https://ntrs.nasa.gov/search.jsp?R=20170007385 2019-08-29T22:19:58+00:00Z

Entry Systems and Technology Division

Measurement and Prediction of Radiative Non-equilibrium for Air Shocks Between 7-9 km/s

Brett A. Cruden Aaron M. Brandis AMA Inc at NASA Ames

> AIAA AVIATION Denver, CO Jun. 12, 2017

Outline

- Motivation
- Experimental Approach
- Sample Data
 - Comparison of Data across two shock tubes at 0.14 Torr
 - Full data Set on data.nasa.gov
- Model Adjustments
 - Nitric Oxide (NO) Radiation
 - Revisions for Atomics, N2, N2+ in paper
- Comparison of Predictions to Data
 - 0.01 Torr and 0.70 Torr
 - 0.05, 0.14 and 0.3 Torr in paper
- Conclusions
- Outlook

Motivation

- About 8% of Lunar Return radiative heating occurs below 9 km/s
 - Based on current models
- Return from lower altitude (e.g. EFT1) is entirely in this speed regime
- Radiation phenomena not well validated in this speed regime

Approach

Entry Systems and Technology Division

Radiation is measured in EAST Facility

- 24" Diameter tubes for low (<0.1 Torr) pressure
- 4" Diameter tube for higher (>0.1 Torr) pressure
- Measurement by between 2-4 spectrometers covering 190-1450 nm

Conditions Measured

- 51 shots between 7-9 km/s
 - 33 (27 good) on the 24" Tube (0.01, 0.05, 0.14 Torr)
 - 15 from 190-500 nm
 - 12 from 500-1450 nm
 - 18 (17 good) on the 4" Tube (0.14, 0.30, 0.50, 0.70 Torr)
 - All from 190-1450 nm
- Subset of 10 tests selected for further analysis (1 per pressure/wavelength/tube diameter combination):

	Shot No	Velocity (km/s)	Pressure (torr)	Range (nm)	Tube Diameter (cm)
Model Tests	15	8.18	0.01	190-500	60.33
	32	8.57	0.01	500-1450	60.33
Paper	8	8.62	0.05	190-500	60.33
	24	8.87	0.05	500-1450	60.33
Consistency	20	8.29	0.14	190-500	60.33
Check	22	8.36	0.14	500-1450	60.33
	38	8.33	0.14	190-1450	10.16
	42	8.09	0.3	190-1450	10.16
	46	7.71	0.5	190-1450	10.16
	50	7.34	0.7	190-1450	10.16

Sample Data (190-500 nm)

Entry Systems and Technology Division

Spectra are resolved in wavelength and position behind shock

Sample Data (500-1450 nm)

Entry Systems and Technology Division

Spectra are resolved in wavelength and position behind shock

Non-equilibrium Analysis

- (somewhat) arbitrarily assign ± 2 cm of peak as "non-equilibrium zone"
- Integral of this, divided by tube diameter, is the "non-equilibrium metric"
- Presented as function of wavelength : "spectral non-equilibrium metric"

Spectral Non-equilibrium Metric

Entry Systems and Technology Division

- Non-equilibrium metric composite from 4 different spectrometers
- Spectral Non-equilibrium Metric has units of radiance
 - It is equal to the radiance accumulated through the non-equilibrium zone if the non-equilibrium region is optically thin

0.14 Torr Tube-Tube Comparison (190-500 nm)

- Spectral metric is larger in 4" tube than 24" tube
- Overlap region of spectrometer is consistent
- CN Contamination in 4" Tube
- Velocities differ, optical thickness may differ
 - Check predictions

DPLR/NEQAIR Comparison (190-500 nm)

- Some increase in radiation predicted at 8.33 km/s
- Increase is sensitive to rate model
- Prediction does not match data

Tube Disagreement (190-500 nm)

- Median disagreement : 46% (cf. 16% predicted)
 - Not clear how much of remaining 30% is due to errors in prediction or experiment
- Divergence at low wavelength
 - 24" Tube calibration suspect based on S/N
- CN contamination radiance

0.14 Torr Tube-Tube Comparison (500-890 nm)

Entry Systems and Technology Division

- Molecular emission (500-700 nm)
 - 4" Tube 30% larger than 24" Tube
- Atomic radiation signifcantly higher in 4" Tube
 - Lines may be optically thick

Predicted Non-equilibrium metric

Entry Systems and Technology Division

- DPLR/NEQAIR prediction shows larger metric in 4" Tube
 - Indicates atomic lines are optically thick
- Molecular radiation not predicted by NEQAIR

Ratio of Tube measurements (500-890 nm)

Entry Systems and Technology Division

• Ratio observed in EAST matches predicted ratio for atoms

- DPLR/NEQAIR are used to produce 1D (stag. line) profiles for comparison to shock tube data
- Three "heritage" modeling options discussed
 - Park90 with Te=Tt (DPLR Default)
 - Park93 with Te=Tv
 - Johnston14 with Te=Tv (LAURA default)
- Revisions to Model will be discussed
 - Use data to guide reasonable modeling assumptions
 - Use third party measurements of input parameters
 - Do not "tune to fit"
 - Maintains some level of independence between model and data set

Spectral Non-equilibrium Metric

Entry Systems and Technology Division

Analysis will be divided by spectral features for discussion

NO Radiance

- NO Radiance from (primarily) γ, ε bands
 - Originate from $A^2\Sigma$ and $D^2\Sigma$ states
- Also δ band (C² Π)

NO Comparison to Heritage

Entry Systems and Technology Division

Underpredicted at all conditions, by all models

NO Boltzmann

Entry Systems and Technology Division

7.34 km/s, 0.70 Torr

- Boltzmann Radiance is typically an upper bound for non-equilibrium radiation (in compression)
- Park models cannot match Boltzmann radiance at 0.7 Torr
 - Must check reaction rates
- Boltzmann radiation too high at 0.01 Torr
 - Non-Boltzmann model needs examination

Entry Systems and Technology Division

• NO Formation is driven by so-called Zel'dovich exchange Reactions:

 $N_2 + O \leftrightarrow NO + N$ $O_2 + N \leftrightarrow NO + O$

• NO Destruction depends on direct dissociation:

 $NO + M \leftrightarrow N + O + M$

We opt to carry rates from combustion literature (Tsang/Baulch)

Impact on NO concentration (0.7 Torr)

- Updating Exchange Reactions increases peak NO density
- Reducing dissociation rate reduces decay
- Changing the ratio of dissociation by atoms vs. molecules further increases NO density
 - Johnston follows Park : ratio is 22
 - Figure shows ratio of 1.0
 - Tsang recommended ratio of <1

Entry Systems and Technology Division

- For these conditions, NO non-Boltzmann is dominated by heavy particle processes
- Internal excitation:

 $NO(X) + M \leftrightarrow NO(A,C,D) + M$

Heavy particle impact Dissociation:

 $NO(A,C,D) + M \leftrightarrow N + O + M$

- Internal excitation rates in NEQAIR are only approximate, fundamental data is not available
- The reverse of internal excitation is quenching : rates are available at 300K. Assume:

$$k_q = k_{q,0} \sqrt{\frac{T_t(K)}{300}}$$

- Heavy particle impact dissociation is updated to be consistent with rate chemistry
- Ratio of atomic to molecular driven dissociation is still undetermined

Adjust Atom/Molecule Rates

- Rates adjusted consistently in DPLR and NEQAIR
- Ratio of 5 matches 0.7 Torr data
- Also matches NO γ at 0.01 Torr
- NO δ is overpredicted at 0.01 Torr
 - Possibly experimental error due to lower sensitivity in this region

Summary of Model Revisions

- Flowfield model
 - Update NO dissociation and exchange rates to be consistent with combustion literature
 - Alter ratio of NO dissociation by atoms vs. molecules to 5
 - Electron impact dissociation rate from radiation model used for flowfield
 - Associative Ionization controlled by T_e
 - Update selected charge exchange rates
- Non-Boltzmann Radiation Model Molecules
 - Heavy particle dissociation rate consistent with flowfield dissociation rate
 - Use quenching rates from literature to calculate heavy particle excitation rates for molecules
 - Electron impact dissociation calculation corrected
 - Estimate and include contributions from excited states
- Non-Boltzmann Radiation Model Atoms
 - Excitation rates updated to hybrid of Huo (dipole allowed) and Park (unallowed)
 - Include Associative Ionization process

Results - 0.7 Torr, 7.34 km/s (190-500 nm)

- NO and N₂⁺ underpredictions rectified (mostly)
- N₂ 2nd Positive Somewhat Overpredicted
- Reasonable match to temporal trend

Results - 0.01 Torr, 8.18 km/s (190-500 nm)

- N₂⁺ still overpredicted
- N2 2nd Positive overpredicted
- NO matched 240-290nm (Gamma bands)
- NO overpredicted < 240 nm (Epsilon bands)

Results - 0.7 Torr, 7.34 km/s (500-890 nm)

- N₂ 1st Positive Matched
- Atomic lines nearly matched
- Reasonable match to temporal trend

Results - 0.01 Torr, 8.58 km/s (500-890 nm)

- Underprediction N₂ 1st Positive Matched
- Extra atomic lines eliminated
- Other atomic lines underpredicted
- Temporal trend shows spike at shock front

Results - 0.7 Torr, 7.34 km/s (890-1450 nm)

- Atomic overprediction eliminated, lines that are present are reasonably close
- Missing molecular radiation source (TBD)
- Temporal trend looks ok

Results - 0.01 Torr, 8.58 km/s (890-1450 nm)

- Atomic overprediction eliminated
- Integral matches data
- Spike observed at shock front, trend otherwise ok

Summary

Entry Systems and Technology Division

- Non-equilibrium Radiation Data Measured from 7-9 km/s at 6 freestream pressures from 0.01-0.70 Torr
 - Comparison across two tubes with different diameter, calibration source indicate confidence in data of ~30% (in UV) or better (Vis/NIR)
 - Presentation focuses on highest and lowest pressure ranges
- Agreement to Predictive (DPLR/NEQAIR) Model has been improved
 - Underprediction of N₂/NO resolved by changes to rate chemistry, heavy particle excitation rates
 - N₂⁺ overpredicted at low pressure, revised rate/excitation model fixes underprediction at high pressure
 - Predctiion of atomic radiation improved by
 - Changing excitation model (high energy states)
 - Including associative ionization in non-Boltzmann model (3p states)
- How does your model do?

https://data.nasa.gov/docs/datasets/aerothermodynamics/EAST/index.html

Work to go

- Low pressure overpredictions of
 - N₂⁺: State specific associative ionization?
 - NO, N₂ : Pre-dissociation rates?
- Missing molecular features in infrared (high pressure)
- Spike in shock front at low pressure
- Underpredicted atomic lines at low pressure
- non-Boltzmann associative ionization model : needs realistic statewise rates

Entry Systems and Technology Division

Backup

Spectral Non-equilibrium Metric

Entry Systems and Technology Division

• Identification of features suggests regions for further analysis

Entry Systems and Technology Division

• There are between up to 23 reactions rates across the 3 models, 11 of which have some differences:

	NO + M	\leftrightarrow	Ν	+ 0 +	Μ	increased by Johnston
se rates not important	N ₂ + O	\leftrightarrow	NO	+ N		Johnston used rate from Fujita, 2006
	NO + 0	\leftrightarrow	0 ₂	+ N		Johnston uses rate from Bose, 1997
	N + O	\leftrightarrow	NO ⁺	+ e⁻		Updated Park93, Johnston/Park90 same
	N + N	\leftrightarrow	N_2^+	+ e		Updated Park93, Johnston/Park93 same
		\leftrightarrow	O ₂ ⁺	+ e		Updated Park93, Johnston/Park93 same
	O ⁺ + NO	\leftrightarrow	N+	+ O ₂		Activation energies differ
	$N^+ + N_2$	\leftrightarrow	N_2^+	+ N		Missing from Park90, Johnston/Park93
	O ₂ + + O same	\leftrightarrow	0+	+ 0 ₂		Missing from Park90 [*] , Johnston/Park93
The	N ₂ + e	\leftrightarrow	N	+ N +	е	Differs across all three chemistries
	0 ₂ + e	\leftrightarrow	0 ₂ +	+ e		Missing from Park90/Park93

* As implemented in DPLR
Revised Kinetic Model

Entry Systems and Technology Division

Reaction	М	A (cm ³ /mol·s)	n	E _a (K)	Controlling Temperature	Ref	
$N_2 + M \rightarrow 2N + M$	Molecule Atom	$\frac{7.0 \times 10^{21}}{3.0 \times 10^{22}}$	-1.6	113,200	$\sqrt{TT_{ev}}$	[5]	Park 90
	e	1.2×10^{7}	2.69		T _e	This work	
$O_2 + M \rightarrow 20 + M$	Molecule	2.0×10^{21}	-1.5	59 500	√TT	[5]	Park 03
	Atom	1.0×10^{22}	1.0	55,500	VII ev	[2]	1 ark 93
$NO + M \rightarrow N + O + M$	Molecule	1.5×10^{15}				[21]	
	Atom	7.3×10^{15}	0	74,570	VII _{ev}	This work	\mathbf{C} 1
	e	5.7×10^{18}			T _e	This work	Combus
$N + e^{-} \rightarrow N^{+} + 2e^{-}$		2.5×10^{34}	-3.82	168,600	T _e	[6]	
$0 + e^{-} \rightarrow 0^{+} + 2e^{-}$		3.9×10^{33}	-3.78	158,500	T _e	[5]	
$N_2 + O \rightarrow NO + N$		1.8×10^{14}	0	38,249	T _t	[24]	Evaluat
$O_2 + N \rightarrow NO + O$		9.0×10^{9}	1.0	3,270	T _t	[24]	aalligio
$N + O \rightarrow NO^+ + e^-$		$8.8 imes 10^8$	1.0	31,900	T _e	[6]	comsio
$N + N \rightarrow N_2^+ + e$		4.4×10^{7}	1.5	67,500	T _e	[6]	data
$0 + 0 \rightarrow 0_2^+ + e$		7.1×10^{2}	2.7	80,600	T _e	[6]	
$N^+ + N_2 \rightarrow N_2^+ + N$		7.0×10^{6}	1.47	13,130	T _t	This work	
$O^+ + N_2 \rightarrow N_2^+ + O$		9.1×10^{11}	0.36	22,800	T _t	[5]	From el
$O_2^+ + O \rightarrow O^+ + O_2$		4.0×10^{12}	-0.09	18,000	T _t	[6]	
$O^+ + NO \rightarrow N^+ + O_2$		1.4×10^{5}	1.9	26,600	T _t	[6]	cross-se
$NO^+ + O_2 \rightarrow O_2^+ + NO$		2.4×10^{13}	0.41	32,600	T _t	[5]	
$NO^+ + N \rightarrow N_2^+ + O$		7.2×10^{13}	0	35,500	T _t	[5]	
$NO^+ + O \rightarrow N^+ + O_2$		1.0×10^{12}	0.5	77,200	T _t	[5]	Adjuste
$O_2^+ + N \rightarrow N^+ + O_2$		8.7×10^{13}	0.14	28,600	T _t	[5]	Jata
$O_2^+ + N_2 \rightarrow N_2^+ + O_2$		9.9×10^{12}	0	40,700	T _t	[5]	data
$NO^+ + N \rightarrow O^+ + N_2$		3.4×10^{13}	-1.08	12,800	T _t	[5]	
$NO^+ + O \rightarrow O_2^+ + N$		7.2×10^{12}	0.29	48,600	T _t	[5]	
$NO + N^+ \rightarrow NO^+ + N$		1.8×10^{12}	0.57	0	T _t	This work	

Park 93

Combustion Literature

Evaluated from ion collision cross-section lata

From electron-impact cross-sections

Adjusted to match lata

Entry Systems and Technology Division

N₂ Model

N₂ Radiance

- N₂ Features from
 - 1st Positive System ($B^3\Pi \rightarrow A^3\Pi$) 500-750 nm
 - 2^{nd} Positive System (C³ $\Pi \rightarrow B^{3}\Pi$) 280-390 nm

N₂ 1st Positive

- Underpredicted at all conditions
- Bonus Atomic Lines!

- Underpredicted at all conditions
- Partly obscured by N₂⁺ radiation at 0.01 Torr

Update to N₂ QSS

- Changing NO rates reduced underprediction @ 0.7 Torr
- Introducing N₂ Quenching rates brought data into overprediction
- Updating electron impact processes obtains near-agreement
 - Slight underprediction of N₂ 1st Positive, overprediction of 2nd Positive
- 0.01 Torr data (not shown) now overpredicted in UV, matched in Visible

Entry Systems and Technology Division

N₂⁺ Model

Entry Systems and Technology Division

• N_2^+ Radiation from

- 1st Negative System ($B^2\Sigma \rightarrow X^2\Sigma$)

320-500 nm

N₂⁺ Comparison to Heritage

8.18 km/s, 0.01 Torr 7.34 km/s, 0.70 Torr 3.0 5.0 EAST EAST 4.5 2.5 Park93 Spectral Non-eq Metric Park93 4.0 Spectral Non-eq Metric Johnston14 (W/cm2-sr-um) 3.5 Johnston14 2.0 (W/cm2-sr-um) Park90 (Te=Tt) 3.0 Park90 (Te=Tt) 1.5 2.5 2.0 1.0 1.5 1.0 0.5 0.5 0.0 0.0 320 370 420 470 370 390 410 470 430 450 490 Wavelength (nm) Wavelength (nm)

- Underpredicted at high pressure
- Overpredicted at low pressure
 - Park90 gets right magnitude, but transient (not shown) is incorrect

N₂⁺ after updates

7.34 km/s, 0.70 Torr

Entry Systems and Technology Division

8.18 km/s, 0.01 Torr

- Discrepancy at higher pressure mostly solved by revisions to rate model
- Low pressure discrepancy remains

Entry Systems and Technology Division

• N₂⁺ primarily formed by associative ionization:

$$N + N \longleftrightarrow N_2^+ + e^-$$

This rate typically controlled by T_t: becomes rapid when thermal non-equilibrium is significant

- However, ground state N does not cross N₂⁺ states
- Reactions proceed through metastable (and possibly excited) N atoms
- This creates dependence on T_e

Change Controlling Temperature

- Experimental Radiation profile matches N₂⁺ density when T_e controlling
- The predicted radiance (and profile) does not match, however

Atomic Radiance

Entry Systems and Technology Division

Atomic Radiation

- 3p states
 700-900 nm
- 3d states 900-1450 nm

N, O 3p Comparison to Heritage

- O atom:
 - 777 nm underpredicted at all cases
 - 845 nm underpedicted high pressure, matched low pressure
- N atom:
 - Low pressure : Fair agreement
 - High pressure : adjusting for baseline, matched by Park93/Johnston, overpredicted by Park90

N, O 3d Comparison to Heritage

Entry Systems and Technology Division

8.18 km/s, 0.01 Torr

7.34 km/s, 0.70 Torr

Significant overprediction, all lines/pressures

Internal Excitation Rates

- Park rates place 3d states at Boltzmann level (overpredicted)
- Huo rates equilibrate all states closer to ionization level
- Zatsarinny rates place highest states near ionization limit, lower states progress toward Boltzmann
- Hybrid Huo/Park equilibrates between Boltzman/Saha

Impact of Excitation Rate on Radiance

Entry Systems and Technology Division

- Revised rates underpredict 3p atomic lines
- Three alternatives eliminate 3d overprediction
- Huo/Park slightly higher than Huo or Zatsarinny

Additional Processes

Entry Systems and Technology Division

Peak Radiance 7.34 km/s, 0.7 Torr $T_t = 10,598K$ $T_e = 10,645K$ $N = 1.27 \times 10^{17} \text{ cm}^{-3}$ $N^+ = 2.42 \times 10^{14} \text{ cm}^{-3}$

- Traditionally, QSS balances internal excitation with ionization
- But, Ionization accounts for 0.15% of N atom chemistry
- N atom mass derivative is:
 - 81% exchange reactions
 - 10% molecular dissociation
 - 9% associative ionization

Including Dissociative Recombination in QSS

- State-wise associative ionization rates assumed proportional to overall associative ionization rates
- Preference factors dictate which atomic states are formed from a given ion state
- Best agreement uses literature data for ground state preference, no preference for other states of N₂⁺

Entry Systems and Technology Division

Flip-through of Non-equilibrium Metric Comparisons

Non-equilibrium – 190-500 nm (0.01 Torr, 8.2 km/s)

- All models underpredict NO
- N₂⁺ overpredicted by T_e=T_v options, Heritage does ok
- N₂ 2nd Positive underpredicted

Non-equilibrium – 190-500 nm (0.05 Torr, 8.6 km/s)

- NO still underpredicted
- N₂⁺ improving for T_e=T_v options, Heritage now too low
- N₂ 2nd Positive still underpredicted

Non-equilibrium – 190-500 nm (0.14 Torr, 8.3 km/s)

- NO still underpredicted
- N₂⁺ slightly over for T_e=T_v options, Heritage underpredicts
- N₂ 2nd Positive underpredicted

Non-equilibrium – 190-500 nm (0.14 Torr, 8.3 km/s)

- NO underpredicted
- N₂⁺ matched for T_e=T_v options, Heritage underpredicts
 - CN contamination accounts for disagreement at 388 nm
- N₂ 2nd Positive underpredicted

Non-equilibrium – 190-500 nm (0.30 Torr, 8.1 km/s)

- NO underpredicted
- N₂⁺ matched for T_e=T_v options, Heritage underpredicts
 - CN contamination accounts for disagreement at 388 nm
- N₂ 2nd Positive underpredicted

Non-equilibrium – 190-500 nm (0.50 Torr, 7.7 km/s)

- NO still underpredicted
- N₂⁺ being underpredicted
 - Worse for Heritage
- N₂ 2nd Positive underpredicted

Non-equilibrium – 190-500 nm (0.70 Torr, 7.3 km/s)

- NO still underpredicted
- N₂⁺ more underpredicted
 - Heritage and newer models becoming more similar
- N₂ 2nd Positive underpredicted

Entry Systems and Technology Division

10 cm tube – with Boltzmann state populations

- NO matched with Boltzmann distribution for Johnston rates
- N₂⁺ and N₂ are overpredicted by Boltzmann model

Summary 190-500 nm

- NO is always underpredicted
- N2 2nd Positive always underpredicted
- N2+ 1st Negative underpredicted at high pressure, overpredicted at low pressure

Non-equilibrium – 500-890 nm (0.01 Torr, 8.6 km/s)

- Broad features due to N₂ 1st Positive absent from prediction
- High level (4d,5s) N and O lines absent from data
- O 3p : 777 underpredicted, 845 underpredicted
- N 3p : overpredicted
- Errors cancel out when integrated radiance appears well matched

Non-equilibrium – 500-890 nm (0.05 Torr, 8.9 km/s)

- Broad features due to N₂ 1st Positive still absent
- High level (4d,5s) N and O lines still overpredicted
- O 3p : underpredicted, but closer than before
- N 3p : matched by Park90/Park93, overpredicted Johnston
- Errors cancel out when integrated Johnston appears to matched

Non-equilibrium - 500-890 nm (0.14 Torr, 8.4 km/s)

- Broad features due to N₂ 1st Positive still absent
- High level (4d,5s) N and O lines still overpredicted
- O 3p : matched by heritage model, underpredicted other models
- N 3p : overpredicted by heritage, matched other models

Non-equilibrium – 500-890 nm (0.14 Torr, 8.3 km/s)

- Broad features due to N₂ 1st Positive still absent
- High level (4d,5s) N and O lines overpredicted
- O 3p : matched by heritage model, underpredicted other models
- N 3p : overpredicted by heritage, matched other models

Non-equilibrium – 500-890 nm (0.30 Torr, 8.1 km/s)

- Broad features due to N₂ 1st Positive still absent
- High level (4d,5s) N and O lines overpredicted, but less significantly
- O 3p : matched by heritage model, underpredicted other models
- N 3p : further overpredicted by heritage, matched other models

Non-equilibrium - 500-890 nm (0.50 Torr, 7.7 km/s)

- Broad features due to N₂ 1st Positive still absent
- High level (4d,5s) N and O lines overpredicted
- O 3p : matched by heritage model, underpredicted other models
- N 3p : overpredicted by heritage, matched other models

Non-equilibrium – 500-890 nm (0.70 Torr, 7.3 km/s)

- Broad features due to N₂ 1st Positive still absent
- High level (4d,5s) N and O lines overpredicted
- O 3p : underpredicted all models
- N 3p : overpredicted by heritage, matched other models
 - Apparent disagreement due to missing underlying N₂ radiation
Non-equilibrium – 500-890 nm (0.70 Torr, 7.3 km/s)

- Boltzmann matches N₂ 1st Positive (Heritage slightly over)
- High level (4d,5s) N and O lines overpredicted by Boltzmann
- O 3p matched by Boltzmann (all models)
- N 3p : slightly overpredicted at Boltzmann

Impact of Alternate N Atom Excitation Cross-section

- Huo excitation cross-sections
 - Eliminate spurious radiation from N 4d, 5s
 - Underpredict N 3p features

Summary 500-890 nm

- N₂ is always underpredicted
- Spurious N and O lines originating from 4d, 5s states
- N 3p lines
 - Matched by Park90 (Te=Tt) at 0.05 Torr, overpredicted elsewhere
 - Matched by Johnston at 0.14-0.7 Torr, overpredicted at lower pressure
 - Matched by Park93 at 0.05-0.7 Torr, overpredicted at lower pressure
- O 3p lines
 - Underpredicted by Park93/Johnston, except at 0.01 Torr
 - 845 nm line overpredicted at 0.01 Torr
 - Heritage approach
 - Nearly matches 845 nm line from 0.01-0.50 Torr
 - Underpredicts 777 nm line, but not badly

Non-equilibrium – 890-1450 nm (0.01 Torr, 8.6 km/s)

Entry Systems and Technology Division

All lines in this range overpredicted

Non-equilibrium – 890-1450 nm (0.05 Torr, 8.9 km/s)

Entry Systems and Technology Division

- Most lines overpredicted
 - Park90 matches 1362 nm line
 - N 3p line (939 nm) less overpredicted than others

Non-equilibrium – 890-1450 nm (0.14 Torr, 8.4 km/s)

Entry Systems and Technology Division

60 cm tube

All lines overpredicted

Non-equilibrium – 890-1450 nm (0.14 Torr, 8.4 km/s)

Entry Systems and Technology Division

10 cm tube

• All lines overpredicted

Non-equilibrium – 890-1450 nm (0.30 Torr, 8.1 km/s)

Entry Systems and Technology Division

- All lines overpredicted
- N 3p line (939 nm) near match by Park93/Johnston

Non-equilibrium – 890-1450 nm (0.50 Torr, 7.7 km/s)

Entry Systems and Technology Division

- Most lines overpredicted
- N 3p line (939 nm) matched by Park93/Johnston

Non-equilibrium – 890-1450 nm (0.70 Torr, 7.3 km/s)

Entry Systems and Technology Division

- Most lines overpredicted
- N 3p line (939 nm) matched by Park93/Johnston
- Continuum (N₂ Band) not predicted

Alternate N Excitation Cross Sections

60 cm tube N $3d \rightarrow 3p$ N $3d \rightarrow 3p$ N $3d \rightarrow 3p$ N $3d \rightarrow 3p$ 3d→3p →3p $\frac{3p}{3s}$ O 3d→3p O 4s→3p $\frac{4s}{3d}$ 3d-Z $\mathbf{Z} \circ \mathbf{Z}$ ZZZ 1.5 0.03 Spectral Non-eq Metric EAST (W/cm2-sr-um) Park93 1.0 0.02 Johnston14 0.5 Park90 (Te=Tt) 0.01 0.0 0 890 990 1090 1190 1290 1390 Wavelength (nm)

- Alternate cross-sections underpredict N 3p line
- Other lines near noise limit
- O atoms unchanged

Non-equilibrium – 890-1450 nm (0.70 Torr, 7.3 km/s)

Entry Systems and Technology Division

10 cm tube (Boltzmann)

Boltzmann improves background agreement, lines still too intense

- Atomic Lines originating from higher states generally over predicted
- One N 3p line is matched well by Park/Johnston from 0.3-0.7 Torr
- Molecular radiation at 0.7 Torr mostly matched under Boltzmann

Entry Systems and Technology Division

- Agreement to Predictive (DPLR/NEQAIR) Model is mixed
 - Molecular radiation from N₂/NO is underpredicted
 - Boltzmann distribution takes up underprediction for N₂ B state and NO radiation
 - N₂ C state is overpredicted by Boltzmann
 - N₂⁺ radiation prediction varies with pressure
 - At low pressure: overpredicted for $T_e=T_v$, matched by heritage model
 - Reasonably matched for intermediate pressure range
 - Underpedicted at high pressure
 - High lying N, O state radiation overpredicted
 - Radiation from 3p states of N predicted well, except at lowest pressure
 - Radiation from 3p states of O mostly underpredicted
- How does your model do?

https://data.nasa.gov/docs/datasets/aerothermodynamics/EAST/index.html (Test 59 - available soon)