brought to you by TCORE

Unclas

14542

(NASA-CR-150321) DEVICE MODEL FOR FETSIM CIRCUIT SIMULATION PROGRAM An Early Domestic Dissemination Report (RCA Advanced Technology Labs.) 15 p

NASA CONTRACTOR REPORT

NASA CR-150321

DEVICE MODEL FOR FETSIM CIRCUIT SIMULATION PROGRAM

By P. Ramondetta Advanced Technology Laboratories Government Systems Division RCA Camden, New Jersey 08102

March 1977

Prepared for

NASA-George C. Marshall Space Flight Center Marshall Space Flight Center, Alabama 35812

TABLE OF CONTENTS

Section		Page
I	INTRODUCTION	. 1
п	FETSIM MOS MODEL	. 2
ш	CONCLUSION	. 9

LIST OF TABLES

Table	4 4	age
1	MOS Model Constants	4
2	CMOS/SOS Device Parameters	7

STANDARD ABBREVIATIONS

Symbol		Definition
s	second	
m	meter	
1	liter	
g	gram	
v	volt	
A	ampere	
К	kelvin	
Hz	hertz	
cm^{3}	cubic centimeter	
min	minute	
in.	inch	
mil	10 ⁻³ inch	
C	Celsius	
k	kilo, 10 ³	
М	mega, 10 ⁶	
C	centi, 10^{-2}	
m	milli, 10 ⁻³	
μ	micro, 10^{-6}	
. n	nano, 10 ⁻⁹	

NONSTANDARD ABBREVIATIONS

Symbol	Definition	
PMOS	P-channel Metal Oxide Semiconductor	
IC	Integrated Circuit	
MSFC	George C. Marshall Space Flight Center	
NASA	National Aeronautics and Space Administration	

iv

NONSTANDARD ABBREVIATIONS (Concluded)

Symbol	Definition
LSI	Large Scale Integration
LSIC	Large Scale Integrated Circuit
MSI	Medium Scale Integration
MSIC	Medium Scale Integrated Circuit
SSI	Small Scale Integration
SSIC	Small Scale Integrated Circuit
CAD	Computer Aided Design
FETSIM	MOS circuit simulation computer program
MOS	Metal oxide semiconductor
CMOS	Complementary metal oxide semiconductor
SOS	Silicon on sapphire

LIST OF SYMBOLS

Symbol	Definition
V _G	Gate voltage
V _T	Threshold voltage
v _{Tn}	Threshold voltage for n devices
V _{Tp}	Threshold voltage for p devices
V _{TH}	Effective threshold voltage; this term accounts for the gating effect.
v _D	Drain voltage
VS	Source voltage
V _{DS}	Drain-to-source voltage
V _{SAT}	Saturation voltage
I _{DS}	Drain-to-source current
øn,p	A constant which is a function of the MOS fabrication process (n for NMOS devices; p for PMOS devices).

V

LIST OF SYMBOLS (Concluded)

Symbol	Definition
K _{n,p}	Channel conductance of MOS devices (n for NMOS devices; p for PMOS devices).
$\phi_{\mathbf{F}}$	Fermi potential of the substrate
T _{ox}	Thickness of gate oxide
Eox	Dielectric permittivity of gate oxide (silicon dioxide)
Q	Charge on an electron
Es	Dielectric permittivity of channel region (silicon)
NA	Channel doping level concentration for n devices (acceptors)
ND	Channel doping level concentration for p devices (donors)
μ_{n}	Channel mobility of electrons
μ _p	Channel mobility of holes
MOVA _{n,p}	An empirically determined factor which accounts for the mobility variation as a function of gate voltage.
W	Effective channel width
L	Effective channel length
^a n,p	An empirically calculated factor which accounts for the finite slope of the drain characteristics in the saturation region (n for NMOS devices; p for PMOS devices).
R	Electrical resistance
p	Refers to p-device type
n	Refers to n-device type
Du	Lateral diffusion
T _s	Thickness of sapphire
I _{DO}	Channel leakage
C _{ox}	Poly-over-epi capacitance
C _{mp}	Metal-over-poly capacitance
BVDS	Breakdown voltage (measured between drain and source)

Section I

INTRODUCTION

The information presented in this report includes a description of the MOS transistor model used in the FETSIM analysis program. CMOS/SOS device parameters are included. Typical device mobilities are given as well as the empirically determined constants necessary to model second-order effect conductance variations due to gate voltage and saturated drain voltage.

Section II

FETSIM MOS MODEL

The MOS model used in the FETSIM circuit analysis program is based on a derivation following that of Ihantola.¹ By considering the doping level(s) of the ionized acceptors (or donors) in the substrate material, several second-order physical effects are implicitly accounted for. These include the apparent decreased carrier mobility resulting from heavy substrate doping and the gating effect associated with stacked devices.

A linearized empirical approach² is utilized as a means of handling the finite drain conductances in the saturation region. In addition, surface channel mobility modulation, as a function of gate voltage, is modeled along the lines proposed by Schrieffer.³

The resulting four-terminal, MOS-device model is ideally suited for large-signal analysis and is directly applicable to either bulk MOS calculations or dielectrically isolated device (SOS) calculations.

Essentially the model divides MOS transistor operation into one of three possible cases.

CASE I:	$ v_{G} < v_{T} $		V _G	<	$v_{_{TH}}$	
		$I_{DS} = 0$	•	•		

Case I is the trivial case; here the magnitude of the gate voltage is below the effective threshold voltage necessary to cause transistor conduction. In this case the device current is zero.

- 1. H.K.J. Ihantola, "Design Theory of a Surface Field Effect Transistor," Solid State Electron., vol. 7, pp. 423-430, June 1964.
- 2. S.R. Hofstein, Field Effect Transistors, Ed. by J.T. Wallmark and H. Johnson, Prentice-Hall, Englewood Cliffs, New Jersey, 1966.
- 3. J.R. Schrieffer, "Effective Carrier Mobility in Surface-Space Charge Layers," Physical Review, February 1955.

$$\begin{array}{c|c} \underline{\text{CASE II:}} & \left| \mathbf{V}_{\mathrm{G}} \right| > \left| \mathbf{V}_{\mathrm{T}} \right| & \\ & \left| \mathbf{V}_{\mathrm{D}} \right| < \left| \mathbf{V}_{\mathrm{SAT}} \right| & \\ & I_{\mathrm{D}} = K \left\{ 2 \mathbf{V}_{\mathrm{DS}} (\mathbf{V}_{\mathrm{GS}} - \mathbf{V}_{\mathrm{T}}) - \mathbf{V}_{\mathrm{DS}}^{2} - (4/3) \phi_{\mathrm{n}} \left(\mathbf{V}_{\mathrm{DS}}^{+} 2 \phi_{\mathrm{F}}^{-} \right)^{3/2} \right\} & (1 + a \mathbf{V}_{\mathrm{DS}}^{-} \mathbf{V}_{\mathrm{DS$$

Case II handles the special case of a conducting transistor with its source and substrate electrically connected. The expression for the channel current contains three terms - the first two of which are those found in the generally accepted model of Sah.⁴ The third term, $(4/3)\phi_n (V_{DS} + 2\phi_F)^{3/2}$, introduces the effect of the substrate doping level. (The expressions for ϕ , K, V_{TH}, V_{SAT}, and α can be found in Table 1). It is this term that accounts for the reduced effective mobility associated with highly doped MOS substrates. The $(1 + \alpha V_{DS})$ factor accounts for the finite slope of the drain characteristics in the saturation region. SOS devices are always handled with CASE I and CASE II.

$$\begin{array}{c|c} \underline{\text{CASE III}:} & | \mathbf{V}_{\text{GS}} | > | \mathbf{V}_{\text{TH}} | \\ & | \mathbf{V}_{\text{D}} | \leq | \mathbf{V}_{\text{SAT}} | \\ & | \mathbf{V}_{\text{S}} | \leq | \mathbf{V}_{\text{SAT}} | \\ & | \mathbf{V}_{\text{S}} | \leq | \mathbf{V}_{\text{SAT}} | \\ & \mathbf{I}_{\text{D}} = \mathbf{K} \left\{ 2(\mathbf{V}_{\text{G}} - \mathbf{V}_{\text{T}}) (\mathbf{V}_{\text{D}} - \mathbf{V}_{\text{S}}) - (\mathbf{V}_{\text{D}}^{2} - \mathbf{V}_{\text{S}}^{2}) - (4/3)\phi_{\text{n}} \left[(\mathbf{V}_{\text{D}} + 2\phi_{\text{F}})^{3/2} - (\mathbf{V}_{\text{S}}^{+2}\phi_{\text{F}})^{3/2} \right] \right\} (1 + a\mathbf{V}_{\text{DS}}) \end{array}$$

Note: V_{G} , V_{D} , & V_{S} are measured relative to the substrate.

Case III covers the generalized and more complicated case where neither the source nor the drain is connected to the substrate. (When either the source or the drain is connected to the substrate, Case III reduces to Case Π_{\bullet})

Case III permits the accurate handling of "stacked" transistors (for example, three input NOR gates). Generally, this case applies to bulk devices only. However, it is used in SOS calculations whenever device substrates are not permitted to "float".

The model is programmed in such a way as to set $V_D = V_{SAT}$ whenever $V_D \ge V_G = V_{TH}$, and $V_S = V_{SAT}$ whenever $V_S \ge V_G = V_{TH}$.

4. C.T. Sah, "Characteristics of Metal-Oxide-Semiconductor Transistors," IEEE Transactions on Electron Devices, July 1964, pp. 324-325.

Comments Value Symbol A constant which is a function of the ø n,p MOS fabrication process. ox √^{2E}s^{QN}A,D $K_{n} = \frac{\mu_{n}}{1 + MOVA_{n} (V_{G} - V_{S} - V_{T})} \frac{E_{ox} W}{2T_{ox} L}$ $K_{p} = \frac{\mu_{p}}{1 + MOVA_{p} (V_{G} - V_{S} - V_{T})} \frac{E_{ox} W}{2T_{ox} L}$ $V_{T} = \emptyset_{n,p} \sqrt{V_{S} + 2\emptyset_{F}}$ Κ The sign is "+" for enhancement mode $v_{_{\rm TH}}$ NMOS transistors. This term accounts for the gating effect. Typical Values a_{n,p} This is an empirically calculated $a_n = 0.01$ factor which accounts for the finite $a_{\rm p} = 0.02$ slope of the drain characteristics in the saturation region. V_{SAT} $\frac{\vartheta_{n,p}}{2} + 2\vartheta_{F} + V_{G} - V_{T}$ -2Ø_F + The Fermi potential of the substrate. 0.026 log ø_F

TABLE 1. MOS MODEL CONSTANTS

11 -

Symbol	Value	Comments
	Typical Value	
MOVA _{n,p}	0.03	This is an empirically determined factor, which accounts for the mobility
		variation as a function of gate voltage.
W,L		Effective channel width and channel length.
Q	0.16×10^{-18}	Charge on an electron, in coulombs.

TABLE 1. MOS MODEL CONSTANTS (Continued)

The programming technique permits saturated transistors and the gating effect to be handled.

MOS transistors processed in a bulk LSI technology share a common substrate. Generally NMOS devices are fabricated within a common p-well while PMOS devices are fabricated within a common n-type material. Inherent in this scheme is the possibility that the sources and drains of "stacked" transistors (in functional gates and transmission gates) can become back biased with respect to the fixed potential of the common substrates. This "gating effect" gives rise to an apparent increase in the threshold voltages of the associated transistors. This phenomenon is modeled in the equations of CASE III.

In comparison, MOS transistors processed in one of the SOS LSI technologies are fabricated within separate, independent islands of substrate material. This technique leaves the channel material free to be defined by the source or drain potentials of each transistor. In the case of NMOS devices, the p-type channel material is defined by the source or drain — whichever is at the lower potential. Similarly for PMOS devices, the n-type channel material is defined by the source or drain, whichever is the higher potential. This phenomenon is modeled by automatically defining the substrate of each SOS-LSI transistor to be at the lowest of the source or drain potentials for n-devices and highest of the source or drain potentials for p-devices. When this is done, the more generalized CASE III reduces to CASE II.

A nominal set of parameter values that is applicable for the current CMOS/SOS processes available at the RCA Solid State Technology Center is shown in Table 2. From the channel conductance values listed, typical mobility values can be calculated. For example,

 $\mu_{n} = \frac{K_{n} (2 T_{ox})}{E_{ox}} = 319 \text{ cm}^{2}/\text{volt-second}$

 $\mu_{\rm p} = 191 \, {\rm cm}^2/{\rm volt-second}.$

Using the typical device parameters listed in Table 2, the FETSIM model calculates saturated device currents (at 10 volts) of 1.2 and 0.8 mA for the n and p transistors, respectively. These currents are based on an assumed device width of 1.0 mil. The mobilities used for the calculation are 319 and 191 cm²/volt-second for the n and p devices, respectively. In addition, the mobility modulation terms $MOVA_{n,p}$ were assumed to be 0.

When it becomes necessary to model the effects of mobility variation as a function of gate voltage, the $MOVA_{n,p}$ terms must be chosen to match the observed mobility modulation phenomenon. The empirical data will be a function of the particular

Parameter	Symbol	Units or Test Conditions	Min.	Typical	Max.
Threshold voltage	V _{Tn}	$V_D = V_G$, $I_D = 10 \ \mu A$ T = 25°C, w = 2,0 mils	0, 5		2. 5
Threshold voltage	V Tp	$V_{D} = V_{G}, I_{D} = 10 \ \mu A$ T = 2% C w = 2.0 mils	-0, 5		-2.5
Channel conductance	K _n	$K = \frac{\mu E_{ox}}{2 T} AV^{2} (x 10^{-6})$		5,0	
	к _р	$K = \frac{\mu E_{ox}}{2 T_{ox}} AV^{2} (x 10^{-6})$		3.0	
Breakdown voltage	BV _{DSp} BV	$I_{\rm D} = 10\mu{\rm A}, V_{\rm G} = 0 V$ $I_{\rm D} = -10\mu{\rm A}, V_{\rm G} = 0 V$	20 -20	23 -30	
Dielectric constant	DSn E ox	$0.885 \times 10^{-13} $ F/cm	3, 9	3.9	
Oxide thickness	т ох т	Channel A Field Å	1000 6000	1100 7000	1200 3000
Channel length	-ox 1	As defined in mils	• .	0.25 0.30	
Lateral diffusion	Dun	mils		0.03	
Sapphire thickness	Du p T	mils		14	
Metal-to-metal spacing		mils		0.3	
Metal-to-diffused region spacing Metal thickness	TAI	Å	10,000		
Metal width		mils		0.4	
Diffused-region to diffused-region spacing		$(X \ 10^{15} \ cm^{-3})$		2	
P-epi doping		$(X \ 10^{15} \ cm^{-3})$		3	
N+ epi resistance P+ epi resistance	R	ohms/square		65	
N+ poly resistance	R	ohms/square	[.	200	
P+ poly resistance	R	ohms/square $V_{c} = 0$ nA/mil		10	25
Channel leakage	DOn I DOp	$V_{\rm G} = 0$ nA/mil		10	25
Body region tie		Floating			
Poly-over-epi capacitance	Cox	pF/square		0.28	
Metal-over-poly capacitance	Cmp	pr'square		0,010	

TABLE 2. CMOS/SOS DEVICE PARAMETERS

7

process under examination. Generally the MOVA_{n,p} terms may be set equal to each other (MOVA_n = MOVA_p). Measured conductances for both the bulk and SOS technologies suggest a typical mobility reduction of 20 percent over a 10-volt operating range. Specifically, the mobility at $V_G = 10$ volts is reduced to 80 percent of its value measured at the onset of conduction ($V_G = V_T$). To model this mobility variation, the MOVA terms should be set equal to 0.030 (MOVA_n = MOVA_p = 0.03). It is important to note, however, that whenever finite MOVA terms are introduced, the mobility terms used with the model must be artificially increased to guarantee correct scaling. For example, fixed electron mobilities of 319 cm²/volt-second at $V_G = V_T$ and as 246 cm²/volt-second at $V_G = 10$ volts.

Section III

CONCLUSION

The FETSIM MOS transistor model has been described. The means by which this model handles both SOS and bulk transistor devices has been discussed. In addition, a complete set of typical processing and empirically derived model constants has also been provided.

9

			TECHNIC	AL REPORT STA	NDARD TITLE P	AGE
1. F	REPORT NO.	2. GOVERNMENT ACCES	STON NO.	3. RECIPIENT'S	CATALOG NO.	
1	TTLE AND SUBTITLE			5. REPORT DATI	Ξ	
•			ACTIVA 2000	March 19	77	
	Device Model for FETSIM Circ	uit simulation Pro	gram	6. PERFORMING	ORGANIZATION COL	JE
	N (+ 1 4) (3 (- 3)	· · · · · · · · · · · · · · · · · · ·		8. PERFORMING	ORGANIZATION REPO	DR T
	P. Ramondetta					
. 1	PERFORMING ORGANIZATION NAME AND AD	DRESS	-	10. WORK UNIT	NO.	
	Advanced Technology Laborato	ories			R GRANT NO	
	Government Systems Division.	RCA		NTA CONTRACT C	325	
	Camden, New Jersey 08102	•		13. TYPE OF REI	PORT & PERIOD COV	ERE/
	CONCODING ACENCY NAME AND ADDRESS					
۲. ۱	SPUNSURING AGENCI NAME AND ADDRESS			Contracto	or Report	
	National Aeronautics and Space	e Administration				
	Washington, D. C. 20546			14. SPONSORING	3 AGENCY CODE	
5,	SUPPLEMENTARY NOTES					
5,	ABSTRACT					
	device mobilities are given as model second-order effect con	s well as the empiring nductance variation	rically determins due to gate	ined constants voltage and sa	necessary to turated drain	
	voltage.					
	· · · ·				. •	
		· · · · ·				
7.	KEY WORDS					·
•						AT .
						E N
						1
		}				
		· · · · · · · · · · · · · · · · · · ·				
~	SECURITY CLASSIF. (of this report)	20. SECURITY CLASS	F. (of this page)	21. 1101-0-	te a di	
9.	Unala ssified	Unclassified	1	14		
	Ullelassified		•	1		

۰.