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ABSTRACT
 

A transformation method is developed which may be used to solve various
 

types of boundary value problems on three-dimensional regions with an arbi­

trary boundary. The implementation of the method is illustrated in the
 

solution of a potential flow problem. All computations are performed on a
 

cubic mesh in a rectangular region.
 

This report was prepared as a result of work performed under
 

NASA Contract No. NASl-14101 while the first author was in residence at
 

ICASE, NASA Langley Research Center, Hampton, VA 23665.
 



Introduction
 

In many engineering problems, a primary difficulty in implementing
 

finite difference schemes is dealing with complicated computational
 

regions having irregular boundaries. One method of circumventing this
 

problem is td tiansform the original physical region onto a rectangular
 

or other type of canonical region, and then solve the problem on the
 

canonical region. 
This method has been used to solve various two­

dimensional fluid flow problems by Chu [2] and Thompson et al. [7] 
and
 

[8]. An alternate approach, employed by Winslow [9], Godunov and
 

Prokopov [4], Amsden and Hirt [1] and Hirt, Amsden, and Cook [5], is
 

to use the transformation to construct a curvilinear mesh on the original
 

region and then solve the problem on the curvilinear mesh.
 

The success of transformation methods for two-dimensional problems
 

leads one to the consideration of such methods for three-dimensional
 

problems. In this report a three-dimensional transformation method will
 

be developed and tested by numerically solving a potential flow problem
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where analytic solutions are known. However, before any numerical
 

considerations, the basic concept is analyzed for general applicability.
 

If it is desired to solve a partial differential equation on a simply­

connected region by transforming to a rectangular region, then the
 

transformation should be a homeomorphism (one-to-one, continuous, and
 

continuous inverse) which is differentiable and has a nonvanishing Jacobian.
 

This requirement restricts the use of many simple algebraic transformations
 

in regions with irregular boundaries.
 

As a final note some attention is given to the generalization of this
 

.method to higher dimensions. It appears that it would have limited application
 

to physical problems, although it may be of some theoretical interest.
 

Transformation to Rectangular Region
 

Let D be a simply-connected rfegion in xyz-space bounded by one
 

surface. Let R be a rectangular region in uvw-space given by
 

R = f(u,v,w)la < u < bl, a2 < v < b2 , a 3 5wI 
 < b3 }
 

Suppose that the boundary of D, denoted by 3D, and the boundary of R,
 

denoted by 3R, are homeomorphic and such a homeomorphism is defined by
 

the equations
 

u = hl(x,y,z) 

v = h (xyz) (1)
 

w = h (x,y,z)
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for (x,y,z) on 3D. In order to avoid difficulties at the boundary in
 

the proofs of the following theorems, additional assumptions will be
 

imposed on the boundary correspondence. We assume that 3D is analytic
 

and the transformation from @D to 3R is differentiable except
 

possibly on subsets of DD which correspond to edges of ;R. As will be
 

evident later, no numerical difficulties were encountered when this.
 

The image of the points (x,y,z) in
smoothness condition was violated. 


D are defined to be the points (u,v,w) where u, v, and w are solutions
 

of the following system of elliptic partial differential equations
 

V2 u = fl(u,v,w) 

2(2

V v = f2(u,v,w) (2)
 

2

V w = f3 (u,v,w)
 

where V2 denotes the Laplacian operator and fl, f2' f3 are functions
 

defined in uvw-space. As in the case of a single equation (see Courant
 

and Hilbert [3, PP. 369-374]), the system (2) with Dirichlet boundary
 

conditions (1) will have a solution'under the appropriate smoothness and
 

boundedness hypotheses.
 

Simple conditions can be imposed on the functions fl, f f to 

guarantee that the image of every point in D is an element of H = RVR 

Namely, u < a implies ft(u,v,W) < 0 and u > b implies 

f1 (u,v,w) >.0 with the analogous relations holding for f2 ,and f3"
 

Since, a, and b, are the maximum and minimum values of u in R, 

we are assuming a weak form of the maximum and minimum principles. Note 



that if. = f2 f3 = 0, then u, v, w are harmonic implying that D
 

-maps into R. The above condition does hot limit the utility of the
 

transformation method. In practice it is the values of 
f, f2'f on
 

which one perturbs to produce a transformation with high resolution,
 

or some other essential property, in critical subregions of R (see
 

Thompson et al. [8]).
 

From now on we will work under the assumption that sufficient
 

conditions hold so that a transformation T, defined by (1) and (2),
 

exists which maps D5 = DU3D into R. In general, the Jacobian of T
 

may vanish on a nonempty subset of D. 
This will not happen for harmonic
 

transformations as the next theorem indicates.
 

=
Theorem 1. If f1 
 f2 = f - = 0, then the Jacobian of the 

,transformation T does not Vanish in D. 

Proof: Suppose that,the Jacobian
 

u x U y U z 

Vx Vy" V z =0 

Wx wy wz 

at somepoint (xo, yO, zo) of D. Then there exists constants lbC2 O
 

c3 such that the gradient Vs of the function s = clU + c2 v + c w
 

vanishes at (xy o,zo). Let L be the level set 
(or equipotential set)..
 

in D defined-by
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oZo}
L = {(x,y,z)ls(x,y,z) = s(xo 0


Since s is harmonic in D, it can be expanded as a series of harmonic 

polynomials in some neighborhood of (xoyozo). Now Vs = 0 implies 

the first degree terms vanish and hence the level set will locally be 

the intersection of at least two surface elements. The intersection 

of L with D is a simple closed curve C. Therefore, L is a compact 

subset of D which can be expressed as the union of at least two 

analytic surface elements or sheets. The boundary of each sheet must 

lie in C or on another sheet. The open set D-L, therefore, has at
 

least three components. Since C separates D into only two components,
 

at least one component of D-L must be bounded by L. Consequently, the
 

harmonic function s is constant on a component of D-L and hence
 

throughout D. This, however, violates the boundary conditions on
 

u, v, and w.
 

The following result holds for more general transformations than
 

considered in this report. In fact it is likely that the theorem follows
 

as a corollary of some known theorem on transformations with nonvanishing
 

Jacobians. However, a direct proof can be obtained from the ideas developed
 

in the proof of Theorem 1 and is included for completeness.
 

Theorem 2. If the Jacobian of the transformation T does not
 

vanish in D, then T is a differentiable homeomorphism of D onto R.
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Proof: As a solution of the system (2), the transformation will
 

be differentiable. It is sufficient to show that T is one-to-one
 

and onto. Suppose T is not one-to-one. Then there exist two points
 

=
P1 = (xlylzl) and P2 (x2 ,y2,z2 ) such that T(P1 ) = T(P2 ) = 

(uo,vo ). Define the following level sets in D. 

Ll = (x,y,z,)Iu(x,y,z) = 101
 

L2 f(x,y,z)lv(x,y,z) = vo l
 

L3 = f(x,y,z)Iw(x,y,z) = wo }
 

By the Inverse Function Theorem (IFT)jin some neighborhood of any interior 

point of intersection of two level sets-, that intersection-will be a 

smooth curve through the neighborhood. The level sets are compact and 

hence the intersection of any two'will also be compact. Let K = L2 ) L3 . 

Now K can be expressed as the union of smooth curves which have only 

points of 3D in common. Since a one-to-one boundary correspondence 

is assumed, K c6ntains only two points of 3D. Another propety of K 

is that'each curve-in K must connect the two points of D. For if a 

curve C did not contain the two boundary points, then u;. considered as 

a function defined on C, would have an extremum at a point of C. which 

is an interior point of D. The function u could not be one-to one 

in any neighborhood of that critical point and since'the, functions v -. 

and w are constant on C, the transformation T could not be one-to­

one in any neighborhood of the point which contradicts the IFT. Choose 

two smooth curves C and C in K which contain P and P 
1 2 - 1 P 2 ' 
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respectively. Either and 'C coincide or they have only their
C1
12
 

endpoints on 3D in common. In the first case a curve in KhD connects
 

P1 and P2 Since u(P) u(P2), the function u will have a -relative 

extrema on the curve connecting P1 and. P2 which again leads to 

a contradiction of the IFT as discussed above. In the case where C 

and C2 are distinct, we define S to be that portion of the surface
 

L2 bounded by the closed curve CI2C2. LlflS contains a curve having 

one endpoint at P1 . The other endpoint will be at some point P3 on 

Cuc2 but not on DD. Now T(P1 =T(P2) and a contradiction of the IFT
 

follows as before.
 

It only remains to show that the mapping is onto. Suppose Q 0 

(uvowo ) is an arbitrary point of R. Let L2 and L3 be the level 

sets as previously defined. Using the fact that the level sets 

separate R into at least two connected subsets with properties of 

K = LEL 3 already noted, it can be shown that K contains a smooth 

curve C connecting the two boundary points of D which lie in K. 

The function u assumes its maximum and minimum values at the endtoints
 

of C and by the Intermediate Value Theorem, we will assume the value
 

u at some interior point P of C. Hence. T(P) = Q 

Throughout the remainder of this report, it will be assumed that-the 

Jacobian of T does not vanish. Thus-an inverse transformation will
 

exist.
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Inverse Transformation
 

In most of the two-dimensional ptoblems which have been solved using
 

a numerical transformation method, it is not the transformation from the
 

physical region D to the rectangular region R that is constructed,
 

but rather the transformation from the region R to the region D.
 

Our work proceeds in the same direction. The first task is to invert
 

the system bf equations (2). That is, to find an equivalent system with
 

u, v w as independent variables and x, y, z as dependent variables.
 

Define the matrix M by
 

M= Yu Y v " 

zu ZV z
w
 

Then the determinant of Mj which is the Jacobian of T-1 and will 

be denoted by J, is a nonvanishing, real-valued function defined on 

R& 

Theorem 3. The functions u, v, w satisfy the system (2) if and
 

only if the functiohs x, y, z satisfy the system of quasilinear
 

elliptic equations
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!lXuu l
12'uv + 2l,3Xuw + a22Xvv + 2a23Xvw + a33xw
 

+J2 [x n + f2xv + f3x)l = 0
 

llYuu + 2 1 2yuv + 2al3 yu +"o22cyvv + 2c23yvw + c33 Y- (.3) 

+ J2[flyu + f2yv + fy] = 0 

alluu + 2,12Zuv + 2l3'uw + '22v-v + 223Zvw + '33zww 

+ J2[flzu + f2zv + f3z] =0
 

3 

where' ajk = m 

and jk is the cofactor of.the (j,k) element in the matrix M.
 

Proof: Let 'u,V,w be solutions of (2). Suppose s is a function
 

defined on I. By the chain rule,
 

s s u + S V + s w x U x V X W X 

s SU + v + sW y uy vy w y 

S s U + S .+ S w 
z uz vz wz
 

and
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Vs =u + u )s V + uv + Uzv )s
x y z uu x x y y z z uv 

+2(uw +uw + w ( 2
 
z z uw y 'Vv
x x yy 1 X Z 


+ 2(v w + vw + vvW)S + (W2 +W2 +W2 )

x x y y z z vw x y z iWi 

V +Us + V2ws
+Vvs 


By substituting s = x, y, and z in each of the first three equations, 

expressions can be found for the partial derivatives of u, v, and w 

with respect to x, y, and z in terms of the partial derivatives of 

x, y, and z with respect to u, v, and w. If these values are 

substituted in the last equation, V2u, V v, and V2w are replaced by 

f f£5 and f3. and then s is replaced by x, y, and z, the result 

is the system of equations (3). It is well known that the type of a 

partial differential equation is preserved under a transformation with 

a nonvanishing Jacobian. Thus V2s = 0 transforms into an elliptic 

equation and hence the system (3) is elliptic. 

Conversely, suppose, x, y, z are solutions of (3). Then again
 

computing V2s and setting s = x,y, and z, we obtain three equations
 

which together with (3) yield the system
 

(V2u - f1)xu + (V2v - £2)xv + (V
2 - 3)xw= 0 

2 2 2
(V2u -f )y + (v - f 2 )yv + (V w -f3)y - 0 

(V2u - fl)zu + (V2v - f2)Zv + (V2 - f3 )zw= 0 



The matrix M is nonsingular and the trivial solution of the system
 

of equations is equivalent to (2).
 

In the construction of the transformation of R onto D, the one­

to-one boundary correspondence (1) furnishes boundary conditions for
 

the elliptic equations (3) of the form
 

x = gl(uv,w)
 

y = g2 (u,v,w) (4)
 

z = g3 (u,v,w)
 

T- 1
for (u,v,w) on 3R. *The construction of is equivalent to 

solving an elliptic boundary value problem with Dirichlet boundary 

conditions. It should also be noted that the coefficients a jk in 

(3) depend only on the derivatives and not on the values of the 

functions . u,v,w. This result may be used to prove that the solution 

of (3) with boundary values (4) is unique (see [3, pp. 323, 324]). 

Potential Flow with Symmetry
 

The problem of determining the potential function for the flow of
 

an ideal fluid about a finite body in an infinite fluid region has
 

been studied extensively. The only restriction we impose is that
 

the fluid region have at least one plane of symmetry. Thus we include
 

all axisymmetric problems where many exact solutions are available and
 

the accuracy of our numerical method can be tested. The potential-.­
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function will be computed using finite difference techniques and & 

free stream condition will be assumed on some sphere far from the 

body. Because of symmetry, only half of the truncated fluid region is 

used in the calculations. 

The transformation is indicated in Figure 1. Under the inverse
 

transformation, the horizontal faces of the rectangular region map to 

the body and the hemispherical outer boundary. The vertical faces 

map to the plane of symmetry.
 

Let be the potential function defined on 5. Assume a unit 

free stream velocity in the direction of the positive y axis. Then 
V2¢ 
V = 0 in D, 4 = y on the outer boundary and 4n 0 on the body 

and the--plane-of symmetry where n denotes the exterior normal on 9D. 

In the region R, the equation and boundary conditions become
 

1ll uu + 2c 12 kuv + 2al3 w + '22 v + 2 a23vw + a33 ww 

(5)
 

+ J2 [f u + f 2 v + f 3 w] = 0' on R 

a1A + C23 v + 

- = y 

33w = 0 

if 

if 

w = b3 

w =a (6) 

12u+ 22v +23w 

C± ul + a +a 

=0 

=0 

if 

if-

v--a2 

u-= a 

or b2 

b1 
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The following procedure was used to construct an approximation to 

the potential function. For these examples, take f = f= = 0. 

A cubic mesh was placed on R. The equations in (3) and (5) were 

converted to difference equations using second order central differences.
 

The boundary conditions in (4) and (6) were used with second order
 

central differencing for all derivatives in the.equations except where a
 

neighboring mesh point was outside of F in which case the.derivative
 

was replaced by a first order forward or backward difference. The
 

derivative conditions in (6) degenerate at certain edges of 3R and
 

there an average value for the function was chosen. The system of
 

equations was solved by nonlinear SOR with an initial free stream
 

potential function.
 

Three body configurations are included. The first is a sphere. The
 

exact solution is well known and our computed value is compared.with the
 

exact value. The second body is an ellipsoid with axes ratio 1:2:4
 

and the third is the union of two circular cones joined at a common
 

base lying in the xy-plane. In all cases the outer boundary was the
 

sphere of radius e2 . Various surfaces and cross-sections are shown in 

Figures 2 and 3. The mesh in these figures is the image of the cubic.
 

mesh in R. Although no computing was done on this mesh, it is advisable
 

to examine its general Appearance since extreme aspect ratios and non­

orthogonality may slow iterative convergence and increase discretization
 

error.
 



Selected output from the program written to solve the difference 

equations is presented in the Table. A rectangular region with 19xl9x20 

equally spaced mesh points was used. For each configuration, the first 

column contains the maximum difference of the x, y, and z values 

after the (n-1)th and nth iteration. The second column contains the 

maximum difference of the 4 values. For the spherical configuration, 

the third column contains the maximum difference between the computed 

value of $ and the exact value which is 

y[1 §1 2 +y2 +z2)]
3 

The maximum differences were taken over all interior points* For the
 

spherical body, the maximum error on the.surface of the body, excluding
 

points 6n the symmetry plane, was about 0.02 or 2 per cent of the free,
 

Streamvelocity'after 50 iterations. The error at the outer boundary
 

caused by the free streami assumption was nearly 0.01. A value for the
 

potential function on the surface of the ellipsoid is given by Pien[6]
 

to be 1.12659 y. Our computed values, after 50 iterations, differed by
 

a maximum of 0.01 except on the symmetry plane. At the intersection 

of the body and the symmetry plane, errors increased to a-maximum of 

0.0 for the sphere and 0.03 for the ellipsoid. Increasing the number
 

of iterations beyond n = 50 increased accuracy very little if any.
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The results of this simple example are encouraging. With less than 

7500 points, we have attempted to solve a three-dimensional mixed
 

boundary value problem. Still, when comparisons were made, the
 

approximation was accurate to one decimalqplace. This is comparable to
 

the accuracy of the integral equation methods reported-by Pien [6].
 

Transformations in Higher Dimensions
 

Since there are problems involving more than three unknowns, one
 

might ask if this method could be useful in higher dimensions. In this.
 

final section, that possibility will be examined.
 

Let D be a bounded region in the space of ordered n-tuples of
 

real numbers (xl,...,xn). Suppose that DD is homeomorphic to the
 

boundary of a rectangular region R given by
 

R = f(ul,...,Un)a i < u, < b., ± = 1,...,n} 

Let T be a one-to-one transformation of D onto R- which has a non­

vanishing Jacobian on D. Then T is a solution of the system 

V2u = fi(ul,...:,U), i = 1,...,n 

if and only if T is a solution of the quasilinear elliptic system
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n 32x. n ax. 
E a. + jkE fk(Ul,...,u ) = 0, i 1,...,nn


j,kl jk auK +Ju k=Su
 

-1
where J is the Jacobian of T and
 

n 

jk ml mjmk 

ax. ax 
with k the cofactor of u in the matrix [--J.


jk auk auq
 

The method would appear to generalize to higher dimensions, but
 

there are limitations to its implementation. First of all it is
 

necessary to define some homeomorphism between. DD and 3R which are
 

(n-1) - dimensional subsets. Secondly, the number of distinct terms in
 

each equation defining the inverse transformation is n(n + 3)/2. Also,
 

the determination of the coefficient a. requires the calculation
 
jk
 

of determinants of order n-1. Consequently, any attempt to carry out
 

the calculations in this report would be a formidable task for larger
 

values of n.
 

Conclusions
 

A transformation method which has proven useful in two-dimensional
 

fluid flow problems has been generalized to three-dimensions. Thg
 

method may even prove more valuable in the construction of three­

dimensional transformations since three-dimensional conformal mappings
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can only be used in trivial cases-. 'Even the determination of simple
 

algebraic transformations is more difficult since the three gradient
 

vectors must be linearly independent at each point of the region.
 

No attempt has been made to give a complete list of all variants of
 

the method which may be used in solving other physical problems. In the
 

study of time dependent problems, the physical domain.may-change with
 

time so that the mesh functions may depend on the temporal variable as
 

well as the spatial variables. For example, 'free surface problems could
 

be studied in the manner of Godunov and Prokopou [4] and Thompson et al.
 

[82. Transformations of certain multiply-connected regions -can also be 

constructed provided appropriate branch cuts are-made as in Thompson 

et al. [7J. 

The example is intended to be a test of the method and not an 

improved method for solying the stated potential flow problems. It 

illustrates how the method handles both Dirichlet and Neumann boundary 

conditions. In the transformations there are boundary points where the
 

-Jacobian vanishes and points where the body is not smooth. 
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Table. 	Maximum difference in successive
 

iterates after n iterations
 

Spherical Body Elliptical Conical
 
n mesh potential error mesh 
 potential mesh potential
 
10 2.63014 1.17530 0.12645 
 1.70716 0.77372 1.34065 0.55443­
20 2.19094 0.77492 0.05571 0.47050 0.20634 0.37055 0.18059
 
30 0.25112 0.08907 0.03191 0.11962 0.02564 0.06961 0.01985
 
40 0.03266 0.00840 0.01756 0.01681 0.00144 0.00580 0.00181
 
50 0.00377 0.00194 .0.01565 0.00061 0.00049 0.00095 0.00159
 

T
 

. IR
 

w 

u
 

Figu.re 1. - Physical and computational regions.," 
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1<1 

(a) w bb3 (b) w=-1(b 3-a 3 ) 

.- '.I.. 

I I 

/,'/ 

12 

FIUE2-peialbd z'2 1 -'zt i r v4 

(c) u-= (b-a i ) ) = 

2 2 



21
 

- - -/ -- - - - ­

(b) u = ("l- al)(a) u = (b1- -a1 ) 

Figure 3. (a) Ellipsoidal body 4x2 + 2 + 16z22 = 16 , z - 0 

<
 
and (b) conical body x2 + 2 = (z-l) 2 ,o0S z i. 


