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1. Introduction

This paper is concerned with the existence, uniqueness, and asymptotic

properties of a strongly consistent local maximizer of the likelihood

function for a vector parameter in the case of nonidentically distributed

samples and without prior assumptions which insure the existence of a global

MLE. dell known results pertaining to scalar parameters and i.i.d. samples

date back to theorems of Cram6r [ 51 and Huzurbazar [111, while results

concerning the consistency of the MLE, under assumptions that insure a

unique MLE, may be found in Wald [171, Wolfowitz [191, and LeCam [121.

Somewhat more recently, Silvey [151 has dealt with the asymptotic properties

of the MLE without independence. Surprisingly however, a correct proof of

the multidimensional version of the combined results of Cramdr and Huzurbazar

on the existence of a unique consistent solution of the likelihood equations

when multiple roots occur did not appear until 1977 in a note by Foutz [.101,

(see also Tarone & Gruenhage [161, Chanda [ 31, and Peters and Walker [14,Appendixl.)

Examples I and 2 which follow illustrate the need for a consistency theorem

along these lines which relaxes the assumption of identically distributed

observations.

Example 1 (Observations with missing components): Let X 1 , X 2 , ... be

independent random vectors in R n whose common density is one of a parametric

family {q ( x l © ) l eEO , where 0 is a subset of R v. Suppose that instead of the

X i we observe only certain subvectors B 1 X i s 82X2 , ..., where {B i } is a given

sequence of n  x n matrices obtained by deleting n - n  rows from the identity.

Clearly we can assume that components are missing at random provided that the

B i 's are independent of the X i ' s. Under what conditions is there a unique



t
F

strongly consistent (and asymptotically efficient) local MLE of a based on the

observations B 1 X i s B 
2 

X 2 , ...?

A recent paper by Dahiya and Korwar [61 illustrates that even for a bivariate

normal sample, with several simplifying restrictions on the sample and on the

parameters, the likelihood equation for Example 1 has multiple roots and requires

numerical methods for its solution.

Example 2 (Estimating mixture dens ; ^.y darameters with sample blocks of varying

sizes): Let f(xJT 1 ), f(x JT2 ),	 f(xJTm) be unknown but distinct members of

a multivariate parametric family (f(xJT))T J , and let n 1 , ..., am be the unknown

positive probabilities corresponding to a discrete mixing distribution supported

on {T 1 , ..., Try ). The number m is known. Under what conditions will there be

a unique consistent MLE of the parameter © = (a 1 , ..., am-1 , T 1 , ..., Tm)
m

describing the mixture density q(xJO) = E (x i f(xJT.), based on a sample of the
i=1

type X 1 , X 2 , ..., where the X i are independent and each X i is itself a random

sample 
X i	 (X il'	

XiIii) of known size from an unknown component density

f(xJ1 i )? In this example the parameter 0 is only locally idemtifiable. Moreover,

it can easily occur that the likelihood function is unbounded [91; hence, the

need for a consistency theorem for local maximizers is especially clear.

The practical importance of Example 2 is indicated by the fact that

estimation of mixture density parameters is often proposed as an alternative to

the clustering of large amounts of multivariate data [181. The asymptotic

properties of the MLE are of interest because of the prevalence of large sample

considerations in judging cluster validity 181, even thou gh it may be difficult

to argue for a statistical basis for a given clustering problem. The presentation

of the data in blocks of varying size ray occur when the primary sampling units

are grouped by physical or spatial associations (see 121 and [131 for an

2



3

application of this idea in the analysis of pictorial data.)

Finally we remark that the existence and uniqueness of a consistent solution

of the likelihood equations bears un the numerical problem of obtaining the

estimate. Each of Examples 1 and 2 is a missing data problem (in Example 2

the random variables which indicate the component population of origin are missing);

thus, a natural numerical procedure for obtaining a MLE is one derived from the

generalized EM procedure of Dempster, Laird, and Rubin [7]. Such a procedure

increases the value of the likelihood at each iterative step; however, this is

no guarantee of convergence, since the likelihood function may be unbounded.

Generally speaking it is possible to show that the Hessian of the log likelihood

is negative definite near the consistent solution of the likelihood equations.

Thus,the generalized EM procedure is convergent to it given a good enou gh starting

value (see 1141 for a "horough discussion of numerical properties in the case

of a mixture of multivariate normal distributions.)

Throughout this paper the symbol E  will denote expectation with respect to

a distribution determined by a parameter 0 and D u , D2^ v etc. will denote differen-

tiation or partial differentiation with respect to scalar or vector variables u, v.

For a scalar vilued function, V u will denote the gradient with respect to an inner

product which will usually be understood front the context. Given an inner product
k

<+> and a vector o, the symmetric k-linear form f(n l' '"' nk )	 g <0 11le will
3=1

be denoted by <oj— . Thus, for example, we may write the covariance of a statistic

S as Cov I (S) = E T (<S - ET(S)I•-2). The largest and smallest eigeAvalues of a

syrrtetric positive definite operator A will be denoted respectively by p(A) and

o(A).
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2. A General Consistency Theorem. Let 0 be an open subset of R v and for each

positive integer r and each 0 e 0, let qr(•Ie) be an Nr-variate density with

respect to some fixed a-finite measure 
X  
on Or . Let 00 e 0 and let X 1 , ...,

X p , ... be a sequence of independent random vectors with X  having density gr(•Ieo).

For 6 e 0 define

p
L (e) = E log qr (Xrlo)
p	 r=1

Theorem 1: Suppose

(i) jjqr D6 q  (xJ00 ) dXr (x) = 0 ,

(^^)	 J Nr De q  (xIe°) dar(x) - 0 ,

and that there is a constant M, functions f r , a neighborhood Sl of 6o and ar-null

sets A  in Or such that for all r, 0 E S2,x [ Art

(iii) ID6 i , oi l t^ log qr (xIo)k fr (x)	 is i s k = 1, ..., v
k

(iv) Eoo{fr(Xr)2}	 M

(v) Eoo{ID0 log q  (X r
1O

o )]4 } s M	 i = 1, ..., v
i

(vi) E6o { 1 0 
2 [ D2 .6 q r (X^,^00)]2) s M	 i, j = 1, ..., v

g r( X rl e )	 i J

and

(vii) there exists c

where J r (0°) = Eoo{vo

R", and the orderina

> 0 such that 1 F.
p
 J (00 )> E I for sufficiently large p,

pr=1 r	
v

log q r (X r ^oo ) De log qr (X r loo )), I v is the identity on

is the usual one on symmetric operators. Then there is a

neighborhood 00 of 00 such that with probability 1 there is an integer pl such

that for p > p l there is a unique solution 6p in S2° of the likelihood equation
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D0L p(0) - D. Furthermore, OP 00 as p - and OP is a maximum likelihood

estimate. The consistent estimator 6 P is asynptotically normal and asymptotically

efficient.

Proof: In the proof we make repeated use of the following version of the strong

law [4, p. 1031: let Z I , Z21 ... be uncorrelated random variables such that

the variances of the Z i are bounded. Then ^ r (Z u - E[Zj i) - 0 a.s. as n ► ^.
J=1

Let Sp (e) = p E Delog gr (X r JO). By (i) E0o{Sp ( 6")} = 0 and py
rl

(v) S p (e°) -► 0 a.s. as p i	 Consider the vxv natri;c D
O
S P (00 ) whose is

jth

element is

	

P

P

	

	 p
rE1D6t^6Jlog gr(Xr1e°) 	

F 
rEl 

q ( X1^e
°) Detvg,gr(Xrie°)

r r

1 P
E D8 log g r(X r le°)De log gr(Xrle°).

P r=1 i

By (ii) the expected value of the first term on the right is zero. Hence, by

(v) and (vi)

DS (0°)+ 1 EP  (0°)-+0
0 	 Pr=1 r

a.s. as p -► -. Thus, with probability 1, if 0 < n < E12 there is p° E N

so that for p z p
a

D0Sp(00) s -20 .

Without loss of generality we can assume n is convex. For o E 11,

1P IDO.,e log g
r (X r 10) - 

D0 6. 109 g(Xr^ Oa),P r=1	 t ^
	 O i se
	 ^

P v

5 P rEl k
E l ^ek - f'k1 I0 I DO t,0^ ,0k l og gr (Xr 1 0° + t( 6 - 00))Idt

P v

1 Z	 E {0 k - 0k{ r rf(X)
P r=1 k=1

r
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With probability 1, for large p

P
fr(Xr) s l+ P E E6o{fr(Xr)}

	

r=1	 r,1

s 1 + MN .

It follows that for any particular norms on Rv and on the syrzetric vxN- matrices

there is a constant M such with probability 1 there is a positive integer pl

such that for p L, p l , 6 E 0,

JID0Sp (6) - D
o
s p (6°)II 5 RH O - 6°I1 -

Thus there is a convex neighborhood 0 of 60 such that

DOSp (0) s - nI

for all 0 E Q° , p ^ p 1 . It now follows that for p z pl	 Sp is one to one on

QO and that the image under S p of the sphere ' d ( Oo ) at 60 of small radius d

contains the sphere Q.,(Sp(6°)) at Sp (60 ) of radius nd. Since 0 is eventually

in s.n6(SP(6°)) there is a unique solution of D6Sp (0) = 0 in 0,00 ). Since

D
o
s p (6) is negative definite, this solution is a MLE.

P
Let :: = 1 F, J (0. The Cram6r-Rao lower bound for p observations is

	

P	 Pr=1 r
verified without difficulty to be (p Fp ) -1 . By (v), (vii), and Liapounovs

Theorem 14, p. 2001,p^ F PS S
p
 (00 )is asymptotically distributed as W v(0, I).

Moreover, in a neighborhood of 00 we may write

S p (0) = Sp (00 ) + A(6)(0 - 60)

where AN	 D0Sp (00 ) as 6	 O°. It follows that with probability 1.

p12 F. ( OP - 00 ) _ - F tt A(O P )
-1 

F^ 
p^ F- 1i 

S (©e)
P	 P	 P	 P P

for large p. Since D()Sp(0") + yp -• 0 and A(OP) 	 D0S p (00 ) with probability 1,
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the expression - Ep A(o^p ) -ir	 converges almost surely to the identity. Therefore,

P^ Ep (OP- 00 ) is asymptotically N (0,I) and ©p is asymptotically efficient.

This concludes the proof.

3. Applications.

Suppose that in Example 1 cne X i have a common n variate normal distribution

4n 6u, E) and it is desired to estimate u, F by maximum likelihood based on the

observed components B I X 1 . 62 X2 , ..., BPXP . The likelihood equations for u and

F. are

'3.1)	 rPlBr(Br EBr) -1 Bru = E Br(BrEBr) -16rXr .
r1

and

P T	 T-1	 p T	 T -1	 T T	 T -1(3.2)	 rF1^3r(Br"r) Br = rF. 1 Br (BrFBr ) Br ( Xr - p)(X r - 11) Br (BrFBr j Br .

and have no explicit solution, although for given E (3.1) may be solved explicitly

for u provided that the matrix an the left of (3.2) is invertible.

Components i and j are paired in the observation B 
r 

X 
r 

if both the i th and

jth columns of 
8  

contain a 1. Let 0(i, j, p) denote the relative frequency

with which the i th and j th components are paired in the first p observations

Bx.... 9 BX	 and letm(i. j)=Lim	 W. J. P) .11	 pp	 1	 p + W

Theorem 2: Let X 1 , X2 , ... be independent, identically distributed according

to Nn (u, F).	 If 4̂ 1 (i, j) > 0 for all i, j = 1, ..., n, then there is a unique

strongly consistent solution of the likelihood equations (3.1) and (3.2), which

has the asymptotic properties given in Theorem 1.

Proof: The only one of conditions (i) - (vii) in Theorem 1 which poses any

tr
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difficulty is number (vii). For e s (N. E), the information matrix Jr(e)

corresponding to the density of BrXr,

gr(•18) = Nnr (Bru. BrEBT .

is

(3.3)	
Jr(©) s	

Ur(8)	
0

	

0	 Ur(Q) ® Ur(8)

where Ur(a) = 3r (B rEBr )-IBr . and the Kronecker product U
r
 (0) ® U

r (0)

represents the symmetric operator on n x n real symmetric matrices S (with

trace inner product) defined by Ur(©'SUr(®) . Thus (vii) is satisfied if for

each E there exists E - e(E) >0 such that for all p sufficiently large

P
(3 4)	

p 
EZTBr(3 rEBr)- 1 BrZ '- ;ZTZ

r=1

and

P
(3.5)	 1 E Tr[Br(Br EBr) -1BrS.12 > J rS2

pr=1
for all Z f R  and symmetric S. However, (3.5) implies (3.4), as can be seen

by taking S = ZZ T . Hence, it suffices ;.o establish (3.5) under the stated

hypotheses.

Now,	 Tr[ Br(BrY Br)-1BrS) 2

= Tr[(B,.EBr ) -1 (BrSBr ) 12

= Tr[(BrEBT ) - ^	 SST)(BrEBT) :1

(BrEBr) k' ® (9 rEBrj - 1 Tr[BrSBT12

But,

or (B
r EBrI 20 (BrEBr)-^' ]=1/p[(BrEBr)^' ® (BrF.Br)?']

and
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pt(BrEel) 0 (BrEBrj l = sup Tr(B rrer)" A (BrEs ) A (BrEBr)
TrA st

= sup Trf(BFBr)Al2

TrA <1

= sup TrEBTABrEBrABr
TrA sl

= sup Trf E^
IB
rAS E $ l

TrA si

s P[ E li e E % 1_ sup Trf Br48r 12
A 51

The last equation follows from 8 8T R Inr	Hence,

	

Tr[Br(B rEBr) -I8rSl 2 	 o[F. ^' ® }: ^') Tr[BrSBrl2

= a[ E ' ® F - '*'] T r[ Br8rSBrBr 12

Therefore,

	

PrP 1 Tr[Br(BrEBr)^ I B rS1 2 	o[E ^_ ® E ,	 prF1Trf8rBrSBr8rI

of E -14 ®E I'lo[p	
(BT 	 ® (BrBr)1TrS2

rl

Since eventually

oil 
P
P (BT Br ) e 

(BT 
B r ) i > I iin 010j)

J

(vii) follows upon taking	 2 min $j(i,J) • pfYt'0} : I'1 • QED.
i.J

The second application of Theorem I is	 the problem outlined in Example

2. tie assume that the unknown component densities f(XIT i ) are from a regular

exponential family (see [1] for definitions) with minimal canonical representation
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(3.6)	 f(xIT) - C(T) exp <TIF(x)>	 (T E T)

with respect to a o-finite measure A, where T is an open subset of a finite

dir*nsional space V with inner product	 We also assume that for distinct

T 1 , ..., T  , the functdons e`T^IF(x)>^ ..., a<Tm^F(x)>, together with any

components of F(x)e<T'lF(x)', ..., F(x)e <TMIF(x)> are linearly independent

M. The joint density of Xr a (Xrl , •••• Xrgr), given that X r is a sample

from f(xlT t ) is

(2.1)	 pr(xrIY = Yr( Tt)exp<TL IGr(xr)>

where	
x  . ( xr19 ... 0 xrNd

Yr ( T I ) - C(Tt)Nr

and
fir

Gr ( xr ) = F. F(x rj )
j=1

The log-likelihood for the parameter 0 = 
(a r ­ 9 `gym-1' '`1'	 Tr'd of

Example 2, based on the sample X 1 .	 X  is

(3.8)	 L (8) = P log gr(Xr1©)
P	 r=1

where

(3.9)	 gr(Xrlp)	 Pr
R=1

and p r (X r	meIT,) is given by (3.7). The following lemma collects so 	 facts

about exponential families which we require. For proofs, see 6arndorff-

Nielsen t 1 I .
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Lemma 1: Let (1) be a canonical representation of an exponential family.

For T E T let K(T) _ - ln.C(T) = In fnexp<TIF(x)>dX(x)
R

Then

(i) For each T E T, F(x) has moments of all orders with respect to

f(x1T);

(ii) K(T) has derivatives of all orders which may be obtained by

differentiating under the integral sign. D TK(T) may conveniently

be represented as a symmetric k-linear form on V whose coefficients

are polynomials in the first k moments of F. In particular,

(iii) DTK(T) = <E 
T 
(F)I->  =	 F(x)l->f(XIT)da(x)

R

and

(iv) D2K(T) = COVT (F) = I< F - ET (F)I->2f(xlT)da(x) ; D2K(T) is
R
n

positive definite.

(v) K(T) is strictly convex on T.

We are now ready to establish consistency of the MLE in Exanple 2.

Theorem 3: If the numbers fN r } are bounded and L p(0) is given by (3.8)

then with probability 1 there is a unique consistent solution of D 0Lp (e) = 0

which, moreover, is a MLE of the parameter 00 = (al' ... 
am-1' T 1' ---I,Tm)

and is asymptotically normal and efficient.

Proof: Write ur ( T t ) = ET ( Gr ) ; u(T t ) = ET (F). Using Lei" 1, the nonzero
k	 k

derivatives of gr ( xr +0) up to order 2 are:

	

(3.10)	 Da g r (x r (0) = pr(xr 1T Q ) - pr (xr lTm) , 1 
15 	 15

z

	

(3.11)	 DTQgr(xr10) = a^pr (xr IT Z k Gr(xr ) - u r (T 9	 >	 1 s R < m



12

(3.12)	 D2R^a1gr(xrl6) = Pr (xr ITR )<Gr - 11 (T it 	 1 s t s m-1

(3.13)	 D2m^at gr (x r 10) = -Pr(xr ITm )< Gr - ur(Tm)I'>	 1 <_ R <_ m-1

(3.14)	 D2 gr ( xr l e ) = a
Zpr

(xr IT t )f < Gr - ur ( T d I - >2 - covTR(Gr )}	 1 s R s m .

Conditions ( i) and ( ii) of Theorem 1 follow immediately from (3.10) - (3.14).

Similarly, using Lemma 1 and the boundedness of fNr }, conditions (iii) - (vi)

of Theorem 1 are readily verified. It remain to verify ( vii). He may write

J r(0) in matrix form as

I 1	 0	
A 
	 B r
	

0

J (8) =	 E
r	

0 .rl2	

8	
3*	 Cr	

0	

NrI2

where I 1 and I 2 are respectively the identity operators on Rm-1 and Nm and

A = ^Pr
( Xr I T R )	 Pr (X r ^Tm)l^p r (X r IT k ) - pr(XrI Tm)1 	

k k = 1,r

	

	 ^	 •gr(Xrle)2

Q = `/aOr(XrITk)CPr'XrITZ) 	 Pr(XrITm)1 N ,2 <G - u (T )>	
Q = 1, ..., m-1

r	
gr(Xrle)	

r	 r	 r k 1-	
k= 1, ..., m

C = OtZOLOr(XrITk)Pr(XrITk) N 1
r	

q 

(X 
(8)2	

r (Gr - ur(Tk)k Gr - u r (T^)I • >	 k, .e = 1 ) ..., m.

r r

The assumptions concerning the linear dependence of the functions eX P< TIF(x)>

and F ( x)exp<TIF(x)> insure that J r (0) is positive definite for each r.

Condition (vii) will be established once it is shown that the smallest

eigenvalue of J r (u) is bounded away fro&i Zero as N 

a<._ ^. -^.^...^Y.,^^ z..::x ..^.,-,:gam-r_	 ^•,:..... ,..

n '
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Clearly,
A

	

o(Jr	 >(6))	 Q E8	
r

B
-	 r

Observe that

X IT

	

Z)
r I R	

= exp i -NrCK(T R ) - K(T k ) - <Tk - T k l^l1 Gr>)}
	P r ( XrI T k )	 r

If X  is a sample from f(xlx k ), then the expression in square brackets

converges to

K ( T Q ) - K(T k ) -
 

<T 	 T k JETk (F)> = r( T^) - K(T k ) - K'(T k ) - (TI - Tk)

which is positive by the strict convexity of K. Hence,

Pr(XrI-[d

Pr Xr T k 	 0 as Nr -* 0 .

Therefore,

E r Pr(XrlTZ)Pr(XrlTk) 	 E	 Pr(XrIT d -,

©	 gr(XrIo)2	
T 
	 gr(Xrle)

	

converges to 0 if k ¢ k and a - if t = k as Nr	 ^. Thus,

k

d

E©f A7
	 --^ + tk	 as Nr

	

	 r	 .

°1k

Given that X  is from f(xlT k ), Nr^2(Gr - 1j r0 k )) converges in distribution

to a normal randon variable Z with mean zero and covariance covT (F).

k
Hence,

gr(Xrl £ _) 
Pl r 2(Gr, - u r,( T0)/ 

Br

C
r
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converges in distribution to 0 if k ^ k and 
a 

Z if k = k.
k

Let A be any element of V and consider

N

[N <G<Gr - u r (Tk )IA'J4 = N I E <F(Xri ) - ET (F)^A>14

J = 1	 k

After expanding and taking expectation with respect to r
k , it will be seen

that the only nonvanishing terms are those of the form

ET 
k 
[< F(X rj ) - ET 

k 
(F)IA>2<F( Xrt ) - ET 

k 
(F)IA>27

of which there are Nr + (1r)r 	 = J(N2 ). Thus

E [Nl` <Gr - 11 (T k )IA> 1 4
T
k r

is bounded as M r - -. It follows from a standard theorem on convergence of

moments [4, p. 951 that

p r (X r^ i ¢)
E I	 Nr ( Gr - u r ( T k ) )	 -+ 0 as Nr -* m

k	 gr(Xrit3)

Thus E 0 (B r )	 0. Similar reasoning shows that

1 0 (C r )	 O kkcovT k (F))

as N 1, - -. Therefore o(d r (0 ) is bounded away from 0 and this concludes

the proof.

4. Concluding Remarks.

Theorem 3 remains true under weake assumptions then the boundedness

of the sample sizes !J r , but nothing like the approach embodied in Theorem

1 will work without some restrictions on N r . Nevertheless, it is far from
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intuitively clear that restrictions are needed for the existence of a

consistent MLE. Similarly, it seems plausible that the assumption in

Theorem 2 that components be paired with nonzero asymptotic frequency

might also be weakened. In certain cases, e.g., when a normal mean is

to be estimated from data with missing components and the covariance is

the identity, the existence of a consistent MLE with desirable asymptotic

properties can be shown under weaker hypotheses than those derived from

Theorem 1. The condition in Theorem 1 that ^ 1 (i, j) > 0 for all i and j

is nevertheless reasonable since it is equivalent to the condition that

the Craver-Rao lower bound be of the order of 1 as p

i

l:_
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