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I. INTRODUCTION

The intent of this report is to make explicit the general

applicability of performability modeling concepts and techniques

Earlier reports and publications on the subject have emphasized

applications where the performance variable takes the values in

a discrete (and usually finite) accomplishment set A. Although

we have alluded to the fact that A may also be continuous (see

[1], for example), the definitions of basic concepts such as per-

formability and capability have heretofore been formulated for

the discrete case only.

In the discussion that follows, the continuous case is

treated explicitly, where we find that certain issues must be

dealt with more carefully to insure that a given base model XS

and capability function y S comprise a legitimate performability

model (XS' YS).

The development of these ideas follows the format of [1]

and much of the commentary there regarding motivation and justi-

fication has been retained in this report. The report thus serves

as a self-contained description of the basic concepts and con-

structs of performability modeling. This includes discussion of

a hierarchical modeling framework, whose purpose is to aid the

solution process. On the other hand, solution techniques per se,

are not discussed. The latter is a subject in itself (in both the

continuous and discrete cases) and constitutes an important area

of ongoing research. Traditionally, modeling of computer per-

formance (see [1] - [3], for example) has stressed the need to

1.



	
p.	 S -
	 r, .^rT-"ice	

.y ._

+f'`'r^8^^&.	 ar•-.TC.na...._...^	
lt 
u..asr,_ea+a;—.._ra ta... ..,, 	 -,	 :..	

_	 z-......	 .

l

I

represent the probabilistic nature of user demands (workload)

?

	

	 and internal state behavior, under the assumption that the

computer's structure is fixed, that is, there are no permanent

Chang--s in structure due to faults. On the other hand, modeling

of computer reliability (beginning with the pioneering work of

Bouricius, Carter, and Schneider [4)) has stressed representation

of the probabilistic nature of structural changes caused by

transient and permanent faults of the computer.

In the face of these traditional modeling distinctions, we

consider an important class of computing systems wherein system

performance is "degradable," that is, depending on the history

of the computer's structure, internal state, and environment during some specified 	 1

"utilization period" T, the system can exhibit one of several

worthwhile levels of performance (as viewed by the user through-

out T ). In this case we find that performance evaluations (of

the fault-free system) will generally not suffice since structural

changes, due to faults, may be the cause of degraded performance.

By the same token, traditional views of reliability (probability

of success, mean time to failure, etc.) no longer suffice since

"success" can take on various meanings and, in particular, it

need not be identified with "absence of system failure."

Modeling needs for (gracefully) degradable systems were

first investigated by Borgerson and Frietas [5] in connection

with their analysis of the PRIME system [6]. Although they

recognized the need to formulate the probability of each possible

level of performance, that is, the probability of k "crashes"

during T for k = 0, 1, Z, ..., their evaluation effort dealt

mainly with the question of reliability (the probability of no
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crashes during T ). Other studies employing Markov models have

likewise emphasized the evaluation of reliability oriented

measures (see [71- [g ], for example).

Some recent investigations, on the other hand, have dealt

with measures aimed at quantifying performance as well as relia-

bility. In particular, Beaudry [10] has introduced a number of

computation related measures for degradable computing systems

and has shown how to formulate these measures in terms of a

transformed Markov model. In examining reconfiguration strate-

gies for degradable systems, Troy [11] has distinguished levels

of performance according to "workpower" and has formulated

system effectiveness (referred to as "operational efficiency")

as expected workpower. In another recent study, Losq [12] has

investigated degradable systems in terms of degradable resources,

where each resource is modeled by an irreducible, recurrent,

finite-state Markov process.

In the discussion that follows, we describe a general

modeling framework that permits the definition, formulation,

and evaluation of a unified performance-reliability measure

referred to as "performability." It is shown that performa-

bility relates directly to system effectiveness and is a proper

generalization of both performance and reliability. A critical

r	 step in performability modeling is the introduction of the con-

cept of a "capability function" which relates low-level system

behavior to user-oriented levels of performance. A hierarchical

modeling scheme is used to formulate the capability function,

and capability is used, in turn, to evaluate performability.
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II. SYSTEM MODELS

A computing system, as it operates in its use environment,

may be viewed at several levels. At a low level, there is a

detailed view of how various components of the computer's hard-

ware and software behave throughout the utilization

period. At this level, there is also a detailed view of the

behavior of the computer's "environment," where by this term we

mean both man-made components (user input, peripheral subsystems,

	

Ir	

etc.) and natural components (radiztion, weather, etc.) which

can influence the computer's effectiveness. The computer,

together with its environment, will be referred to as the "total

system . " A second view of the total system is the user's view of

how the system behaves during utilization, that is, what the system

accomplishes for the user during the utilization period. A third,

even less detailed view, is the economic benefit derived from using

the system, that is, the computing system's worth (as measured, say

in dollars) when operated in its use environment.

To formalize these views, we postulate the existence of a

probability space (Q,E,P) that underlies the total system, where Q

is the s ample space, E is a set of events (measurable subsets of 0),

and P: E + [0,1] is the probability measure (see [13], for example).

This probability space represents all that needs to be known about

the total system in order to describe the probabilistic nature of

its behavior at the various levels described above. It thus provides

a hypothetical basis for defining higher level (i.e., less detailed)

models. In general, however, it will neither be possible nor desir-

able to completely specify 0, E and P.

y
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In the discussion that follows, let S denote the total system,

where S is comprised of a computing system C and its environment E.

At the most detailed level, the behavior of c is formally viewed as

a stochastic process [14], [15]

XS = (Xt ltET)	 (1)

where

T = a set of real numbers (observation times) called the

utilization period

and, for all tET, X t is a random variable

Xt : 0 - Q

defined on the underlying description space and taking values in the

state space Q of the total system. Depending on the application,

the utilization period T may be discrete (countable) or continuous

and, in cases where one is interested in the long-run behavior, it

may be unbounded (e.g., T = R+ _ [0,-)). The state space Q embodies the

state sets of both the computer and its environment, i.e.,

Q = Q C x QE

where Q C and QE can, in turn, be decomposed to represent the local

state sets of computer and environmental subsystems. For our pur-

poses, it suffices to assume that Q is discrete

and,	 hence,	 for all teT and qeQ, "X t = q" has a probability

(i.e., {wjXt (w) = gJeE). The stochastic process X S is referred to

as the base model of S. An instance of the base model's behavior

for a fixed wa is a state trajectory u
w : 

T->Q where

uw (t) = X t (w),	 HtET.	 (2)

sa

i- k..:,..k .s.^^-+.,. ,.̂ ...x t^a.^?'....4U ^,^:.s..L^...`e^'_'^u 	 ixxwuvr:-..^d...M _... .. .-_-•--.—...._^..c—c
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	 (The term "state trajectory" derives from modern usage in the theory

of modeling [16]; synonyms in the more specific context of stochastic

4	

processes are "sample functions" "sample path," and "realization"

[14], [15].) Thus, corresponding to an underlying outcome west, uw

describes how the state of the total system changes as a function of

time throughout the utilization period T. Accordingly, the "descrip-

tion space" for the base model is the set

U = {uw 1wstt}	 (3)

which is referred to as the (state) trajectory space of S.

As generally defined, the concept of a base model thus includes

the type of queueing models used in computer performance evaluation

[3] and the kind of Markov or semi-Markov models employed in

reliability evaluation [7]-[9]. The intent of the definition, how-

ever, is the inclusion of less restricted base models which can repre-

sent simultaneous variations in the computer's structure and internal

state (via the state set Q C) and environment (via the state set QE).

In other words, the emphasis here is on the modeling of degradable

computing systems where changes in structure, internal state, and

environment can all have an influence on the system's ability to per-

form. Accordingly, these base models may be regarded as generalized

i

	

	 performance models, where structure is allowed to vary, or equivalently

as generalized reliability models where variations in internal state

and/or the computational environment are taken into account.

In formal terms, the user-oriented view of system behavior is

likewise defined in terms of the underlying probability space

(St, E,P) . Here we assume that the user is interested in distinguishing

a number of different "levels of accomplishment" when judging how well
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the system has performed throughout the utilization period (one

such level may be total system failure). The user's "description

space" is thus identified with an accomplishment set A whose

r

	

	
elements are referred to alternatively as accomplishment levels

or (user-visible) performance levels. A may be finite, count-

ably infinite, or uncountable (in the last case, A is assumed

to be an interval of real numbers). Thus, for example, the

accomplishment set associated with a nondegradable system is

A = (a 0 ,a l ) where a 0 = "system success" and a l = "system failure."

In their modeling of the PRIME syste.u, Bor,ge*ion and Freitas [5)

viewed accomplishment as the s.t A = (a 0 , a l , a Z , ...) where a k =

"k crashes during the utilization period T." If the user is

primarily concerned with system "throughput,."a continuous

accomplishment set might be appropriate, 	 i.e, A = R+ = [0,-),

where a number acA is the "throughput averaged over the utiliza-

tion period T."

In terms of the accomplishment set, system performance is

formally viewed as a random variable,

YS : E2-+A	 (q)

where Ys (w) is the accomplishment level corresponding to outcome

w in the underlying description space. Similarly, assuming that

the economic gain (or loss) derived from using the system is

represented by a real number r (interpreted, say, as r dollarsj,

system worth is a random variable defined as

W S : ^1-}R (the real numbers)	 (5)

where Ws(w) is the worth associated with outcome w.

^,......	 ...,roc. r3.'S.3P'-C;a^;- _,.^.«.•.:.^'`
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The terminolog;	 and notation defined above is summarized in

Figure 1.	 Note that, at this point in the development, there are
°b

no implied relationships between these three views; their only Y

common bond so far is that they are representations of the same

system or, more formally, that they are defined on the same under-
a

lying probability space. 	 To be useful, however, the base model XS

should support the performance variable Y S in an appropriate manner
a

i

(indeed,	 the term "base" is suggestive of this need)	 and, in turn, n

YS should support the worth variable {V S .	 The precise nature of

these connections,	 as they relate to the system's effectiveness, is

developed in the section that follows.

III. EFFECTIVENESS, PERFORMABILITY AND CAPABILITY

When applied to computing systems, "system effectiveness"

(see [2], for example) is a measure of the extent to

which the user can expect to

a ;-omputer in its use enviro

identified with the worth WS

is expected worth, i.e., the

random variable WS ; in short

Eff(S) = E[WS].

benefit from the tasks accomplished by

iment. More precisely, if benefit is

of the system then system effectiveness

expectation (expected value) of the

(6)

(An implicit assumption here is that WS is defined such that E[WS]
i

'

	

	 exists; see [13], for example.) Because a direct evaluation of Eff(S),

using the definition of W S , is generally not feasible (cf. our earlier

remarks concerning the hypothetical nature of the underlying proba-

bility space), tae wish to establish connections among the base model

XS , system performance Y S and system worth {V S which can be used in

I;	 ?,;;	 the process of evaluating Eff(S).
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To express system effectiveness in terms of system performance,

c	 the user's view of sy;^t;em worth must be compatible with system per-

formance to the extent that W
S 

can be formulated as a function of YS.

More precisely, we assume there exists a worth function w: A-R such

that, for all west,

WS (w) = w (Y S (w))•	 (7)

If aeA, w(a) is interpreted as the "worth of performance level a."

As for the performance variable Y S , a natural measure that quantifies

both system performance and reliability (i.e., the ability to perform)

is the probability measure induced by YS . We refer to this unified performance-

Ereliability measure as the "performability of S" which, in terms of

our modeling framework, can be generally defined as follows:

Definition 1: If S is a total system with performance YS

taking values in accomplishment set A, then the performability of S

is the function P S where, for each measurable set B of accomplishment

levels (BcA),

PS(B) = P({w!YS(w)EB}).

Since P is the probability measure of the underlying probability

space, the interpretation of performability is straightforward, that

is, for a designated set B of accomplishment levels, p S (B) is the

probability that S performs at a level in B. The requirement that

B be "measurable" says simply that the corresponding event {wjYS(w)eB}

must lie in the underlying event space, insuring that the right-hand

probability is defined.

s

	

	

If the performance variable Y S is continuous then A must be con-

tinuous and, hence (by an earlier assumption), A is some interval of

real numbers, including the possibility that A = R = (-^,^). In this

"1i
j
x^

4

A
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case (or if Y S happens to be discrete and yet real-valued), we know

from probability theory that the induced measure pS is uniquely deter-

mined by the probability distribution function of YS (see [13], for

example), i.e., by the function FY
S 

(which we write simply as FS)

where, for all bEA,

FS (b) = P({wjYS (w)nb}).	 (8)

Moreover, p s can then be expressed as the Lebesgue-Stieltjes measure

induced by FS (cf. [13], Sec. 4.5), that is, for any (measurable) set B of

accomplishment levels, the performability value of B is given by

P S (B) = f dFS(b).
B
	 (9)

In particular, if B is a single interval B = (b 0) b l ] where b0<bl,

then

P S 
(B) <	 (b 1 ) - FS(bo).

This special case has practical significance since it quantifies

the ability of S to perform within the specified limits b 0 and bl.

If, on the other hand, YS is a discrete random variable then

each singleton set B = {a} (aeA)is measurable and p  is uniquely

determined by the probability distribution of Y S , i.e., by the set of

values

{p S (a)laeA}
	

(10)

where p S (a) denotes p S ({a}). Given this distribution, if B is a

set of accomplishment levels then p S (B) can be written as the sum

PS (3) = 
bIB 

p S (b) .	 (11)

Hence, the probability distribution of YS or, equivalently, the

restriction of pS to single accomplishment levels, suffices to deter-

mine the performability. For this reason, when YS is discrete the

performability of S can be alternatively defined as follows:

---
.,. . Frlyl i?gmY.r..:r dam... :^'wvL`^`.igt --. yi.	

^^.-^..^,.-..

ru r
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Definition la: If S is a total system with performance YS
C	 V

taking values in accomplishment set A and, moreover, Y S is a discrete

random variable, then theep rformability of S is the function p S

where, for each accomplishment level a (aeA),

	

	 i+
a

pS ( a ) = P({wIYS(w)=a}).

Note that Definition la is essentially the restriction of

Definition 1 to single accomplishment levels (which have probabilities

defined when XS i g discrete). Conversely, given Definition la, its

extension to Definition 1 can be obtained (at least conceptually) by

applications of equation (11).

To justify the notion of performability in the context of system

effectiveness, if we assume the existence of a worth function w

(see (7)), then the real-valued random variable W S is a function w

of the random variable YS . Moreover, we know that w is a "measurable"

function (e.g,,, see [13], Sec. 3.81 	 since, prior to (7), we assumed

that W  was a random variable. (Indeed, condition (7) is actually

stronger than needed; its advantages, however, are its simplicity and

the fact that it serves the purpose of the present discussion.) Hence,

we are able to appeal to the well developed theory of functions of a

random variable and, particularly, expectations where, again, it is

convenient to distinguish two cases. If the performance variable YS

is continuous (and thus real-valued) with probability distribution

rfunction FS	(8)	 then	 (cf.	 [13] ,	 Sec.	 5.1) .

E [w (YS )]	 =	 f w ( a ) dFS ( a ) (12)
A

where the integral is a Lebesgue-Stieltjes integral. 	 In case Y S is

discrete,	 then (12)	 still applies provided the levels in A are repre-

sented by real numbers.	 However, independent of whether YS is real-

valued, a simpler and more familiar formulation holds in this case

where,	 if p s (a)	 is as defined in	 ( 10 ),	 then
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E [w (YS ))

	

	 £ w ( a ) P S( a )	 (13)
azA;r

`74

	

	 By the definition of system effectiveness (G) and the fact that

WS = w(YS ) (7), we have

F_.ff(o) = E[W S ] = E[w(YS))

and, accordingly, (12) and (13) are formulations of the effectiveness

of S. Moreover, we see that each formula involves the worth function

w and the performability P S (although p S does not occur explicitly in

(12), recall that F S characterizes p S (9)). In other words,

relative to the system-user interface delineated by the accomplishment

set A, effectiveness evaluation ma y be decomposed into worth evalua-

tion (on the user side of the interface) and performability evaluation

(on the system side). Consequently, looking in toward the system,

performability emerges as a key measure with regard to evaluations

of system effectiveness.

To further justify the concept of performability, we note that

traditional evaluations of computer performance and computer reliability

are concerned with special types of performability. Performance evalu-

ation is concerned with evaluating p S under the assumption that the

computer part of S is fixed (i.e., its structure does not change as

the consequence of internal faults). Reliability evaluation is con-

cerned with evaluating p S (B) where B is a designated subset of accom-

plishment levels associated with system "success." If A is finite,

a performability evaluation can alternatively be regarded as JAS

reliability evaluations, one for each singleton success set B = {a},

and the evaluation may actually be carried out in this manner. As

this process is generally mora complex than a typical reliability
t

evaluation procedure (in particular, it involves distinguishing all

the performance levels as well as determining their probabilities),

y 	 stn—...
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we reserve the term "reliability evaluation" to mean the evaluation of
]

"probability of success" for some specified success criterion B. 	 {

Moreover, even when JAI = 2, we find (as discussed later-in this section)

that performability models represent a proper extension i.f models	 f

typically employed in reliability evaluation.

As a final remark regarding justification, we have found

that when system performance is not degradable (as in the cas-a,

for example, with fault-tolerant architectures which employ standby

sparing [4], N modular redundancy [17];, or combinations thereof),

it is possible to treat performance and reliability as separate

issues in the process of evaluating system effectiveness. On the

other hand, if performance is degradable, it can be shown (see [18])

that the more general concept of performability must typically be in-

voked (as in equations (1Z) and (13), for example) when evaluating

system effectiveness.

With performability established as the object rf the evaluation

process, we are now in a position to specify how the base model process

XS (1) must relate to the performance variable Y S (4) if it is to support

an evaluation of the performability p S . To precisely state this

relationship, we suppose that X S is specified by its finite-dimensional

probability distributions (or by information that determines these

distributions) and we let Pr denote the probability measure (defined

on a a-algebra of subsets of U) which is uniquely determined by these

finite-dimensional distributions (see [14], for example). If Pr is

defined for a trajectory set V (VcU) then, relative to the underlying

measure P.	 *'RIGINAL PAGE IS

Pr(V) = P({w1uWeV)),	
OF POOR QUALITY	

(14)

i.e., Pr(V) is the probability that an observed state trajectory uW

(see (2)) lies in the set V. In practice, however, Pr(V) will be cal-

culated directly from the finite-dimensional distributions that

-1.4ete,rmin_e Pr. ...The._mP,as..urt'__.._Pr. 	 thrt¢ zrrires_tn -FnrmnlTv rlecrriha rh=	 ..

.e	 -'... f%5:1?atie	 ,.•.:....:	 .. ,. ."K'a^^:4k^:__:..-._.. e:n+u.^d'oE^r4'io"4).:Sk6t".rt'rY.:J:....w:._^,,...... 	 i
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probabilistic nature of the base model XS.

For XS to support YS , we now impose the following restrictions.

We assume first that the base model is refined enough to distinguish

the levels of accomplishment perceived by the user, that is, for all

w,w'EQ,

YS (w) ^ Y S (w') implies uw # uw ,	 (15)

where uw and uw , are the state trajectories associated with outcomes

w and w'. This implies that each trajectory uEU is related to a unique

accomplishment level aeA. in addition, we assume that the probabilistic

nature of YS is determinable from that of X S . More precisely, if B is

a measurable set of accomplishment levels, i.e., the set {wlYS(w)EB)

is in the domain of the underlying measure P, then we require that

the corresponding trajectory set

U  = {uwlYS(w)eB)

lie in the domain of the base model measure Pr; in short

If B is measurable then Pr is defined for U B .	 (16)

Given that conditions (15) and (16) are satisfied, we can estab-

lish a link between X S and YS which, in the context of effectiveness

modeling [13], is generally referred to as the "capability" of S.

Adopting this terminology, we have

Definition Z: If S is a system with trajectory space U and

accomplishment set A then the capability function of S is the function

yS :UiA where yS (u) is the level of accomplishment resulting from state

trajectory u, that is,

yS (u) = a if, for some wEP, uw = u and YS (w) = a.

Condition (15) insures that the capability function y S is well-

defined (i.e., it deserves the name '£unction"), for if u 
w w
=u , then

f



...-.;-^,......^...-n-•^.n	 T_f	 •^T^.t°.".^V..y..sy.wmm,.^n, ne^,.^'!f.rV^C	 ._..

t^

-Is-

YS(uw) = yS(uw,). Condition (16) guarantees that the inverse y S
-1 

of

the capability function (yS -1 is a relat i on between A and U but gener-

ally not a function) will carry sets that are measurable with respect

to YS into sets that are measurable with respect to X S . To substantiate

this fact, suppose that B is a measurable set of accomplishment levels.

Then the inverse image of B.is the trajectory set

yS
-1 (B) = {ulyS(u)eB}

or, equivalently, by the definition of yS (Definition 2),

yS -1 (B) = {uwJYS(w)eB}

= U  .

But condition (16) insures that Pr is defined for U  and, hence,

y S-1 (B) is measurable where

Pr (yS -1 ( B )) = Pr (U B ) •	 (17)

In effect, therefore, conditions (15) and (16) say that yS

can be viewed as a random variable defined on the probability

space (with measure Pr) induced by the base model X S . Of more

practical significance, however, is the fact that, under these condi-

tioits, XS and yS suffice to determine the performability of S. To

argue the latter, if B is measurable then, by (14),

Pr ( UB ) = P({('J1uwsUB))

= P({w1YS(w)eB})

which, by Definition 1, is just the performability of S for accomplish-

ment levels B, i.e.,

Pr(UB ) = p S (B).	 (18)

Combining equations (17) and (18), we conclude that

pS (B ) = Pr(y-1(B)),	 (19)



j	 substantiating the fact that X S and yS (which determine P r and yS-1,

k	 respectively) suffice to support an evaluation of the performability

PS'

In view of what has just been observed, if XS and YS admit to

the definition of a capability function yS (in which case we presume

that conditions (15) and (16) are satisfied), the pair (X S ,yS ) is said

to constitute a performability model of S. If B is a (measurable) set

of accomplishment levels, the inverse image y
S
-l (B)=UB is referred to

r

	

	 as the trajectory set of B,where its determination requires an analysis

of how levels in B relate back down via yS -1 to trajectories of the

base model. p S (B) is then determined by a probability analysis of

YS -1 (B). In case Y S is discrete (Def. la), it suffices to consider

inverse images of the form y S -1 (a) where aeA. Methods of implementing

This process in the discrete case are discussed in Section IV.

The role of a capability function in performability evaluation

is similar to that of a "structure function" [19] in reliability

evlauation. However, even when performability is restricted to

reliability, the concept of a capability function is more general.

The special class which corresponds to the use of structure functions

in "phased mission" analysis (see (20], for example) may be char-

acterized as follows. Let S be a system where Q is the state space

of the base model and A = (0,1) is the accomplishment set (here, 1

denotes "success" and 0 denotes "failure"). Then a capability

function yS is structure-based if there exists a decomposition of T

into k consecutive time periods T 1 , T,? ,.... T  and there exist func-

tions `P 1' `P 2'"'' `Pk with y i" Q	
{0,1) such that, for all ueU,



YS (U) = 1 iff cp i (u(t)) = 1,	 (20)

for all ie{1, 2, ..., k) and for all tsT i . In the context of

"phased mission" analysis, T i is referred to as the i th phase

(of the mission) and p i is the structure function of the ith

phase. For each function (p i , the inverse image 9 i -1 (1) can be

interpreted as the set of "success states" of the i th phase

and, accordingly,

(yS (u) = 1) if ani

phase. Thus, the

each phase may be

of all successful

(20) says that S performs successfully

i only if u(t) is a success state throughout each

advantage of a structure-based formula~ion is that

treated independently when determining the set yS-1(1)

state trajectories.

If system success is viewed in structural terms, as is the case

in most reliability studies, a structure-based capability function

will usually suffice. On the other hand, when success relates to

system performance we find that capability may no longer be expressible

in terms of locally defined success criteria as specified by the struc-

ture functions Bp i . The following example serves to demonstrate this

fact.

Let S = (C,E) where C represents a distributed comp uter comprised

of n subsystems, and E represents the computer's workload. Suppose

further that system "throughput" (i.e., the user-visible work rate of
i

VC in E) varies as a function of the number of faulty subsystems. For

our purposes here, it suffices to assume that the workload E is con-

stant and, hence, the operational states of S can be represented by

the state space Q = {q 0' ql , ..., qn) where state q i corresponds to

"i faulty subsystems." The variation in throughput is described by

a function t: Q 'R+ where 2(i) = the throughput of S in state qi.
N

....
	 . ,^.	 .. *: Jr+.t.; .. i .r:;_!i^i^Ar.ti.j.r.t_:.....-.-._.Lt`1:.-;.+(cltii._.?++M±^.213.0....	 ._..	 '-
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Assuming S is used continuously throughout a utilization period 	 1

T = [O,h] of duration h > 0, the base model of S is a stochastic pro-

cess XS = {Xt ItE[O,h]) where each X t is a random variable taking

values in Q. (The probabilistic nature of X S is not an issue here.)

As for performance, suppose that the user is interested in the average

throughput of the system, where the average is taken over the utilization
'a

period T. Suppose further that system "success" is identified with a j

minimum average throughput T. Then the capability function of S

is the function y S : U-. (0,1} where

r]1

1 if	 I	 T(u(t))dt> t

YS(u) =
	

1110	
(21 )

0 otherwise.

Due to the inherent memory of the integration operation,

we find	 that y S	does	 not	 admit to a structure-

based formulation. To verify this fact with a simple 2-state

example, suppose Q = { g o, g l } , T ( q O ) > T( q l ), and T - (T(g0)-T(gl))/2

Then, according to ( 71 ), y S (u) = 1 iff the total time for which

u(t) = g O is at least h/2. In particular, this says that more

than one trajectory results in success, i.e., Jy S -1 (1)l > 1.

To prove chat y S is not structure-based let us suppose to the

contrary, that is, there exisc phases T l , T 2 , ..., T  and

structure functions Cp l , gyp„ .... (Pk such that (20) is satisfied.

If we let R  denote the success states of phase i, i.e., R  =

cp i -1 (1), then R i	for all i, or otherwise no trajectory

results in success. It must also be the case that R  r (g0,gl}

for all i, for if R  = {g 0 ,g l }(all states are success states

during phase i) then the condition w i (u(t)) = 1, VteT i (see

.. ... s .•,i.....	 .a5•:a..	 >: '::c^s^L>4:.lhX},`.;,^...r' 	 _^_^=`p'2e(..^ri4s^Xdtllte'.e.^sti...^....,.^.^... ._ 	 _	 _
..r •..wit	 — _	 —
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(20)) is always satisfied, that is, phase i can be ignored

when determining whether u spends at least half its time in

state 0. This is clearly impossible if the duration of T i is

at least h/2. If the duration of T i is less than h/2, trajec-

tories u =end v can be found such that u(t) = v(t), vte(T-Ti),

and yet y S (u) # y S (v) contradicting the ability to ignore phase

i. The only remaining alternative is that JR i J = 1, for all i,

that is, each phase has exactly one success state which, in

turn, implies that there is exactly one success trajectory U.

This contradicts our initial observation that ly s -1 Ml > 1

and proves that ys is not structure-based.
We can conclude, therefore, that even in the case of two

accomplishment levels, the concept of a capability function

(Def. 2) represents a proper extension of relations between

state behavior and system performance that are typically assumed

in'the theory of reliability. Moreover, we have found that this

extension permits the phases of a utilization period to be

"functionally dependent" in a precisely defined sense, whereas

the phases associated with a structure-based capability function

must be functionally independent. The reader is referred to

A

S	 9
1

9

1

lj

r

[21] for a more complete discussion of functional dependence

and its implications.



As established in the previous section (see (19)), if (XS'yS)

is a performability model then the performability of S for a set of

accomplishment levels B may be expressed as p S (B) = Pr(yS-1(B)).

Accordingly, one method of evaluating a particular p S (B) is to (i)

determine yS -1 (B) and then (ii) evaluate Pr(yS-1(B)). Since the

"distance" between the base model X S and the accomplishment set A may

be considerable, step (i) can be facilitated 'by introducing additional

models between XS and A.

In general, each intermediate model is defined in a manner

similar to that of the base model. More precisely, if there are
`J

m+1 levels in the hierarchy, the level-i model (i = 0, 1, ..., m,

where level-0 is the least detailed model at the "top" of the hier-

archy) is a stochastic process

Xi = {Xi ItETi l, TicT

where, for a fixed t ETI , Xt is a random variable taking values in a

x	 set Q 1 , the state space of X 1 . The state space Q 1 is generally

composed of two components, i.e.,

Q  = Q i Qi
c" b

where Q 1 is the composite state set and Qbi s the basic state set
C

(at level-i). States in the composite part Q1 represent a

less detailed view of t

do states in Q l+l , such

uniquely determines the

(this will be made more

he operational status of the system than

that the state behavior at level-(i+l)

composite state behavior at level-i

precise in a moment). States in Q b , on
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the other hand, represent basic information not conveyed by states in

Qi§1 , i.e., Qb is a coordinate set of the base model state s . :e Q.
x^

In case there is no composite (alternatively, basic) part at level-i,

Qc(Qb) is simply deleted, that is, Qz = Qb ;Q l = Q^). In particular,

the above definition precludes a composite state set at level-m (the

"bottom" level of the hierarchy) and, hence, Q m = Qb'

In specifying the model hierarchy, it is convenient to view Xi

as a pair of processes which determine the projections on Q  and
c

Qb, respectively. (If one of Qi or Qb does not exist, this pair

reduces to a single process.) More precisely, given Qi, the composite

pro cess (at level-i) is the stochastic process

X  _ (X^^tJteT'), T'cT'

where the random variables X C ' t take values in Q^. For a fixed out-

come w in the underlying sample space 2, a composite state trajectory

is a function uc w :T l4Q^ where uc ^ w (t) = X, 't (w); the composite

trajectory space is the set U3' = (uc w 1wEQ1. Similar definitions,

terminology ,and notation apply to the basic process Xb. To permit

extension of either X c or Xb to larger time bases, a fictitious state

4 is adjoined to each of Q i and Qb so that if tATi (similar remarks

apply to the basic part) then X 1	is defined to be a degenerate
c,t

random variable that always assumes the value ¢, i.e.,

X^ (w) _ ¢, for all wa.	 (22)

If X^ and X  are so extended to T l , and we take Xl to be the process

whose projections on Q1 and Qb are X1 and X3, respectively, then X1

is uniquely determined by X 1 and Xb. (Note that the processes Xc

s'	 and Xb may be statistically dependent.)
r

i
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By the above observation, we can alternatively regard the level-i

model as the pair of processes

Xi = (Xi'X1')

which is a convenient view for the purpose of specifying interlevel

relationships. With this identification, a state trajectory of Xi

is viewed as a pair of trajectories, i.e., the trajectory , :,pace

U1 (at level-i) is taken to be the set UcZUb where

Ub :4 Ub 	{(uc, w' ub,w)IweS2}.

In case there is no composite (alternatively, basic) state set at level

-i, the above representations of X i and Ui are understood to be their

appropriate single component versions.

The required relationship of these models to the base model, the

accomplishment s--:, and the capability function is prescribed by the

following definition.

Definiti Jn 3: If S is a total system with base model XS

and capability function Y S , the collection {X 0 , X 1 , 	 Xm}

of level-0 to level-m models is a model hierarchy for S if the

following conditions are satisfied.

(i) Xm = Xb
m , that is, all variables of the bottom model

are basic,

(ii) If each model X i is extended to the utilization period

T, the base model X S is the stochastic process

XS = {Xt lteT} where XS = (Xb^ t , XM-1 , ..., XObot).

Accordingly, the state space of X S is Q = Qb X Qb -1 X

X Qb0 and the trajectory space U is represented by

the set U
m
b ® Ub -1 0 .. ' 

0 Ub'
(iii) For each level i, there exists an interlevel transla-

tion K  where
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K O : U O ® Ub ^A

K i : Uc ® 
Ub-.Uc-1 (1<i<m)

K : U
m i Um-1

M b	 c

such that the capability function YS can be decomposed

as follows. If ueU where u = (um, UM-1 UO) with

u i eUb, then

Y S (u ) = KO(Kl(... 
Km - 1(Km(um)' 

UM-1 )....	 UO).	 (23)

The terminology and notation of Definition 3 is summarized

in Figure 2 where a) is the original model and b) is the hier-

archical model.

A model hierarchy thus provides a step-by-step formulation

of the capability function in terms of interlevel translations

of state trajectories, beginning with a translation of the

bottom model. It also permits the expression of capability

relative to , higher level (less detailed) views of total system

behavior. More precisely, let Ui denote the level-i trajectory

space, along with all the basic trajectory spaces of higher

level models, i.e.,

91 = U i 0 Ub -1 0 ... ® UO

(Vote that, at the extremes, U O = UO and Um = U,) Then the

level-i based capability function is the function

yi: U i ^A

defined inductively as follows. If i = 0 and ueU O , then

Y O Cu ) = K O Cu) •	 (24)

If i >0 and (u,u')eU l where ueUl and u'eUb -1 ® ... ® U 0 , then

Y i ( u , u ') = Yi-1(Ki(u),u')• 	 (25)

It is easily shown that y i has its intended interpretation,

.l^
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i

i.e.,	 if u and u' correspond to a base model trajectory v then

F
Y i (u,u')	 = Y S (v). In particular, if i = m then ym = yS.

The practical significance of the model hierarchy, however,

is the ability to formulate the inverse of Y S via the S.nverses

of the y i , thereby providing a step-by-step, top-down method of

elaborating a set of accomplishment levels B. Beginning with level-0-

based capability, by (24) we have

Y 0 1 (B ) = KO 1 (B).	 (26)

Assuming that y i l l (B) has been determined, by (25) it Follows

that

Yi1(B) =	 V(Ki1(u),tl'),	 (27)

(u,u')EYill(B)

where (Kil(u),u') _ {(V,u')IKi;V) = u}. This process is iterated

until i = m, yielding y -1 (B)	 ys1(B)

V. CONCLUSION

In conclusion, we see that performability modeling with

continuous accomplishment sets can proceed in much the same manner

as modeling with discrete accomp7'shment sets. The essential differ-

ences are that measurability conditions must be observed more

closely in the continuous case when defining performability (De-

finition 1) and capability (see condition lb)). Also methods of

LF

:L

hierarchy is used, the inter-

two cases: in the contin-

must be specified by formulas

Lscrete case there are situations

the K  can be tabulated com-

actually specifying YS or, in case a

level translations K i , differ in the

uous case, values of these functions

for computing their values; in the d

(e.g., when A is finite) where y S or

pletely.

;^,,,
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Finally, regarding solutions 	 (although our subject here is !	 -`
ii

not solution techniques, per se), if A is continuous it may often
i ;	 r

n

be the case that a complete knowledge of performability, i.e.,

the ability to compute p S (B) for every measurable set B, is not

required. For example, intervals of the form `y
j

(i)	 B =	 (b o ,b l ],	 (bo<bl) >a.

or ,a

(11)	 B	 (Bo'°°)

may suffice where, in case (i), p S (B) is the probability that S

performs within specified limits b o and b l and, in case (ii)

p S (B) is the probability that the performance of S is greater

than a specified minimum b o . In other cases, even less informa-

tion may satisfy the evaluation needs of the user, e.g., the

mean E[YS ] amd variance var [YS ] of the performance variable YS.

Although these are not performability measures in the strict

sense of Definition 1, they are "performability-based" in the

sense that the performability p S uniquely determines E[YS ] and

var [YS ]. !oreover, the latter should be easier to evaluate since

genc lly, a • experienced in the performance evaluation of fault-

free systems [2], [3], full knowledge of p S is not required in

the process of determining E[Y S ] and var [YS].
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Model Description Space

Base model XS Trajectory space U

System performance Accomplishment set A

System worth IVS

I	

The	 numbers lR

Figure 1
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