

Abstract

: This report describes briefly the development of the processing techniques used in the fabrication of transparent, laminated and monolithic aircraft windows having good flame resistance through char formation on exposure to elevated temperatures. The monolithic windows were fabricated from a transparent cast epoxy while the laminated windows were fabricated by laminating the epoxy to polycarbonate with an ethylene terpolymer adhesive.

I. INTRODUCTION

A number of investigations are currently being made to improve aircraft windows from the standpoint of impact resistance and fire resistance. One of these investigations concerns the use of plastic windows for passenger aircraft. Such windows are lighter than glass, considerably more shatterproof and may possibly be fabricated of materials which would have high flame resistance, by virtue of char formation on exposure to high heat.

One concept for making plastic windows is to cast a monolithic window using a transparent char forming epoxy resin. Another concept is to laminate a very tough, strong transparent polycarbonate sheet, with the transparent char forming epoxy sheet.

To investigate the feasibility of these concepts, Hughes Aircraft Company was requested by NASA Ames Research Center to fabricate four windows of each type simulating the Boeing 737 outer window (Part No. 65-45791). An epoxy formulation, EX-112, developed by NASA Ames Research Center, was utilized in the fabrication of both types of
I. INTRODUCTION (Cont'd)
window. An ethylene terpolymer adhesive developed by Monsanto was used to laminate the epoxy to the polycarbonate.
II. SUMMARY AND CONCLUSIONS

This report describes the development of the processing technique used in the fabrication of transparent, heat-resistance aircraft windows of the Boeing 737 configuration. Two types of window were fabricated: 1) monolithic type, one-half inch thick, made from NASA epoxy formula tion EX-112 (Epon 825 containing 5 PHR of trimethoxyboroxine) and 2) a laminated type consisting of a quarter-inch thick polycarbonate inner layer bonded to a quarter-inch thick EX-112 outer layer with an ethylene terpolymer interlayer material.

By the proper choice of processing conditions; the feasibility of fabricating heat-resistant aircraft windows of the above types was clearly demonstrated. The principal difficulties involved the development of conditions for the casting and curving of the relatively large epoxy sheets required. Completely curing these epoxy sheets in the casting mold was found to be impractical due to curing shrinkage and resultant cracking. Additionally, the curving of these completely cured sheets to the desired radius of curvature was difficult to control. : Both problems were solved by partially curing the epoxy in the casting fixture and then completing the cure and curving to the required radius of curvature in a single operation. The laminating operation was accomplished readily in an autoclave which had been modified to allow its

II. SUMMARY AND CONCLUSIONS (Cont ${ }^{\text {d }} \mathrm{d}$)

operation as a vacuum chamber. No difficulty was experienced in the machining of the monolithic or laminated blanks to the final 737 window configuration. The complete process is detailed in the attached Operation Instruction Sheets.
III. PROCEDURES
A. Description of Tooling

1. Casting Tools

Epoxy castings were made by pouring the resin formulation between two flat plates separated by means of metal spacers and sealed by means of a plece of square cross sectioned, neoprene port gasketing.

Several modifications were necessary in the tooling and processes in order to obtain epoxy castings of good quality. Initially, quarter-inch thick glass plates covered with either a parting film or a mold release were used with only partial success. One-mil thick Mylar worked reasonably well as a parting film, except that some "orange peeling" was observed in the epoxy castings, apparently due to curing shrinkage. Several mold release agents were tried with the glass including. PVA film, Ram 87×76 and Simoniz wax with 1ittle or no success.

Far better results were obtained by the use of half-inch thick aluminum tooling plates covered with stainless steel Ferrotype plates (bonded with FM 123-2 film adhesive).

III. PROCEDURES (Cont'd)

A. Description of Tooling (Cont'd)

1. Casting Tools (Cont'd)

Fair to good release was obtained by coating the Ferrotype platés with mold releases such as 87×76 followed by Simoniz wax or carnauba was. However, much difficulty was experienced with cracking of the epoxy casting during the final cure. Virtually all problems with cracking were eliminated by only partially curing (two hours at $150^{\circ} \mathrm{F}$) the casting between the plates and completing the cure later as part of the curving process. Epoxy castings of excellent quality were made by curing the resin formulation at low temperatures between the Eerrotype plates which had been coated with a relatively heavy coating of carnauba wax.

2. Bend Fixture

A separate bend fixture was made to shape the polycarbonate sheets. This consisted on a $17 \times 22 \times 1 / 8$ inch aluminum sheet curved to a 72 inch radius. This was a two inch smaller radius than specified on Boeing print \#65 45791. The slight overbend was used to compensate for possible springback which would occur when the polycarbonate was thermoformed. A Ferrotype plate was used on the top surface of the curved sheet to provide a polished surface for the plastic sheet to contact.

III. PROCEDURES (Cont'd)

A. Description of Tooling (Cont'd)
3. Laminating Fixture

The laminating fixture consisted of a $22 \times 20 \times 3 / 16$ irch aluminum sheet which was curved to a 74 inch radius. The curved sheet was fastened to a support fixture which held it rigidly in the curved position. On the bottom (concave) surface of the curved plate, a 22×18 inch Type III, 230 volt, 1980 watt, silicone coated heating blanket* was bonded using GE RTV 90 (a silicone adhesive).

Lamination was performed in an autoclave which had been modified for use as a vacuum chamber. The laminating fixture, containing the bagged laminate, was installed in the autoclave, using two vacuum lines-one at each end of the laminate. One line fed through the autoclave to a small volume, relatively high vacuum pump. The other line from the laminate also went through the chamber to a " I " connector. One side of the " I " was connected to a standard mercury manometer, so the absolute pressure in the bag could be determined. The other side of the " T ". was connected to one leg of a differential manometer whose other leg was connected to a tube leading to the autoclave interior. Thus, the differential pressure between the bag interior and the autoclave interior could be ascertained at all times.
III. PROCEDURES (Cont'd)

B. Process Development

1. Casting of Epoxy Sheets

The formulation was prepared from Epon 825 and 5 PHR of trimethoxyboroxine as described in the attached O.I.S. Since high temperature curing resulted in considerable yellowing of the epoxy, a small quantity of blue dye, Perox blue, was added to the resin formulations used in making the last few epoxy castings.

As described previously, the casting process developed involved partially curing (two hours at $150^{\circ} \mathrm{F}$) the epoxy between aluminum plates covered with Ferrotype plates. The resulting, partially cured casting was flexible and rubberlike with no tendency to crack, as had been observed in castings completely cured in the casting tool.

2. Bending of Epoxy Sheets

The fixture used for bending consisted of a curved aluminum plate to which was bonded a stainless steel Ferrotype plate. As in the casting, the curving fixture was coated with a relatively heavy layer of carnauba wax.

The partially cured epoxy was sfmply laid on the center of the curving fixture contained in an oven preheated to $150^{\circ} \mathrm{F}$. The cure of the epoxy was completed and the curving to the final shape was accomplished by heating for three hours at $270^{\circ}-280^{\circ} \mathrm{F}$ and three hours at $350^{\circ}-360^{\circ} \mathrm{F}$.
III. PROCEDURES (Cont'd)

B. Process Development (Cont'd)

3. Drying of Polycarbonate

Prior to bending the polycarbonate sheets to the correct curvature, it was necessary to oven-dry them thoroughly to prevent loss of transparency during subsequent curving and lamination. Either one of two drying conditions can be used:

1) 24 hours at $265^{\circ}-270^{\circ} \mathrm{F}$ or 2) 96 hours at $220^{\circ}-255^{\circ} \mathrm{F}$.

4. Bending of Polycarbonate

The polycarbonate sheet, after drying, was bent exactly as given in Operation Instruction Sheet 45791-L-1. Temperatures up to $177^{\circ} \mathrm{C}\left(350^{\circ} \mathrm{F}\right)$ were used; however, this resulted in excessive mark-off, so a maximum temperature of $157^{\circ} \mathrm{C}\left(315^{\circ} \mathrm{F}\right)$ was established.

5. Laminate Fabrication

Laminate fabrication was carried out in accordance with Operation Instruction Sheet 45791-L2. The terpolymer, because of its somewhat tacky, wrinkled surface, had to be installed with great care to minimize entrapment of air. An effort was made to place the terpolymer on top of the polycarbonate with a rolling motion, rather than simply laying the terpolymer down, to minimize air entrapment. Nevertheless, some air inevitably was entrapped in the wrinkles between the terpolymer
III. PROCEDURES (Cont'd)
B. Process Development (Cont'd)
5. Laminate Fabrication (Cont'd)
and the polycarbonate. A needle was used to pierce the bubble, and the material was pressed flat using a Teflon squeegee.

Two types of vacuum bag sealant were used since the softer, low temperature sealer would make a good seal initially, causing the vacuum bag to exert pressure on the harder, high temperature sealant material. At approximately $110^{\circ} \mathrm{C}\left(225^{\circ} \mathrm{F}\right)$ the higher temperature sealant would soften sufficiently to ensure maintenance of a good seal throughout the heating cycle. Initially, lamination cycles were made using only the softer sealer, but $108 s$ of seal occurred at the higher temperatures. Initial parts were made using a formed, glass fabric reinforced silicone bag. Because of the leaks which developed in the silicone bag, after very few cycles, the Capran film bags were made. These were one-time use only.

6. Edge Routing and Buffing

No particular problems were found in cutting, edge routing or buffing the completed laminates. The epoxy surfaces were buffed, as needed, using the techniques and materials described In the Operation Instruction Sheet. Only a small amount of buffing at very light pressures was done on the polycarbonate surfaces in order to minimize possibility of stress crazing.

Inspect operation 40
Laminated Window, Polycarbonate Component
NOILdIYOSZO NOIL甘YヨdO
PART NUMBER
45791-L-1
ON רOY\&NOO INヨWNJOO

45791-L-2

I. 1ヨ3

Inspect Operation 60

Laminated Window
45791-L
DATE PREPARED
1-15-74

OP'N	PERFORMING
NO.	ORG

70
AFML-TR-72-109, dated July 1972.
When correct 2 in. Hg. differential pressure has been established, turn on fixture heater.
26-39
QCHR/FQRNO.

136978 CS MAY 72

