General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

JPL PUBLICATION 79-66

(NASA-CR-162298) RESULTS OF THE 1978 N79-32635 NASA/JPL BALLOON FLIGHT SOLAR CELL CALIBRATION PROGRAM (Jet Propulsion Lab.) 13 p HC A02/MF A01 CSCL 10A Unclas

10A Unclas G3/44 35786

Results of the 1978 NASA/JPL Balloon Flight Solar Cell Calibration Program

C. H. Seaman L. B. Sidwell

September 1, 1979

National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Results of the 1978 NASA/JPL Balloon Flight Solar Cell Calibration Program

C. H. Seaman L. B. Sidwell

September 1, 1979

National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Preface

The work described in this report was performed by the Control and Energy Conversion Division of the Jet Propulsion Laboratory. The flight was conducted with the cooperation of the National Scientific Balloon Facility, located in Palestine, Texas. A summary of the data is presented.

Acknowledgment

The authors wish to extend appreciation for the cooperation and support provided by the entire staff of the National Scientific Balloon Facility. Gratitude is also extended to assisting JPL personnel, especially R. G. Downing, R. L. Mueller and R. S. Weiss. The cooperation and patience extended by all participating organizations was greatly appreciated.

PRECEDING PAGE BLANK NOT FILMED

Abstract

The 1978 scheduled solar cell calibration balloon flight was successfully completed on July 20, 1978, meeting all the objectives of the program. Thirty-six modules were carried to an altitude of above 36 kilometers. Recovery of telemetry and flight packages was without incident. These calibrated standard cells can be used as reference standards in simulator testing of cells and arrays with similar spectral response characteristics.

CONTENTS

1.	INTRODUCTION	1
11.	PROCEDURE	1
111.	SYSTEM DESCRIPTION	4
IV.	DATA REDUCTION	4
v.	MONITOR CELLS	6
VI.	JPL FILTERED CELLS	6
VII.	FLIGHT PERFORMANCE	8
VIII.	CONCLUSIONS	8
REFER	ENCES	8

Tables

1.	Attenuation of Solar Radiation by the Earth's Atmosphere	2
2.	Ceil Calibration Data	5
3.	History of Standard Module BFS-17A	7

Figures

1.	Solar Module Payload	3
2.	Balloon Mount	4
3.	Module Location Chart	6

I. INTRODUCTION

The primary source of electrical power for unmanned space vehicles is the direct conversion of solar energy through the use of solar cells. As advancing cell technology continues to modify the spectral range of solar cells to utilize more of the Sun's spectrum, designers of solar arrays must have information detailing the impact of these modifications on cell conversion efficiency to be able to confidently minimize the active cell area required and hence the mass of the array structure.

Since laboratory simulation of extra-atmospheric solar radiation has not been accomplished on a practical scale with sufficient fidelity, high altitude exposure must be taken as the best representation of space itself. That representative high altitude is to be chosen to make

$$\int_{\lambda 1}^{\lambda 2} \mathbf{R}_{\lambda} \mathbf{T}_{\lambda} \mathbf{E}_{\lambda} \mathbf{d}_{\lambda} \geq \mathbf{K} \int_{\lambda 1}^{\lambda 2} \mathbf{R}_{\lambda} \mathbf{E}_{\lambda} \mathbf{d}_{\lambda}$$
(1)

where

 R_{λ} = cell spectral response E_{λ} = extra-atmospheric solar spectral irradiance (AMO) T_{λ} = sky path spectral transmissivity K = desired fractional fidelity to true AMO

The limits of integration, λ_1 and λ_2 , in the practical case of known solar cells will be 0.30 and 1.20 μ m, respectively. The values of these integrals can be evaluated to desired precision by finite summation of available data (Refs. 1 and 2). It can thus be shown that for this wavelength band, the spectral response of recent cells and K = 0.995, for example, an altitude greater than 30 kilometers is required to satisfy Eq. (1) above. This is, incidently, above the operating ceiling of the high altitude aircraft.

The factors affecting the spectral transmission of the atmosphere at various altitudes are summarized in Table 1 (Ref. 3). To reach and maintain the required altitude, the calibration program makes use of balloons provided and launched by the National Scientific Balloon Facility, Palestine, Texas.

II. PROCEDURE

To insure electrical and mechanical compatability with other components of the flight system, the cells are mounted by the participants on JPL-supplied standard modules according to directions in Ref. 4, which details materials, techniques, and workmanship standards for assembly. The JPL standard module is a machined copper block 3.7 x 4.8 x 0.3 cm thick, rimmed by 0.3-cm-thick fiberglass, painted a high reflectance white, with insulated solder posts and is permanently provided with a precision (0.1%, 20 ppm/°C) load resistor appropriate for scaling the cell output to the telemetry constraints. This load resistor, 0.5 ohm for a 2 x 2 cm cell, for example, also loads the cell in its shortcircuit current condition. The mounted cells are then subjected to Table 1. Attenuation of Solar Radiation by the Earth's Atmosphere

	A	Altitude ^a				Wavelengt	Wavelength regions, µm						
Pressure, mbar ^b 1	Miles	10 ³ Kilo- feet meters	0.12 to 0.20	0.20 to 0.29	0.29 to 0.32	0.32 to 0.35	0.32 to 0.35 0.35 to 0.55	0.55 to 0.9 0.9 to 2.5	0.9 to 2.5	2.5 to 7	7 to 20	Altitude. km	IUGG
	37	200 60	O2 absorbs almost completely.			Solar irrad	Solar irradiation intensity approximates extra atmospheric.	ty approxim	lates extra at	mospheric.		Above 60	110 km
	20	108 33	t in the	(0.20 to 0.21 µm, absorption by O ₂) Absorption by O ₃ appreciable.	O ₃ absorption not important.	Attenuation wavelengths.	Attenuation by scattering increases markedly toward shorter wavelengths.	ng increases	markedly to	ward shorter Energy small	Energy very small	60 to 33	CHEMOSPHERE
227	6.8 36	36 11	nation Le statuat h	No radiation penetrates below about 11 km.	O3 absorption attenuates more than loss by scattering.	O ₃ absorption significantly attenuates radiation.	Irradiation dimiraished mostly by scattering by permanent gases in atmosphere.	H ₂ O responsible for major absorption: CO ₂ absorbs slightly at 2 µm. Water vapor (or ice crystals) found up to about 70,000 feet.	nsible for rption; as slightly ater vapor tals) o about		Strong O ₃ absorption at 9.6 µm. Strong CO ₂ absorption 12-17 µm.	33 to 11	20 km
267	1.2 6.6	6.6 2		1944 - 1949 - 19 1949 - 1949 - 1949 - 1949 - 1949 - 1949 - 1949 - 1949 - 1949 - 1949 - 1949 - 1949 - 1949 - 194 1949 - 1949 - 1949 - 1949 - 1949 - 1949 - 1949 - 1949 - 1949 - 1949 - 1949 - 1949 - 1949 - 1949 - 1949 - 1949 -	i sefaneči en ese n se sening	Highly variable dust, haze (H_2O) , and smoke responsible for attenu- ation in regions 0.32 to $0.7 \mu\text{m}$.		Energy Energy transmitted penetrates with small to sea loss down level "hy to 2 km, "windows"		No significant penetration below 2 km, except in "windows"	Energy transmitted with	11 to 2	11 km TROPOSPHERE
1013				unistro (n. F esta f	Appreciable penetration through "clear" atmosphere to sea level. 7:5 30%	Penetration through "clear" atmosphere to sea level about 40%.	Dust may rise to more than 4 kilometers.		at approximately 1.2. 1.6, and 2.2 µm.	at approxi- mately 3.8 and 4.9 µm	moderate loss. Many absorption bands due to atmos- pheric gases.	2 to sea level	•

OF POOR QUALITY

2

preflight measurements in the JPL X25L solar simulator. This measurement when compared to a postflight measurement under the same conditions may be used to detect cell damage or instabilities.

Prior to shipment to the launch facility, the modules are mounted on the sun tracker bed plate, Fig. 1. Upon arrival at the Palestine facility, the tracker and module payload are checked for proper operation, the data acquisition and Pulse Code Modulated telemetry systems are calibrated, and mounting of the assembly onto the balloon is then accomplished, (Fig. 2).

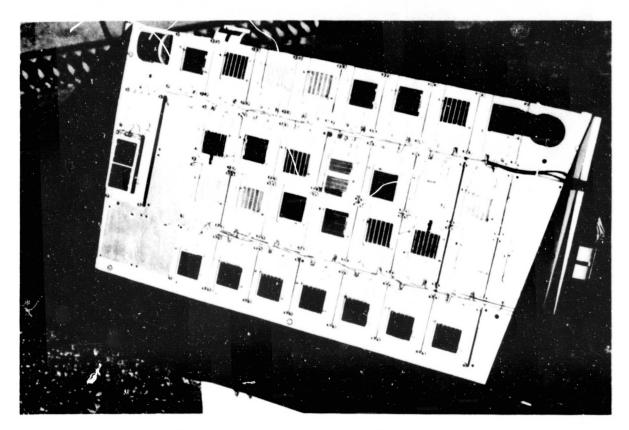


Figure 1. Solar Payload Module

At operating altitude the sun tracker bed plate is held pointed at the Sun to within ± 1 degree. The response of each module, temperatures of representative models, sun lock information, and system calibration voltages are sampled twice each second and telemetered to the ground station, where they are presented in teletype form for real-time assessment and are also recorded on magnetic tape for later processing. Float altitude information is obtained from data supplied by the balloon facility.

OF POOR QUALITY

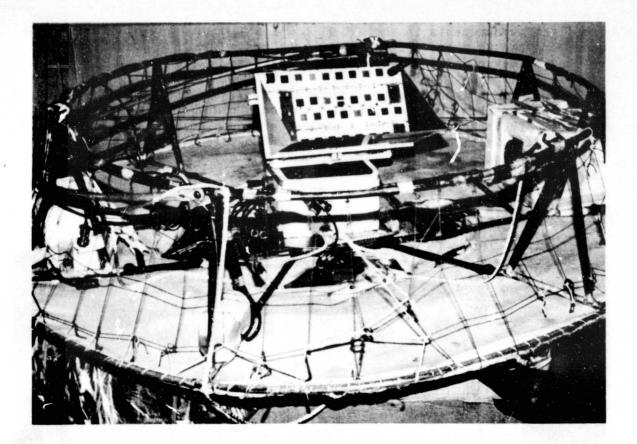


Figure 2. Balloon Mount

111. SYSTEM DESCRIPTION

A solar tracker mounted in a frame on top of the balloon carries the module payload while the transmitter of the data link is located in the lower gondola along with batteries for power and ballast for balloon control. At completion of the experiment, the upper payload and lower gondola are returned by parachutes and recovered. A more complete description of the system including the sun tracker can be found in Ref. 5.

IV. DATA REDUCTION

The raw data as taken from the tape is corrected for temperature and Sun-Earth distance according to the formula (Ref. 6):

$$I_{28,1} = I_{T,R}(R^2) + (28-T) \alpha$$

where

IT.R	=	measured short circuit current at temperature	
-,		T and distance D.	
R	=	Sun-Earth distance in astronomical units	
a	=	short-circuit current temperature coefficient	

T = module temperature in °C

The value of is supplied by the participant.

The calibration value is taken to be the average of 200 consecutive data points taken around the time of solar noon during indicated thermal equilibrium.

The flight data were thus reduced and modules with their data and calibration values were returned to the participants. This information is collected in Table 2. The placement of modules on the field of the tracker bed for the 1978 flight is shown in Fig. 3. A detailed discussion of data reduction and an analysis of system error may be found in Ref. 5.

			BALLOON FLIGHT	6-1 DATE	/-20-/8	-LTITUDE	119,640	HV=1.01+1	0.14
CHANNEL			TEMP. INTENSITY	STANDARD		LAR SIM.		SON, SOLAR	CUMMENT
NUMBER	NUMBER	CODE	ADJ. AVERAGE	DEVIATION		28 DEG.C	SINULATO		
					PRE-PLI	POS-FLT	PRE-FLT	FLIGHT VS.	
							PUS-ELT	PRE-FLT (PERCENT)
	78-104	HUGHES	81.20	.04992	80.20	80.40	.25	1.24	
2	78-121	TRA	66.04.	.05149	62.40	03.10	1.12	5.84	
Ĵ.	78-106	HUGHES	90.47	.03158	89.85	89.08		9	
	78-006	JPL	31.58	.05421	32.30	32.11	59	-4.94	C.ST.FILTER
5	74-205	JPL	91.39	.05149	88.50	88.33	19	3.24	BLACK
	78-103	HUGHES	86.29	.02641	84.55	84.50	0.	2.04	
7	78-126	TRM	73.060	.04204	71.85	71.57	39	1.40	
	78-101	HUGHES	95.90	.03837	93.85	93.40	48	2.18	
10	78-122	TRW	84.73	.05218	64.55	45.82	1.97		
11	78-009	JPL	68.08	.04616	47.30	45.00	-4.80	1.91	0.35M FILTER
12	73-183	JPL	67.26	.04220	68.32	68.30	03	-1.55	TEMP 4 CELL
13	78-007	JPL	35.03	.04650	37.00	37.06	.14	-7.54	0.7M FILTER
	6F 5-17A	JPL	60.49	.02904		60.60		27	STANDARD
15	78-110	HUGHES	96.44	.05226	95.00	94.35		1.51	312.00
16	78-107	HUGHES	89.52	.05147	89.40	68.80	07	.13	
17	78-002	JPL	75.29	.02360	75.55	75.48	09	-2.27	284 68
1.	78-001	JPL	85.92	.03647	84.60	83.95	77	20	284 CM
19	73-182	JPL	68.20	.02583	69.10	69.21	.16	-1.31	TEMP 1 CELL
20	78-005	JPL	79.65	. 45718	80.00	44.31	.39	44	
21	78-123	TRM	77.37.	.04753	75.40	75.77	. 49	2.61	
22	78-008	JPL	34.86	.02802	34.20	33.89	91	50	0.8M FILTER
23	78-124	TRW	83.37.	.04670	81.55	81.50	06	2.23	
24	78-105	HUGHES	81.75	.02455	80.90	81.00	.14	1.00	
25	78-125	IRA	90.18.	.06937	87.20	37.26	.07	3.42	
26	76-001	JPL	67.65	.05780	68.65	68.61	0.	-1.44	TEMP 3 CELL
28	78-012	JPL	79.38 76.87	.05437	79.50	79.23	34	15	VJ (SOLAREX)
29	77-005	JPL	76.31	.04885	76.00	77.48	15		GREEN
30	78-010	JPL	84.40	.03175	83.00	82.75	42	1.47	VIOLET S-13
31	78-003	JPL	90.77		88.50	88.20	34		
32	78-004	JPL	69.99	.05049	70.15	70.68		2.57	0.0 FILTER
33	78-011	JPL	79.60	.04926	79.40	78.70		.25	5-11
34	77-004	JPL	77.21	.04668	77.60	77.67	.09	50	GREEN
35	77-006	JPL	76.70	.04772	76.20	76.12	- 10	.45	VIOLET
36	78-014	JPL	80.42	.05990	78.80	78.30		2.05	1. (1.1.)
			. INDICATES C	MANNEL FOR	WHICH NG	TEMPERAT			PROVIDED.
			AVERAGE TEM					54.27	

Table 2. Cell Calibration Data

	78-104 HUGHES	78-121 TRW 2	78-106 HUGHES 3	78-006 JPL FILTER (4)	74-205 JPL BLACK 5	78-103 HUGHES 6	78-126 TRW 7	78-101 HUGHES (8)	ON SUN (48)
	78-122 TRW (9)	78-102 HUGHES	78-009 JPL FILTER (1)	73-183 14 (46) (12)	78-007 JPL FILTER (13)	BFS-17A JPL (14)	78-110 HUGHES (15)	78-107 HUGHES (16)	78-002 JPL (17)
78-001 JPL (18)	73-182 T1 (43) (19)	78-005 JPL 20	78-123 TRW (21)	78-008 JPL FILTER (22)	77-004 JPL GREEN 23	78-105 HUGHES (24)	78-125 TRW (25)	76-001 T3 (45) (26)	
78-012 JPL (27)	77-003 JPL GREEN (28)	77-005 JPL VIOLET 29	78-010 JPL 30	78-003 JPL 31	78-004 JPL 32	78-011 JPL 33	34	77-006 JPL VIOLET 35	78-014 JPL 36

INDICATES CHANNEL NUMBER

H - TI STD CELL

T2 TRACKER ELEC

T3 STD CELL

T4 STD CELL

T5 VOLTAGE REF BOX

Figure 3. Module Location Chart

V. MONITOR CELLS

Several standard modules have been flown repeatedly over the 16-year period of calibration flights. The record of the one with the longest history, BFS-17A, appears in Table 3. This data shows a standard deviation of 0.39% and a maximum deviation of 0.92% from the mean. In addition, the uniformity of the solar irradiance (i.e., no spurious reflections, shadowing) over the field of the modules has been demonstrated since the location of this module was changed in that field from flight to flight.

VI. JPL FILTERED CELLS

A group of five modules was flown in a selective filtering experiment, three of which, 78-006, 78-007 and 78-009, were filtered with 10-nanometer bandwidth interference filters centered at 500, 700 and 1035 nanometers, respectively. A fourth, 78-008, was filtered with a 780-nanometer long-pass filter. All filters were cemented permanently in place using Dow-Corning Sylgard 182. The fifth member of the group, 78-003, had no filter. This group of modules will serve to monitor the deviation from AMO in the spectral characteristics of solar simulators.

Flight date	Output, mV	Flight date (Output, mV
9/5/63	60.07	8/5/70	60.32
8/3/64	60.43	4/5/74	60.37
8/8/64	60.17	4/23/74	60.37
7/28/65	59.90	5/8/74	60.36
8/9/65	59.90	10/12/74	60.80
8/13/65	59.93	10/24/74	60.56
7/29/65	60.67	6/6/75	60.20
8/4/66	60.25	6/27/75	60.21
8/12/66	60.15	6/10/77	60.35
8/26/66	60.02	8/11/77	60.46
7/14/67	60.06	7/20/78	60.49
7/25/67	60.02		
8/4/67	59.83	Mean	60.25
8/10/67	60.02		
7/19/68	60.31	Deviation	0.24
7/29/68	60.20		
8/26/69	60.37	Maximum deviation	0.55
9/8/69	60.17		
7/28/70	60.42		

Table 3. Repeatability of Standard Solar Cell BFS-17A for 30 Flights over a 16-Year Period

Each data point is an average of 20 to 30 points per flight for period 9/5/63 to 8/5/70.

For flights on 4/5/74 through 7/1/75 each data point is an average of 100 or more flight data points.

For flights starting in September 1975, each data point is an average of 200 data points.

VII. FLIGHT PERFORMANCE

The launch at 0730 hours on July 20, 1978, was uneventful as were the float and termination phases. The tracker was energized at 1023 hours at an altitude of 36.3 kilometers with sun-lock occurring within 2 minutes. The flight was terminated at 1412 hours. Recovery of payload followed.

VIII. CONCLUSIONS

1. As emphasized by the history of repeatability of cell BFS-17A, viz. $\pm 1\%$ (see Table 3), silicon cells when properly cared for are stable for long periods of time and may be used as standards with confidence.

2. To date, the only method demonstrated to be capable of obtaining AMO calibration with the accuracy required is the balloon-borne system.

3. As advancing cell technology continues to favorably modify their spectral response, continued calibration under AMO conditions is required to assure that solar panel performace with all its ramifications can be accurately predicted.

REFERENCES

1. Drummond, A. J., and Thekaekara, M. P., <u>The Extraterrestrial Solar</u> <u>Spectrum</u>, Institute of Environmental Sciences, Mount Prospect, Ill., 1973.

2. <u>Handbook of Geophysics and Space Environments</u>, Air Force Cambridge Research Laboratories, S. L. Valley, ed., 1965, Chapter 7.

3. Gast, P. R., "Solar Radiation," <u>Handbook of Geophysics</u>, C. F. Campen, Jr., et al., eds., Chapter 16:14-32, MacMillan Co., New York, 1960.

4. Greenwood, R. F., "Fabrication of Solar Cell Modules Ballon Flight Standard," Procedure No. EP504443, Revision C, June 11, 1974 (a JPL internal document).

5. Yasui, R. K., and Greenwood, R. F., <u>Results of the 1973 NASA/JPL</u> <u>Balloon Flight Solar Cell Calibration Program</u>, Technical Report 32-1600, Jet Propulsion Laboratory, Pasadena, Calif., Nov. 1, 1975.

6. <u>Solar Cell Array Design Handbook</u>, SP 43-38, Vol. 1, Jet Propulsion Laboratory, Pasadena, Calif., Oct. 1976, p. 3.6-2.