+147000+T[1,6] *(N 9 * 177+17010)+02 *(N 9: 158+6160)+T[1,7] * 01$
4290 T[$[, 9]=(T[I, 9]+Q 3 * N 9 *(T[I, 6] * 0,34 \div 1,34)$)
$4300 T[I, 9]=T[I, 9]+N 9 * 861+40300+T[1,6] *(19 * 44.5+7000)(T 11,6] * 0.34,1,34)) 1016$
4310 T[1,9$]=$ (T
4320 GOTO 550
4330 REM: Lar 3 enamber, Follow-an umat

4360 G0T0 $4: 10$

4400 GOTO 4510

J-C-5

```
4420
    T[I,9]=NG*2860+69800+T[I,6]*(H9*96.4+1240)+R2*(N9* 33+2920:
4430 T[I,9]=(T[T,9]+03*N9*(T[I,6]*0.34<1.34%)
4440 T[ I,9]=T[1,9]+N9*697+19100+T[I,6]*(N9*24.2+516)+02.(N9*133+2920)+T[I,7]*01
4450 T[ I,9]=(T[ I,9]+03*N9*(T[ I,6]*0.34/1.34)).10\uparrow6
4450 GOTO 4510
4470 REM: Medium chamber: Follou-on unit
4480 T[ 1,9]=(1+02)*(N9*133+2920)+T[1,6]*(N9*24.2+516)+T1 [, 7]*⿴囗 
4490 T[I,9]=(T[I,9]+03*N9*(T[I,E]*0.34,1.34))/10t6
4500 REM: Total flight costs: M$
4510 A2=1
4520 IF R5=1 THEN 4540
4530 H2=1
4540 T[ I,14]=T+U9/R5+A2*T[1,12]*01/101E
4 5 5 0 ~ N E N T ~ I ~ I ~
4 5 6 0 ~ R E T I J R N
4570 END
5000 REM: Subroutine for data erintout
5010 IF FLRG2 THEN 5260
5 0 2 0 ~ P R I N T ~ L I N 2 ~
5030 PRINT "DATA ON TRRCK#1, FILE#";F9
5 0 4 0 \text { PRINT LIHI}
5050 FORMAT "Tmin, deg C: ",F4,0,12x,"Tmin, deg C: ",F4 0
5060 FORMAT "Tmax, des C: ",F4.0,12x,"Tmax, des C: ",F4 a
5070 FORMAT "Transition time, h:",F4.0,6,,"Transition t me, h:",F4.0
FORMAT " Prosrammotic"
```



```
5110 PRINT "Component Test. Prosram"SPA7"System Test Prozram"
5120 WRITE (2:5050)T[1:1]:T[1:3]
5130 WRITE (2,5060)T[1,2],T[1,4]
5140 WRITE (2,5070)T[1:5];T[1:?1
5150 WRITE (2,50R0)T[1,6],T[1,8];
5160 URITE (2,504w)
5170
5180
5 1 9 0
5200 PRINT
5210
    PRINT "Test Nr of Nr"SPA10"Plomned Aetual INr"SFA19"Lost."
    PRINT "Ilur. tests of Cost Dur/Cye Dur. of Cost Ruz";
5220
5230
5240
5250
5260
PRINT " var. Value"
    PRINT "h molan/act Fail MF days days Fail M* Ruail. ";
    PRINT
    FOR I=2 TO 12
    IF T[1,13]=0 THEN 5566
5270 IF X7>T[I:2] THEN 5290
5280 XT=T[1:2]
5282
    IF T[I,2]#D THEN 5290
    Z=21=0
5286 G0T0 5310
5290 Z=N9/1.78
5300 21= (N9+T[1,3])/1.78
5310 22=T[1,6]/1.34
5320 23=1-T[I,13]
5330 24=T[ I,13]*T[ I, 14]+T[ 1,4]+T[ I,9]
5370 IF 29<24 THEN 5470
5373 R5=T[1:11]
537E AG=T[1,13j
5380 29=24
5390 M3=22
5400 M4=T[1:4]
5410 M6=(03*N9*T[1,6]*[1.34/1.34)/1016
5420 MT=T[ 1.12]*1.833
5430 M5=T[ 1.9]-M6
5440 F5=F9
5450 M2=T[1,2]
5460 RG=I
```

P470 IF M1>22 THEN 5490
$5490 \quad M 1=20$
5490 IF 89×24 THEH 5510
$5500 \quad 89=24$
5510 IF $88<24$ THEN 5530
$552088=24$
$3530 \quad 25=T[1,9]$
5540 IF FLAGE THEN 5560

5560 WEKT I
5563 GOTO 5579
5566 PRINT LIN1, "ROW"; I;", COL $13=0 " L I H 1$
5570 IF FLAGZ THEN 5590
5580 PRINT LINI
790 RETURN 0 ENI

RREF

H2	50	4510	4530	4540							
A5	50	5373									
A6	50	5376									
F5	50	5440									
$M 1$	50	5470	5480								
12	50	5450									
M3	30	5390									
M 4	50	5400									
19	50	5430									
M6	50	5410	5430								
R6	50	5460									
14	60	350	369	2240	2270						
87	90	5270	5280								
88	100	5510	5520								
29	100	5370	5380								
89	118	5490	5500								
A	140	150									
T5	200	910	910								
F9	220	230	1470	1910	1970	1970	2120	5030	54.48		
F8	230										
A1	240	1480	1590	16.20							
H9	$\begin{aligned} & 240 \\ & 2530 \end{aligned}$	$\begin{aligned} & 570 \\ & 2540 \end{aligned}$	$\begin{aligned} & 1110 \\ & 2560 \end{aligned}$	$\begin{array}{r} 1114 \\ 2570 \end{array}$	1115	1120	2008	2170	2475	2484	2500

J-C-7

CB	70.1	1112	1114	1496	1850						
19	30.1	950	1000	10.5	1112	1114	1157	1200	1210	1220	155
	140	1480	1840	1859	4126	4240	4246	4240	4256	+260	4.60
	42.19	4290	4300	4301	4310	4316	4346	4540	4350	4386	4.486
	4310	4390	4420	4420	4420	4490	4446	4.440	4440	4459	4.46
	44.40	4490	5290	5390	5410						
H1	79.1	870	1630	1630	1640	1600					
Y	80:1	1124	1490	1490	1500	1596	1510	1500	15.30	1540	15.516
	1510	1570	1580	1590	1000	1020	1800				
F9	80.1	830	850								
1	85.1	1470	1690	1709	1710	2070					
A	91.1	920	990	1152	1510	1800	290	2300	$2: 16$		
$k 4$	$91 ;$	960	1970	1090	1090	1095					
$T 2$	93.1	990	1030	1032	1634	1040	1090	1100	116	1154	115
	11.0	1170	1170	1180	1199	1190	1195	1200	1508		
1	9311	1034	1060	1158	1180	1470	1509	1620	1920	1940	1960
	$40{ }^{\circ} 0$	4090	4100	4120	4120	4120	4120	4140	4148	4160	4170
	$42+4$	4240	4240	4250	4250	4250	4280	4280	4280	4296	4296
	4210	4300	4300	4300	4310	4310	4310	4310	4340	4340	4340
	4310	4350	4350	4380	4880	4380	4390	4396	4390	4420	4420
	$44^{\prime 9}$	4430	4430	4430	4440	4440	4440	4440	4450	4450	4450
	$44: 9$	4480	4480	4490	4490	4490	4540	4548	4550	5260	5265
	52°	5280	5282	5309	5310	5320	5330	5330	5330	5336	5373
	53'6	5409	5410	5420	5489	5456	5464	5530	5550	5550	5550
	55'0	5550	5550	5560	5566						
$F 2$	9319	1000	1032	1032	1157	1200	1520	1620			
F3	9511	1010	1.34	1350	1740	1770	1840				
$k 1$	$\begin{aligned} & 96.1 \\ & 1810 \end{aligned}$	1070	1095	1122	1120	1270	1350	1390	1720	1790	1820
09	112	1410	1420	1480	1850						
$k 5$	114	1126									
H7	115	1430	1440	1440	1850						
T1	11.8	1150	1270	1280	1280	1290	1290	1300	1300	1310	1320
	13.0	1340	1350	1550	1620	1698	1760	1830	1640		
F5	$11: 0$	1150	1310	1320	1330	1330	1548	1620	1090		
F4	11.0	1153	1250	1360	141 19	1480	1740	1780	1810.	1850	
F1	11:4	1150	1350	1560	1620	1730	$1 \cdot 70$	1840			
H1	1340	1570									
H	14.10	1580									
F	14.	1809									
Fis	14: 4										
Es	$14: 0$	1446	1446	1440							

\square	14.6	1459	17518	1430	15.30	1604					
［1＇	1：10	1540	1959								
H3	214	2168	2310	2474	$2{ }^{2} 16$	890	29	2506	26？		
H4	24 ：90	25460	2510	56		59	－240	，吅品			
13	25	2530	2540								
01	40.0	＋120	4.40	$4 \mathrm{ES4}$	＋314	44.4	4 tat	$4+46$	44.4	＋4：314	19.14
02	4615	4246	4.80	4910	＋544	4360	44.0	＋440	小13：		
03	46.6	450	424	$4 \geq 10$	155	434	4401	446	1990	＋iflo	
E	＋1 31	4200	43.1								
－9，	4110										
FS	$45 \cdot 19$	4540									
T	45.6										
19	$45 \cdot 9$										
21	52.4	5300	5550							－	
22	530	5390	5475	5480	5550						
23	536	5550									
24	536	5370	5380	5490	550104	55111	55.30	5550			
M	54：010										
25	550	5550									

ADDI:NDUM J-D

PROGRAM IISTING, FILI: \#+


```
12 REM: LISTING OF FROIGRMM FAFAMETEF'S AHII FLLIT FOITIHF
15 CFLAG?
29 PRINT AS:LINI
30 FRINT "PFOGRAM PHFAMETERS:",LIMA
40 FIXEI 9
50 FRINT "PHYLDALI:",LINI
60 G08UE EG OF 780.601 .820
PG PRINT "Number of EquForment: ": HF
E0 FRINT "Faylaud heiaht, Ibミ:": WG
90 FIKEI ?
```



```
102 FIMEI 0
104 IF R5=1 THEN 108
```



```
168 FEI:T
110 PEIHT "MISSION FRPRMETERS:".LIHI
130 PFINT "Mission lemgth, days:";09
140 FIKEI 2
150 IF T[1, 13]=0 THEN 180
160 FRINT "Llesired oueroee ouoilobilit: ";T[1, 13]
170 GOTO 190
180 PRINT "RuErase ougilability not Eperdtied."
```



```
200 FRINT "LAUNCH YEHICLE INFORMHTIOH:":LIHI
210 GOSUB Y9 OF 850.890
220 PRINT
230 FRINT "TEST PARAMETERS:":LIHI
240 FIXED 0
```



```
262 FRINT "Component test.min, mox temperot drese dear:": : ", ": E
```



```
268 GOSUB L.5 OF 1300. 1320
```



```
280 FIXED
```



```
293 PRINT "OPTIMIZED PFRAMETERS:"LINI
296 FIKEI 9
```



```
302 FIXED 1
305 PRINT "Component test length" hours: "ime
310 FIXEI 1
315 FRINT "Flanned system test lengthe joys:"MZ
320 FIXED 3
325 PRINT "Comparient test proaram E日St, M真:"Ma
330 FRINT "System test Firgeram cost, Ms:"; HE
335 PRINT "Marching army eost. MF: "ime
340 FRINT "Mission average availobiliy:"; 1-AE,
345 PRINT "Mission end instantanecus quoilobilbu:s"As
350 FRINT "Minimum lost voldes Ms:": 29.LIHz
380 COTO 5090
390 FIXEI 3
400 PRIHT "Thiz iz an ateoched inon-spocelobi pog. lood."
410 IF DI=2 THEN 450
420 FRINT "This 15 o dedicoted maseioni cost, Ms:"T
430 GOSUE 1070
440 GOTG 470
450 PRINT "This 18 o shored missian: cost, Mt:"T
460 GDSUB 1070
476 EETURH
480 FRIHT "This \(i=0\) Eracelab miselari."
490 G0SUE II OF 520, 570
```



```
5 9 6 ~ F E T I F H : N
51日 EHII
5% FI:OE|:
```



```
4W F [:CE| !
5e.j buglf: ta|
5m,G C.0TM r.019
506 fl:aty %
```



```
0.019 FETIFH
E16 EHII
EOH IF F al HHLI H=0 THEHE ETG
E3G Fl:EED G
E4GIF ES=1 THEH E.OH
0.6 H=1
```



```
TgM EHII
```



```
7E0 G0GUE E20
T30 EOTO PEO
T40 FFItT "The Fom, logd Ehares on element.
T5 L0S10E E20
PEO FETURN
POG EHD
TEO FFINT "Frototl13tht Unat"
TGO FETIINN
BMHFFIHT "F1rEt +119ht um,it"
810 FETUFN
820 FRINT "Fallom-on unit"
830 RETUFH
840 ENI:
850 FRINT "Shutt.le lounch"
800 LOSUE C9 OF 990,390,480
870 RETURH
800 E!II
890 G00UE IS OF 920,940,960
900 GTTO 220
9:0 ENI
92g PRINT "Mission uses a Ecout launch vehicle, Eost, M韦:"T
940 PRINT "Mission uses a 2900 serjes Deltos cost, M*:";T
960 FRIHT "Mission uses a 3900 seraes Delto, cost, M: ":T
980 END
990 FRINT "This is a Free-fller parlood."
100日 GOSUE II OF 1930,1240
1010 RETURN
1020 ENII
1030 FIXEI S
1040 PRINT "This mission is dedicoted to this forloud; STS cost, M: ";T
1060 G0TO 1120
1070 IF DE=0 THEH 1080
1075 GOSUE DE OF 1130,1150,1170,1190,1210
1080 IF K9=0 THEN 1100
1090 FRIHT Kg; "OHS kits ore used; cost, Mt:";ke
1100 IF R=0 THEN 1120
1110 PRINT "A revisit cost is included; cost, |l:":R
1115 RETURH
1120 RETURN
1125 ENI
```



```
1140 RETILFH
```



```
1160 RETUFN
```



```
115日 RETUFH
```



```
1200 RETURH
```



```
1220 RETIJFH
1230 END
1240 FIXEI 3
```



```
1260 GOSUE 107G
12,0 FETURN
1280 ENI
```



```
1310 RETUFN
```



```
1330 RETURN
134[ ENI
5000 REII: FLOT ROUTINE
5010 FIXEI G
5020 FORMAT 13%," ",F4.0,F7.0.F10.0.F11.G
5030 FORMAT 13%," ",F4.g,FT.B,F10.G.F11.g
5040 FORMAT FG.1
5045 IF FLHG8 THEN 5370
5050 X4=人7
5060 Y3=INTKO-1
5070 Y4=INTY9+2
5080 <1=-0.2*84
5090 <2=1.3*84
5100 <3=0
5110 <5=0
5120 Y6=Y3-0.2*(Y4-Y3)
5130 Y7=Y4+0.3*(Y4-43)
5140 Y5=43
5150 IF X4>240 THEN 5180
5160 S4=24
5170 [0T0 5190
5180 54=48
5190 R=Y4-Y3
5200 IF R<1 THEN 5260
5210 IF R<2 THEN 5280
5220 IF R<5 THEH 5300
5230 IF R<10 THEN 5.520
5240 IF R<20 THEN 5340
5250 50T0 5360
5260 55=0.1
5270 10T0 5370
5280 55=0.2
5290 G0T0 5370
5300 55=0.5
5310 G0T0 5370
5320 55=1
5330 60T0 5370
5340 55=2
5350 GOTO 5370
5360 55=5
5%0 SLALE K1:X2,YG,Y7
5375 IF FLAG8 THEN 5750
5360 XRXIS Y5,64:X3, 84
5390 YRXIS X5,SE,Y3,Y4
5400 LAEEL (*,1.5,1.7,0,0.7)
5530 FOR <6=(X3+54) TO (X4-54) STEF 54
5540 FLOT XE:Y5:1
```

```
5550 [PLOT -2.5,-1.5
5560 LAEEL (*):%6
5570 NEKT %6
5580 PLOT X5,'5,1
5590 CPLOT 20,-3.5
5600 LAEEL (*)"EOMPOHENT TEST DIJRATIOH, H"
5601 IF R9%O THEN 5610
5602 FLDT ':4:14:1
5604 EPLOT 3,3
5606 LfBEL (*)"PLANHED"
5607 LABEL (*)"SYS TEST"
5608 LAEEL (*)" DAYS"
5610 PLCT K2,%G,1
5620 CPLOT -20,1
SE30 LAEEL (t)P$
5640 FOR Y8=Y 3+55 TO Y4-S5 STEF S5
5650 FLOT <5,VE,1
5660 EPLOT -5.5,-0.3
5670 IF 55%1 THEN 5690
5680 FIOEII !
5890 LAEEL ;*'V8
5700 NEXT Y8
5710 PLOT :15,%5,1
5720 CPLOT -7.8
5730 LABEL (*,1.5,1,7,F1/2,0.7.
5/40 LABEL **"LOST YHLUE, M%"
5750 LABEL (*,1.5,1.7,0,0.7)
552 CFLAG 5
5753 SFLAG 8
5755 REM: Flot onl, zero test file ond uln test tile
5760 FOR EG=FE TO F5 STEF (F5-FS)
5T80 GOTO 5820
5790 FEM: Flot am, 111E
5000 IISF "Etartang, Ending + Ile mamber:";
5819 INFUT EOOEG
5815 IF EE=0 THEH E210
5820 LOAI IIATA #1, EG,T
5030 21=1019
5840 FOR I=2 TO 12
5850 A=T[1,15]+T[I,14]+T[1,4]+T[1,9]
5860 IF T[1,2]%%4 OR AY'4 THEN E.000
5876 IF HO=G THEN 5960
5872 IF T[I-1,2]=[[I,2] THEH E000
5830 FLOT T[I,2],A,1
5885 CFLOT -9.3,-6.3
5890 LABEL 1*)"+"
5900 IF I#E THEN 5990
5910 CFLOT 19,2
5920 100T0 5940
5990 CFLOT -4,2
5940 LREEL (5040)T[I.E].1.34
5950 G0T0 5005
5960 FLOT TLI•こう!A
5965 FEM: Fitid coordinotes of min moint
5970 IF ב1. H THEN E0日0
5900 こ1=A
5990 22=T[1,2]
6001 NEKT I
6010 PEH
6020 PLOT :4.F.1
6030 CPLOT 2,-0.3
6040 IF B%'4 THEH E.30
6050 IF R9#E THEH EOTG
6060 LABEL (5040)(TIT-1,6].1.34:
6070 FLOT Zこ,21.1
GUSG EPLOT-G.3,-0.3
```

```
6090 LABEL (%)"%"
610日 IF FLAGS THEN 6130
6105 IF A9#0 THEH E210
G110 NEKT EG
6115 SFLAG
6120 [0T0 6170
6130 EG=EE+1
6140 IF EE=EG+1 THEN E1EO
6150 FOT0 5620
6160 FLOT <2,Y%,1
El7G IISF "Further plots";
6180 INFUT A
6190 IF F=[0 THEN EC10
6200 15070 5800
621G SFLAG ?
G2e0}\mathrm{ LINK 3
6230 EHII
XREF
F＊ 20.5630
E9 606
N9 70
WG 80
19 104
F5 104100
09 130
```



```
        5940 5900 5490 6000
    M% 195
    vo こ10
    Ti}25
    17. 250
    T0 2e0
    I8 200
    E1 2Eこ
    E2 202
    T3 264
    T4 2E4
    05 268
    T5 230
    M1 290
    F5 300 5760 5760
```

```
M2 305
M3 315
M4 325
M5 330
NG 355
H6 340
A5 345
29 350
I11 410 490 1004
T 420 450 500 580 920 940 900 1040 1250
F 620 6e0 670 680
H 620 E50 600
E9 E40
69 800
15 890
IN
19 1080 1090
18 1090
F}\quad1100111
F}1113011501170011%0121
\because4
:O7 50564
Y% 5000 5120 5120 5130 5140 5140 5040 5040 E.40,
8B 5000
```



```
\therefore9400
\because1 5080 5370
82 5090 5370 5610 6160
83 5100 5380 5530
85 5110 5390 5580 5650 5710
Y6 5120 5370 5610
i7 5130 5370
Y5 5140
```


J-D-6

S4	5160	5180	5380	55.30	5530	55.30					
ค．	$\begin{aligned} & 5190 \\ & 5990 \end{aligned}$	$\begin{aligned} & 5200 \\ & 6029 \end{aligned}$	$\begin{aligned} & 5210 \\ & 6040 \end{aligned}$	$\begin{aligned} & 5220 \\ & 6100 \end{aligned}$	$\begin{aligned} & 5230 \\ & 6190 \end{aligned}$	5240	5850	580.0	5885	500	595
55	500	506	5369	5300	$5 \cdots$	$\because \cdot$	1．3411	5640	$\therefore 11$.	－64t1	irill
$\therefore \mathrm{B}$	5530	5549	55004	55.00							
HE	5601	5670	E0509	－145							
\％	5644	5659	56.94	57001							
E6	5700	9310	5815	5600	0.116	$\therefore 1$	0.130	6146			
FE	5060	57619									
Es	5810	614									
21	5836	5970	5980	0.170							
1	$\begin{aligned} & 5840 \\ & 5900 \end{aligned}$	$\begin{aligned} & 5850 \\ & 5940 \end{aligned}$	$\begin{aligned} & 5,95 \\ & 8,909 \end{aligned}$	580		Seut	ザこ	5%	3：4	241914	$14+41$
22	5990	0000									

ADDENDUM J-E

MATRIX TS 112.141

$=$		[$\frac{1}{2} \frac{8}{2}$
$=$	Esble	-
$=$	= $=1$	- 1
$=$	\% Emil	2llb
\bigcirc	silitit	=1017i
	2111违	E8
-		Elald
-		= ${ }_{\text {d }}^{\text {d }}$
	Stelt	Fimbig
\cdots	Efilit	
\cdots		Emis
		cing^{2}
\cdots	CE!	
	- ${ }_{\text {En }}$	5
$3 / 3$	-	\cdots

J-E-1

ADDENDUM J-F
EXAMPLE OF PROGRAM RUN

LOADI
RINH
If sou rifea antil anfon enter 1 al
 number of tisme to be used az prozrain triputs.

AE a minamum, the user must knom:
a) the momber af componeme in phepspod if. L)
b) the mizeion tame in artit

 is inuoluedi if the loter, whether ite a Freerflier or a Spacelab miseien.
e: the minimun and moaman ese temergtures.
The user will also be agked to amput pordous other dota. it the answers are buknow, the user shouldi 1 ment of an thas enge the program will frouide oweroge value estimaté or will akir guer that item.

Questions should be onswered with 1 for yes and a for no.
For auestions thot are not apolicoble, enter g.
When two volues are reauested, enter them with o como inbetween

Nr. of E0rponents in the P L? 30
The fill has 30 components.
Input minimum acceptable P L augerage ougilability 0 a o dectmal; input g if unknown or full optimazotion run desired.

Minimum aceertable oug. ovail. 90
The minimum oceertable avoilability infut as 9 \%
Input missian time in orbit.
Mission time in orbit (doys)? 365
365 dors reauired in orbit.
Infut the estimated minimum time an dueroge romponemt wall take to get from one temperoture extreme to the ather during test and the minimum duell time at temperature. Enter g's where urknoun.

Comp: Trans time, Iwell time Gopho
Component test profile contains 3 hour tramsition times and 6 hour long dweld times.

Input the estimated minimum time it will take the F gexetem to get from one temperature extreme to the other during test and the minimum dwell time at emperature. Entet g's where unknown.

Sys: Trans time, Iwell time chopg. 48
Syetem level test profile contains 8 hour transition times and 48 hour long dwell times.

Infut the generd minimum and moximum zystem level test temperatures in deg C .

$\therefore \quad$ low biciol Ellered.


```
    ! lime burth irbicemed.
```


ETS 'enter 1 , or ELY Enter zuz

E Eenobole loumu wetiate eoderl
A Scout lounch hehacle hoz been etelected.
FL datenelatz ore to be determaned.

F.L wel \#ht ibsy hrout os 337

FL GOE! !1978 Mt:9
Instrunent EOEt = moy be Estamoted bozed on the tree
arid weight of the inetrument.
The tollomitis rasese opels:
Cluse 1: Interferometers
 Fodioneter, Fhotemeter, Spetroneter, T-V Eamero.
Hognetoneter
Elozz 3: Fetive MiErowoue, Muse Measurement. Flosma frobe Chores Ietector, Filim Ganero
If tipe is unknown luse clase a of on overoge.
Instrunent closs, 1,2, or $3 \% 2$
Instrument ciass a is selected.

Estimoted olotiorm cost (1978 No : 2. Eisi
Estimated totol PL East (197e M1): 3.567


```
#HTER1 1 Pa


```

FILE HF. FOH LOT INTM MFFANOL
WMIT FELIHEILIT'I IHTA FFIHITOLIT O

```


FING: GOMFLETE.


1179


Fritumf:
Fineot|l \(\mathrm{H}_{1} \mathrm{H} \mathrm{H}_{1 / 1}\)









TEST FAFRMETEF:







DFTMIDED FAFAMETEFS:





Morchamg orm, EOEt, M青: G. 121


Manimum last volue, Ma: z. 2 B

J-F-4
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Ecconey \(=16.01\)} & \multicolumn{2}{|l|}{\(E(S Y S)=14.32\)} & \multicolumn{4}{|c|}{ESPACES \(=14.26\)} \\
\hline C.TES & (HFS) & PLAHNEI & SIAYS: & & & & \\
\hline H0.0F \(1 / 2\) & COMF. & STSTEM & SYE.T & COMFOHENT & SYGTEM & M15610 & 4 ENII \\
\hline FEFIOIS & TEST T & CYCLES & E(T) & TEST FAIL & TEST FAIL & FVAIL & FACTOR \\
\hline 0.0 & 0 & 27 & 83.4 & 9. 0 & 27.9 & 0.19 & 0.790 \\
\hline 4.2 & 48 & 2 & 6.2 & 3.2 & 1.7 & 0.19 & 0.700 \\
\hline 9.6 & 96 & 2 & 3.7 & 5.2 & 0.9 & 0.19 & 0.700 \\
\hline 14.9 & 144 & 1 & 2.9 & 6.9 & 0.7 & 0.19 & 0.700 \\
\hline 20.2 & 192 & 1 & 2.5 & 8.4 & 0.5 & 0.19 & 0.700 \\
\hline 25.6 & 240 & 1 & 2.2 & 9.8 & 0.4 & 0.19 & 0.700 \\
\hline 30.9 & 288 & 1 & 2.0 & 11.1 & 0.4 & 0.19 & 0.700 \\
\hline 36.2 & 336 & 1 & 1.9 & 12.3 & 0.3 & 0.19 & 0.790 \\
\hline 40.4 & 374 & 0 & 0.0 & 13.2 & 0.0 & 0.19 & 0.700 \\
\hline 40.4 & 374 & 0 & 0.0 & 13.2 & 0.0 & 0.19 & 0.700 \\
\hline 40. 4 & 374 & 0 & 0.0 & 13.2 & 0.0 & 0.19 & 0.700 \\
\hline
\end{tabular}

IATA ON TRACK\#I, FILE\# 42.00
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
Component Test. \\
Tinins deg C:
\end{tabular}} & \multicolumn{2}{|l|}{Prosram} & \multicolumn{3}{|l|}{System Test Frosrom Tmins des C: 0} & \multirow[b]{3}{*}{8} & \multicolumn{2}{|l|}{\multirow[b]{4}{*}{Froeramatic}} \\
\hline Tmax: & dea C & & 45 & & Tmax, des & \(9 \mathrm{C:} 4\) & & & & \\
\hline Transi & tion & me, & , \(\mathrm{h}:\) & 3 & Transition & on times & h: & & & \\
\hline Dwel1 & times & & \(h:\) & 6 & Iwell tim & mes & h : & 48 & & \\
\hline TESt & Nr of & & Nr & & Planned & Fictuol & Nr & & & \\
\hline Dur. & test & & of & Cost & Dur/Cye & Itur. & of & Cost. & Rua & Volue \\
\hline h & Flarm & act & Fail & M & doys & days & Foil & M & Fuail. & M \\
\hline 0 & b. & 0 & 0 & 0.000 & 62.2714 & 83.4 & 27 & 0.778 & 0.30 & 4.953 \\
\hline 48 & 17 & 19 & 3 & 0.086 & 4.7. 1 & 6.2 & 2 & 0.205 & 0.30 & 4.466 \\
\hline 96 & 17. & 20 & 5 & 0.148 & 2.871 & 3.7 & 1 & 0.187 & 0.30 & 4.505 \\
\hline 144 & 17. & 21 & 7 & 0.202 & 2.2 1 & 2.9 & 1 & 0.180 & 0.30 & 4.558 \\
\hline 192 & 17 & 22 & 8 & 0.263 & \(1.8 / 1\) & 2.5 & 1 & 0.177 & 0.30 & 4.616 \\
\hline 240 & 17 & 22 & 10 & 0.327 & \(1.6) 1\) & 2.2 & 0 & 0.175 & 0.30 & 4.677 \\
\hline 288 & 17. & 23 & 11 & 0.392 & \(1.5 \% 1\) & 2.6 & 0 & 0.174 & 0.30 & 4.741 \\
\hline 336 & 17 & 24 & 12 & 0.460 & 1.441 & 1.9 & 0 & 0.173 & 0.30 & 4.898 \\
\hline 374 & 17 & 24 & 13 & 0.515 & 0.0 .0 & 0.0 & 0 & 0.000 & 0.30 & 4.690 \\
\hline 374 & 17 & 24 & 13 & 0.515 & 0.010 & 9 0.0 & 0 & 0.000 & 0.30 & 4.690 \\
\hline 374 & :7\% & 24 & 13 & 0.515 & 0.010 & 0.0 & 0 & 0.000 & 0.30 & 4.690 \\
\hline
\end{tabular}

\footnotetext{
(S) COMFLETE.
}


\section*{FFOLEAM FHFAMETEFS:}

\section*{FHYLOAII:}

Frotorliaht Unidt
Homber at Eumpormente: 30
Farlond wei ght, LbE: 337
Forlond 602t, M: 3.567
MISEIOH FHEHMETERS:
Mis三ion length, doy: 365
Iesired ayerope quailability: 6. 30
Expected mumber of molfurctions over themiseboriduration: 7.10
LAINACH VEHIGLE IHFDFMATIOH:
Mission uses o Scout lounch vehicle, EGEt, Mt: z. 40

\section*{TEST PARHMETEFS:}
```

GomFonent test trmmsition time, duell time, hours: 3 , E
Svetem test tronsitigh, dwell time, hours: }0\mathrm{ , 4s
ComFonent test mim: mox temperotures, dea E:-5, 45
System test ming mox temeerotures; dea C: 0 ; 40
System trst i= EOndusteg in a medium fe.g. lettx15ft% focilaty.
Moximum EOmponent test length inuestiguted, hours: 4eg
Moximum flormed syEtem test lerathimuestlgoted, days: 6e.z

```

\section*{DFTIMIZEI FARAMETEFS:}

Minimum cost frogramg other thon zero test, on file 42
Comporient test length hours: \(4 E .0\)
Planned zretem test length: days: 4.7
Componemt test frogram cost, Ms: 0.086
System test program cost, M年; 0.195
Marching army cost, Ms: 0.016
Mission aueroge avoilobility: 0.300
Mission end instantaneous aunilability: 0. 180
Minimum lose volues Mt: 4.466


Figure J-F-1. Typical Plot; Desired Average Availability Entered as 0


Figure J-F-2. Effect of Change in System Test Duration
J-F-7


1/1/79
Figure J-F-3. Desired Average Availability Entered as 0.3

\section*{ADDENDUM J-G}

\section*{EFFECT OF LAUNCH COST}

PROGRAM PARAMETERS:

PAYLORD:
Protoflisht Unit
Number of components: 32
Pa..iond weight. lbs: if 0
Pa ioad cost, Mt: 4.069

\section*{MISSION PRRAMETERS:}

Mission length, doys: 365
Ruerage availability not specified.
Expected number of malfunctiors over the mission duration: 1.21
LAUNCH YEHICLE INFORMRTION:
Shutt le lounch
This is a Free-flier payload.
This mission is shared with other payloads: STS cost, M\$: 5.468

\section*{TEST PARAMETERS:}

Component test transition time, dwell time; hours: 3 : 6
System test transition, dwell time, hours: 8 , 48
Component test min, max tempero.ures, deg c:-5, 45
Srstem test min, max temperatu'esi des \(C: 0\), 40
System test is conducted in a medium (e. э. 12ftx15ft) facility.
Moximum component test lensth investigated, hours: 480
Maximum elanned system test lensth investigated, days: 93.3

\section*{OPTIMIZED PARRMETERS:}

Minimum cost program, other than zero tests on file 35
Component test lensth, hours: 336.0
Planned system test lengthi dors: 79.3
Component test prosram cost, M\$1 0.491
System test prosram cost: M\$: 0.657
Morching army cost, M\$: 0.176
Mission averose availability: 0.81:
Mission end instantaneous availability: 0.755
Minimum lost value, M\$: 3.112

\section*{PROGRAM PARAMETERS:}
PAYLAAD:
Protoflight Unit
Number of components: 32
Payload weight, lbs: 450
Payload cost, M\$: 4.000
MISSION PARAMETERS:
Mission lengthe days: 365
Desired average quailability: 0.30
Expected number of malfunctions over the mission duration: 7.24
LAUNCH VEHICLE INFORMATION:
Shuttle launch
This is a Free-flier payload.
This mission is shared with other parloads: STS cost, M\$: 5.468
TEST PARAMETERS:
Comsonent test transition time , dweld ifme, hours: 3,6 System test transition , dwell time, hours: 8 , 48 Component test min, max temperatures, des c:-5, 45 System test min, max terperaturesi deg \(C\) : 0 , 40
System test is conducted in a medium (e.9. 12ftx15ft) facility.Maximum component test length investigoted, hours: 480Maximum planned system test length investigated; days: 69.6
OPTIMIZED PARAMETERS:
Minimum cost program, other than zero test, on file 1 Componer test length, hours: 48.e

Planned - tem test lensth, days: 5.1

Componerit test program cost, M\$1 0.091

System test prosram cost: M\$: 0.207

Marching army cost, M\$: 0.011

Mission average quailability: 0.300

Mission end instantaneous availability: 0.186

Minimum lost value, M\$: 6.935
\[
\begin{aligned}
& 2.7 \\
& \text { Ris } \\
& \times \\
& \text { ? } \\
& \text { in }{ }^{4} \\
& \text {. } 21 \text { :H29n3 i atichend } \\
& 2.4 \\
& 3.2 \quad 2 . \\
& +{ }_{-2} \\
& \begin{array}{c}
\text { 日 } \\
\text { n } \\
\text { n }
\end{array} \\
& \xrightarrow[1]{4} \\
& \text { Fip=2.a: : } \\
& 4
\end{aligned}
\]
\[
\begin{aligned}
& \text { Figure J-G-1. Effect of Launch Cost: Payload Length } 10^{\circ}
\end{aligned}
\]

J-G-3

\section*{PAYLOAD:}

Protoflight Unit
Number of components: 32
Parload weight: lbs: 450
Parload cost, M\$: 4.000
MISSION PARAMETERS:
Mission lensth, days: 365
Auerage availability not specified.
Expectid number of malfunctions over the mission duration: 1.39
LAUNCH VEHICLE INFORMATION:
Shuite launch
This is a Free-flier payload.
This mission is shared with other payloads; STS cost; M\$: 2.864

\section*{TEST PARAMETERS:}

\section*{Component test transition time , dwell time, hours: 3 , 6 \\ System test transition, duell time, hours: 8 , 48 \\ Component test min, max temperatures, des ci-5 , 45 \\ System test ming max temperatures; deg C : 0 , 40 \\ System test is conducted in o. medium (e.g. 12ftx15ft) facility. \\ Maximum component test length investigated, hours: 480 \\ Maximum planned system test length investisated, days: 93.3}

OPTIMIZED PRRAMETERS:
Mindmum cost prosram, other than zero test; on file 28
Component test lenath, hours: 288.0
Planned system test lensihi days: 63.0
Component test program cost, M\$1 0.418
System test prosram cost, M\$: 0.559
Marching army cost, M\$: 0.140
Mission average availability: 0.786
Mission end instantaneous availability: 0.724
Minimum lost value, M\$ 2.586

\section*{LAST DATA ARRRY IS STORED OH TRACK...10FILE \# \(1^{\circ}\)}
```

1/1/79

```

FFOGRAM FARAMETERS:

\section*{PAYLUAD:}

Protoflight Unit
Number of components: 32
Paylead weight, lbs: 450
Paylood cost: M\$: 4.000
MISSION PRRAMETERS:
Mission length, days: 365
Desired average availability: 0. 30
Expected number of malfunctions over the mission duration: 7.24
LAJNCH VEHICLE INFORMATION:
Shuttle launch
This is a Free-flier payload.
This mission is shared with other parloads; STs cost, M\$: 2.864

\section*{TEST PARAMETERS:}

Component test transition time , dwell times hours: 3 , 6
System test transition, dwell time: hours: 8 , 48
Component test ming max temperatures, deg c:-5, 45 System test mini max temperatures; deg \(\mathrm{C}: 0\), 40

System test is conducted in a medium (e.g. 12ftx15ft) facility. Maximum component test length investigated, hours: 480 Maximum planned system test leneth investigated, days: 69.6

\section*{OPTIMIZED PARAMETERS:}

Minimum cost program, other than zero test, on file 1
Component test length, hours: 48.0
Planned system test lensth: days: 5.1
Component test program cost, M\$: 0.091
System test program cost; M\$: 0.207
Marching army cost, M\$: 0.011
Mission averase availability: 0.300
Mission end instantaneous availability: 0.186
Minimum lost value, Mo: 5.113

J-G-5

J-G-6

\section*{PROGRAM PARAMETERE:}

\section*{PAYLOAD:}

Protoflisht Init.
Number of eomponemes 32
Parlond w inght lbs: 450
Parload cost: MF: 4.000
MISSIDN PHRAMETERS:
Mission lengting doys: 365
Pueraje availability not spitcitied.
Expected mimber of molfunctions over the miseion durotion: 1.5.5
LRIJNCH YEHIELE INFORMATIDN:
Shutt.le dourieh
This is a Free-flier porlood.
This mission is shored with other poyloods; ETS EoEt. M\$: 1.570
TEST FRRAMETERE:
```

Component test tronsition time, duell time: hours: 3 : 6 System test transition, bwell times hours: 8, 48
Camponent test mins mox temperotures, deg E:-5 , 45
System test ming max temperatupesi deg Gig a 40
System test is conducted in a medium \&e. ヨ. 1玉ft×15fty facility. Maximum component test. lensth investipoted, hours: 480 Maximum olanned system test lenpth investigated: days: 93. 3

```

\section*{OPTIMIZED PARAMETERS:}
```

Minimum cost prosram, other thom zero test, on file 25
Component test lensth, hours: 240.0
Planned system test length, days: 56.0
Component test program cost, M$: 0.348
System test progrgm cost, M$: 0.518
Marching army cost, M$: 0.124
Mission querage quaidability: 0.766
Mission end instantaneous guailability: 0.698
Minimum lost value, M$: 2.296

```

\subsection*{11.79}

\section*{FFIDRAM FAFAMETEFG:}

\section*{FAMLOALI:}

Frotatlight Init.
Namber af mamponente: 32
Foylond weight, lbe: 450
Fgylond cast, Nits 4.006
MISEIDN FAFMMETEFS:
Miseion length duys: 3es
IEEiped averaje availobility: B. 30
Expected number of malf unctions over the misejurn dorutigna 7.24

\section*{LFIUNEH WEHICIE INFORMFTIOH:}

Shutt le loumith
This is aree-flier royydod.


\section*{TEST PARAMETERS:}

System test tromsition : dwell times houm. , 4:
Component test ming max temperatures \(\because: 45\)
System test mifn max temperotures; \(\therefore \because \quad \therefore \quad 0 \quad 40\)

Moximum somponent test leneth inuestianted, hours: \(4 B 0\)
Moximam rignned syetem test length investigatedg days: es.e
OFTIMIZED FARAMETERS:
Minimum cost forogroms other than zero test. an file 1
Component test length: hours: 48.0
Planned system test lenjthi days: 5.1
Component test program cost. M\$: 0.091
SyEtem test. Frogram cost; M\$: 0.207
Marchins armer eost: M\$0.011
Mission averape availability 0.300
Mission Emd instantaneous avoilability: 0. 186
Minimum lust valwes M\$: 4. 207


\section*{Protoflight Unit}

Number of components: 32
Payload weight, lbsi 450
Parload cost: M\$: 4.000
MISSION PARAMETERS:
Mission length, days: 365
Auerage availability not. specified.
Expected number of malfunctions over the mission duration: 1.77
LAUNCH VEHICLE INFORMATION:
Shuttle launch
This is a Free-flifi paylood.
This mission is shared with other payloads; STS cost, M\$: 5.468

\section*{TEST PARAMETERS:}

Component test transition time, dwell time, hours: 3 , 6
System test transition, dwell time, hours: 8,48
Component test ming max temperatures, des c:-5, 45
System test min; max temperaturesi des \(C: 0\), 40
System test is conducted in a large (e.g. 30ftx60ft) facility.
Maximum component test length investigated; hours: 480
Maximum planned system test lensth investisated, days: 93.3
OPTIMIZED PARAMETERS:
Minimum cost prosram, other than zero test, on file 12
Component test lensth, hours: 432.0
Planined system test lensth; days: 25.7
Component iest prosram cost, M\$: 0.642
System test prosram cost, M\$: 1.057
Marching army cost: M\$: 0.057
Mission average quailability: 0.737
Mission end instantaneous availability: 0.663
Minimum lost value, M\$: 4.246

\section*{PAYLORD:}

Protoflight Unit
Number of components: 32
Payload weight, lbs: 450
Payload cost, M\$: 4.000

\section*{MISSION PARAMETERS:}

Mission length: days: 365
Desired averase availability: 0.30
Expected number of malfunctions over the mission duration: 7.24

\section*{LRUNCH YEHICLE INFORMATION:}

Shuttle launch
This is a Free-flier payload.
This mission is shared with other payloads; STS cost, M\$: 5.468
TEST PARAMETERS:
Component test transition time, dwell time: hours: 3 , 6
System test transition, dwell time; hours: 8 , 48
Component test ming max temperatures, des c:-5, 45
System test min; max temperatures; des c: 0, 40
System test is conducted in a large (e.g. 30ft \(\times 60 \mathrm{ft}\) ) facility. Maximum component test length investigated; hours: 480 Maximum planned system test lensth investigateds days: 69.6

\section*{OPTIMIZED PARAMETERS:}

Minimum-cest program:-other than zero test, on file 1 Component test lensth, hours: 96.0
Planned system test lensthi days: 3.0
Component test prosram cost, M\$: 0. 153
System test prosram cost; M\$: 0.362
Marching army cost, M\$: 0.007
Mission averase availability: 0.300
Mission end instantaneous quailability: 0.186
Minimum lost value: M\$: 7.146


\section*{ADDENDUM J-H}

\section*{EFFECT OF AVAILABILITY}

\section*{\(1 / 1 / 79\)}

\section*{PROGRAM PARAMETERS:}

\section*{PAYLOAD:}

Protoflisht Unit
Number of componenis: 15
Payload weight, lbs: 200
Payload costs M\$: 1.831
9 reflights are planned in addition to this flisht.
MISSION PARAMETERS:
Mission lensths days: ?
Auerase availability not specified.
Expected number of malfunctions over the mission durotion: 0.52
LAUNCH UEHICLE INFORMATION:
Shuitle launch
This is an attached (non-Spacelab) payload.
This is a shared mission: cost: M\$: 1.570
TEST PARAMETERS:.
Component test transition time , dwell time, hours: 3 , 6
System test transition, dwell time, hours: 8, 12
Component test mini max temperatures; dee ci-5, 45
System test min, max temperatures; des C: 0,40
System test is conducted in a medium (e.3. 12ftx15ft) facility.
Maximum component test length investigoted, hours: 240
Maximum planned system test length investisated; days: 33.3
OPTIMIZED PRRAMETERS:
```

Minimum cost prosram, other than zero test, on fileg
Component test length; hours: 96.0
Planned system test length, days: 13.3
Component test program cost, M$: 0.072
Systam test program cost, M$: 0.171
Marching army cost; M$: 0.014
Mission averoge availability: 0.89g
Mission end instantaneous availability: 0.867
Minimum lost value, M$: 0.434

```

1/1/79

\section*{PROGRAM PRRAMETERS:}

\section*{PAYLOAD:}

Protoflight Unit
Number of components: 15
Payload weisht, lbs: 200
Payload cost, M\$: 1.831
9 reflights are planned in addition to this flight.
MISSION PARAMETERS:
```

Mission length, days: 7
Desired averase availability: 0.75
Expected number of malfunctions over the mission duration: 1.41

```

LRUNCH YEHICLE INFORMATION:
Shuttle launch
This is an attached (non-Spacelab) payload.
This is a shared mission: cost, M\$: 1.570

\section*{TEST PARAMETERS:}

Component iest tronsition time dwell times hours: 3 : 6
System test transition , dwell time, hours: 8 , 12
Component test ming max temperatures, deg ci-5, 45
System test min, max temperatures; des ci 0 , 40
System test is conducted in a medium (e.g. \(12 f t \times 15 f t\) ) facility.
Maximum component test lensth investisated, hours: 240
Maximum planned system test length investigated; days: 30.3

\section*{OFTIMIZED PARAMETERS:}

Minumum cost programs ouher than zero tests on file 1
Component test length: hours: 136.0
Planneci system test lengths days: 0,0
Component test program cost, M\$1 0.096
System test prosram cost; M\$: 0.000 Marching army cost: M \(\$ 0.000\)
Mission average avoilability: 0.750
Mission end instantaneous availability: 0.679
Minimum lost value, M\$1 0.535

\section*{FROGRAM PARFMETERS:}

\section*{PAYLOAD:}

Protoflisht Unit
Number of components: 15
Payload weight, \(16 \leq: 200\)

\section*{Payload cost, M\$: 1.831}

9 reflights are olonned in addition to this flight.
MISSION PARAMETERS:
Mission leneths days: 7 Desired average availability: 0.85
Expected number of malfunctions over the mission duration: 0.80
LAUNCH YEHICLE INFORMATION:
```

Shuttle launch
This is an attached (non-Spacelirb) payload.
This is a shared mission: cost, M\$: 1.570

```

TEST PARRMETERS:
Component test transition tame, dwell tine, hours: 3 : 6
System test transition , dwell time, hours: 8, 12
Component test min, max tenperatures, deg c:-5 , 45
System test ming max temperatures; des \(C: 0\), 40
System test is conducted in a medium (e.g. 12ftx15ft) facility.
Maximum component test lensth investisoted, hours: 240
Maximum planned system test lensth investigated, days: 125.0
OPTIMIZED PRRAMETERS:
Minimum cost prosram, other than zero test, on file 2
Component test lensth: hours: 48.0
Planned system test lensth, days: 8.8
Component test program cost, M \(\$ 0.043\)
System test prosram cost: M\$: 0.154
Marchins army cost, M\$: 0.009
Mission average availabilityi 0.850
Mission end instantaneous availability: 0.804
Minimum lost value, M\$ 0.470


J-H-4

\(+\) -

\section*{ADDENDUM J-I}

\section*{EFFECT OF TRANSITION/DWELL RATIO}

PROGRAM PARAMETERS:

\section*{PAYLOAD:}

Protoflizht Unit
Number of components 132
Payload weight: lbs: 750
Payload cost, M\$:5.000
MISSION PARHMETERS:
Mission lenpth; days: 365
Ruerage availability not specified.
Expected number of molfunctions over the mission duration: 2.20
LRUNCH YEHICLE INFORMATION:
Shuttle launch
This is a Free-ilier payload.
Thi: mission is sharind with other payloadsi STS cost: M: 1.570

\section*{TEST PARAMETERS:}

Component test trangition time , dwell time, hours: 8 : 16
System test transition, dwell time, hours: 8 , 16
Component test min: max temperatures; des ci-5 , 45
System test ming mox temperaturesi deg C: 0 , 40
System test is conducted in o large (e, 3 . \(30 f t x \beta 0 f t\) ) facilitx. Maximum component test. length inuestisateds huurs: 480 Maximum planned system test length investigatedi days: 40.0

\section*{OPTIMIZED PARAMETERS:}

Minimum cost prosram: other than zero test, on file 11
Component test leneth: hours: 384.0 Planned system test lengthi days: 20.0
Component test prospam cost, M\$: 0.535
System test program cost, M\$: 0.884
Marching army cost, M\$: 0.044
Mission averape avoilability: 0.685
Mission end instantaneous availability: 0.600
Minimum last value: M\$: 3.533

\section*{\(1 / 1 / 79\)}

\section*{PROGRAM PARAMETERS:}

\section*{PAYLOATI}

Protoflisht Urit
Number of components: 32
Paylood weight, lus: 750
Payload cost: M\$1 5.000
MISSION PARAMETERSI
Mission lenethe daysi 365
Auerage availability not spocified.
Expected number of malfunctions over the mission duration: 2.60

\section*{LAUNCH VEHICLE INFORMATION:}

Shutile launch
This is a Free-flier payload.
This mission is shared with other parloads; STS cost, M\$: 1.570
TEST PARAMETERS:
Component test transition time , dwell time; hour's: 22,2
System test transition , dwell time, hours: 8 , 16
Component test min: mair temperatures, deg ci-5, 45
System test mimi max temperaturesi deg ci 0 , 40
System test is conducted in a large (e.g. 30ftregit.) facility.
Meximum component test length investigated; hours: 480
Maximum planned system test length investipoted, days: 40.0
OFTIMIZED PARAMETERS:
Minimum cost prosram, other than zero test, on file 13
Component test length, hours: 480.0
Planned system test lensthi days: 24.0
Component test prosram cost, M\$1 0.549
System test program cost, M\$: 1.011
Marching army cost, M\$1 0.053
Mission querqge quailability: 0.640
Mission end instantaneous availability: 0.546
Minimum los, value, M\$1 3.980

\section*{PROGRAM PARAMETERS:}

\section*{PGMLARD:}


Number of component \(\mathrm{E}^{2} 32\)
Fayleod weight: lbs 750
Payload erse. M\$: 5.000

\section*{MISSION PARAMETERS:}

Mission length, days: 365
Ruerage availability not specified.
Expected number of malfunctions over the mission duration: 2.18

\section*{LAUNCH VEHICLE INFORMATION:}

Shuttle launch
This is a Free-flier payload.
This mission is shored with other payloads; STS cost. M\$: 1.570

\section*{TEST PARAMETERS:}

Component test transition time , dwell time, hours: 2,22 System test transition, dwell times hours: 8 , 16 Component test min: max temperatures, deg ci-5 , 45 System test min, max temperatures; deg C: 0 ; 40

System test is conducted in a large (e. 9 . \(30 f+\times 60 f\) ) facility. Maximum component test length investigated, hours: 430
Maximum planed system test length investigated, days: 40.0
OPTIMIZED PARAMETERS:
Minimum cost program, other than zero test, on file 11
Component test length: hours: 336.0
Planned system test length, days: 20.0
Component test program cost, M\$: 0.485
System test program cost, M\$: 0.884
Marching army cost, M\$1 0.044
Mission average quailabilityi 0.687
Mission end instantaneous availability: 0.603
Minimum lost value: M\$: 3.467


ADDENDUM J-J
EFFECT OF CYCLING

\section*{PROGRRM PARRMETERS!}

\section*{PAYLORD:}

Protoflisht Unit
Number of components: 32
Payload weight, lbs: 750
Payload cost, M\$: 5,000
MISSION PARAMETERS:
Mission lengths days: 365
Ruerase quailability not specified.
Expected number of malfunctions over the mission duration: 2.04

\section*{LAUNCH YEHICLE INFORMATION:}

Shuttle launch
This is a Freempier payload.
This mission is shared with other payloads; sTS cost, M\$: 1.570

\section*{TEST PARAMETERS:}

Component test transition time , dwell time, hours: 1 ,
System test transition, dwell time: hours: 8 , 16
Component test min, max temperatures, des ci-5, 45
System test mini max iemperaturesi des \(\mathrm{C}: 0\), 40
System test is conducted in a large (e.g. 30ftx60ft) facility. Maximum component test length investigated; hours: 480 Maximum planned system test length investisated days: 40.0

\section*{OPTIMIZED PARAMETERS:}

Minimum cost prosrams other than zero test, on file 32
Component test length, hours: 288.0
Planned system test lensthi days: 20.0
Component iest prosram cost, M\$1 0.457
System test program cost: M\$: 0.883
Marching army cost, M\$1 0.044
Mission auerage availability: 0.703
Mission end instantaneous quoilability: 1.622
Minimum lost value, M\$1 3.334

\section*{PAYLOAD:}

Protoflight Unit
Number of components: 32
Payload weight: lbs: 750
Payload cost: M\$: 5.000
MISSION PARAMETERS:
Mission lensth, days: 365
Ruerase availability not specified.
Expected number of malfunctions over the mission duration: 2.20
LAUNCH YEHICLE INFORMATION:
Shutite lounch
This is a Free-flier payload.
This mission is shared with other poyloads; STS cost, M\$: 1.570
TEST PRRAMETERS:
Component test transition time, dwell time: hours: 8 , 16
System test transition , dwell time, hours: 8 , 16
Component test ming max temperatures, deg ci-5, 45
System test min, max temperatures; des Ci 0 , 40
System test is conducted in a larse 《e.g. 30ftx60ft) facility. Maximum component test lensth investisated, hours: 480 Maximum rianned system test length investigated, dars: 40.0

\section*{OPTIMIZED PARAMETERS:}
```

Minimum cost progrom, other than zero test, on file ll
Component test length; hours: 384.0
Planned system test length, days: 20.0
Component test prosram cost, M$1 0.535
System test program cost, M$: 0.884
Marching army cost, M\$: 0.044
Mission average availability: 0.685
Mission end instantaneous quailabidity: 0.600
Minimum lost volue, M\$1 3.533

```


\section*{ADDENDUM J-K}

EFFECT OF TEMPERATURE

PRYLORD:
Protoflight Unit
Number of components: 32
Payload weisht, lbs: 750
Payload cost: M\$: 5.000
MISSION PARRMETERS:
Mission lengthi days: 365
Ruerase availability not specified.
Expected number of malfunctions ower the mission duration: 2.28
LAUNCH VEHICLE INFORMATION:
Shuttle lounch
This is a Free-flier payload.
This mission is shared with other poyloads; STS cost, M\$: 1.570
TEST PARAMETERS:
Component test transition time, dwell time, hours: 8,16
System test transition, dwell time, hours: 8 , 16
Component iest ming max temperatures, dee \(\mathrm{Cl} 5,45\)
System test min; max temperatures; desc: 10,40
System test is conducted in a larse (e.9. 30ftx60ft) facility. Maximum component test lensth invest igated, hours: 480 Maximum planned system test lensth investigatedi days: 40.0

\section*{OPTIMIZED PARAMETERS:}

Minimum cost prosram, other than zero test, on file 33
Component test lensth; hours: 384.0
Planned system test lengthi days: 22.0
Component iest prosram cost, M\$1 0.522
System test program cost, M\$: 0.945
Marching army cost, M\$: 0.049
Mission average availability: 0.676
Mission end instantaneous quailability: 0.589
Minimum lost value, M\$1 3.644

\section*{PROGRAM PARAMETERS:}
PAYLORD:
Protoflight Unit
Number of components: ..... 32
Payload weight, lbs: ..... 750
Paylond cost, M\$: 5.000
MISSION PARAMETERS:
Mission lensth, days: ..... 365
Average availability not specified.
Expected number of malfunctions over the mission duration: 2.49
LAUNCH YEHICLE INFORMATION:
Shuttle lounch
This is a Free-flier payload.
This mission is shared with other payloads; STS cost; M\$: 1.570
TEST PARAMETERS:
Component test transition time dwell time, hours: 8 ..... 16
System test transition , dwell time, hours: 8 , 16
Component test mins max temperatures, dee ci 5 ..... - 35
System test min: max temperaturesi deg C: 10 ..... 30
System test is conducted in a large ee.g. 30fta60ft ..... facility.
Moximum component test length investisated, hours: 480Maximum planned system test length investigated days: 40.0
OPTIMIZED PRRAMETERS:
Minimum cost prosram, other than zero test, on file 12
Component test length; hours: 432.0
Planned system test lensth; days: 22.0
Component test program cost, M\$: 0.569
System test erogram cost, Ms: ..... 0.944
Marching army cost, M\$: 0.049
Mission averoge availability: 0.652
Mission end instantaneous auailobility: ..... 0.560
Minimum lost volue, M\$: 3.849


J-K-3```


[^0]:    -The thermal vacuum test program is a portion of the overall environmental test program to which spacecraft equipment is subjected in order to demonstrate its preparedness to perform in orbit. During the thermal vacuum test program, the equipment is exposed to vacuum and temperature conditions related to those that will be experienced in orbit and operated in a simulation of the mission. The performance of the equipment under this environment is used to assess its readiness.

[^1]:    "The term "component" is defined in Appendix B.

[^2]:    Figure A-1. Format of Array DI[35, 8]

[^3]:    *Note: $K_{2}$, the initial cumulative failure rate for components, is taken as $424 \times 10^{-6}$. This is based on past history. Variations in the inherent failure rates that may accompany new techniques may cause this value to clange.

[^4]:    *This is a factor (such as the factor $\pi_{\mathrm{E}}$ and $\pi_{\mathrm{T}}$ of Table 2-4 in Ref. 12) that relates the failure rate to the environment.
    ** A value of $1 / 3$ is used rather than 0.311 as indicated in Eq. I-15 so that an integration can be performed. This error is not considered serious since it applies io all cases investigated and since comparisons are used for optimizations equivalent errors would be second order. Fig. $\mathbf{1 - 3}$ shows the variation in availability with a change in $\mathbf{B}$.

