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X-ray optics - State of art

Current state of art-
Full-shell: 8 arc sec FWHM; 10 to 15 arc sec HPD
Segmented: Demonstrated 5 arc secs HPD

A key factor that limits the angular resolution is Figure Imperfections

Post-fabrication figure correction is a key step in achieving arc-sec level resolution — regardless of the

optics type and fabrication procedure
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Application - Lynx

Lynx will take X-ray astronomy to new levels by combining a large gain in

collecting area over Chandra and XMM, an angular resolution of 1/2 arc second,

and high-throughput spectroscopy over a large field of view.

Optics approaches under consideration: Segmented / Full-shell / Active optics

Differential deposition is a highly suitable approach for correcting mid—spatial

frequency figure deviations
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Application - neutron microscope for energy
and material research

Applications:
Neutron Imaging: Optics to improve flux and Fuel cell development (resolving concentration gradients
resolution in electrodes requires the highest possible spatial
resolution )

Lithium-air batteries development (lithium-air batteries
have 10x storage capacity of commercial lithium-ion

Conventional pinhole imaging — tradeoff batteries )

between resolution and throughput Non-destructive evaluation of nuclear fuel rods life cycle

Also:

Understand targeted drug delivery ; Advance oil and
gas recovery ; Improve the safety of nuclear fuel
cladding by imaging the grain structure of ZrH ;
Develop additive manufacturing of metal alloys ;
Reveal solar cell morphologies to reduce the cost of
large area solar arrays ; Enhance efficiency of room
: temp. magnetic refrigeration by imaging 3D
Neutron beam line magnetic structures ; Solve protein structures in

= solution, 2/3 of all proteins can’t be crystallized ;
Understand polymer and block copolymer self-
assembly and hydrogels ; Distinguish internal

. . structure and morphology of graded nanoparticles ;
Collaborative proJeCt between NASA MSFC: Understand magnetic nanoparticles for

NIST’s Physical measurement laboratory and MIT hyperthermic cancer treatment, MRI contrast agents

Need for higher-spatial resolution without
compromising the flux

Use of Wolter optics — world’s first neutron
microscope




Neutron Microscope

Prototype microscope

3 nested mirrors with ellipsoid and hyperboloid
sections

Object to image distance of 3.2 m

Neutron imaging was demonstrated with 1cm FOV 4X
magnification, 75 microns spatial resolution and 5mm
depth of focus

2cm x 2cm pinhole mask, with 0.1mm diameters on
0.2mm centers

Immediate Goal:10 u spatial resolution E——
1:1 design with 2 parabolic sections ontact image
Object to image distance of 700 cm “

10 nested mirrors -radius 68 cm to 55 cm
Long term goal of 1 u spatial resolution
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Application — National Ignition Facility (NIF)
forInertial Confinement Fusion (ICF)

Collaborative project — LLNL,NASA MSFC

ICF is a type of fusion energy research that attempts to initiate nuclear fusion reactions by heating and
compressing a fuel target

The energy of the laser heats the surface of the pellet into a plasma, which explodes off the surface.

The remaining portion of the target is driven inward - when the temperature and density of that small
spot are raised high enough, fusion reactions occur and release energy.

NIF aims to create a single 500 TW peak flash of light that reaches the target from numerous directions at =
the same time, within a few picoseconds. The design uses 192 beamlines in a parallel system high power
lasers.

Plasma emits x-rays which can be used for imaging and diagnostics




Application - National Ignition Facility (NIF) @
for Inertial Confinement Fusion (ICF)

3 narrow E band images

X-ray imaging is critical to the physical understanding of ICF implosions

Need for high-resolution 5microns (FWHM) spatial resolution imaging

optics for hard 10-25 keV x-rays

Lpon = 10.13 mm Lhon =9.13 mm

L M ) Optics design is currently underway

The roundness of the implosion at

B < points in time provides the Will utilize differential deposition

tuning information, such as x-ray
drive uniformity



Differential deposition - Work to date -
Proof of Concept

Proof of concept — 2010

Modifications to existing RF sputtering chamber

Optimization - Platinum, Tungsten, Nickel target
materials — Xenon, Argon sputter gas

On medical imaging optics of 32mm diameter -

limited to contact profiler
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Work to date - Custom vacuum chambers

Design and assembly of Custom
vacuum chambers

2 different chambers for full-shell
and segmented optics

Can accommodate upto 0.5m
diameter full-shell optics

Computer controlled translation a =

rotation stages with encoders
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Work to date - X-ray testing - single stage

Before Segment Correction After 1st Segment Correction Iteration Radial Brightness Profiles across Ring
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Work to-date - X-ray testing

Need more work to confirm the improvements in the higher
stages of correction

Better shells to start-off with no low-frequency deviations

Mandrel 8 to 10 arc secs - shells are 12 to 15 arc secs —
combination of mid-and low-spatial frequency features

Mid-spatial features from mandrel polishing — ideal for
differential deposition

Focus on replication process — what in the replication process
o causes low-frequency deviations
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Stress effects

FEA simulations to characterize the stress effects

Segmented optics are more sensitive to applied stress than full-shell optics, which are inherently

more rigid

Segmented optic - 0.25 mm thick - a typical corrective coating profile (maximum thickness 400 nm)

with a stress of 0.1 GPa will results in an rms axial slope error of 19 arcsec

Slope error scales linearly with stress - for a 1 arcsec HPD optic, coating stress must be kept below 1

MPa to have negligible effect on the final figure

For a typical full shell nickel optic, of thickness 0.25 mm, 0.2 GPa stress - results in rms slope error of

~ 1.6 arcsec

Need <10 MPa for 1 arcsec corrected optic



Segmented optics

Handling structure

Metrology base ——>
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Optical mount — ceramic structure
incorporated into an aluminum handling
frame

Kinematic interface was developed to
allow unique and repeatable positioning
of the optical mounting

Mid-spatial frequency features — 15 to 2
mm are targeted

Double slit arrangement for finer feature
corrections



Segmented optics
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Improvement in RMS
height: 200 A to 96 A

To do: global correction




To do list

In-situ metrology - VLTP approach Active slit approach
Laser
X-ray Optic l
oriel Lol e
Detector

Vacuum Chamber

Reference Mirror

Design concept of active slit approach

Schematic of in-situ metrology. The path from the optical board to the test
surface passes into the vacuum chamber through an optical feed-through flange
to a penta-prism which directs the laser light to and from the test surface.

Detailed stress analysis



