
Automated Adaptation and Assessment in
Serious Games: a Portable Tool for Supporting

Learning

Enkhbold Nyamsuren, Wim van der Vegt, Wim Westera

PenOW, Open University of the Netherlands
(enkhbold.nyamsuren, wim.vandervegt, wim.westera)@ou.nl

Abstract. We introduce the Adaptation and Assessment (TwoA) com-
ponent, an open-source tool for serious games, capable of adjusting game
difficulty to player skill level. Technically, TwoA is compliant with the
RAGE (Horizon 2020) game component architecture, which offers seam-
less portability to a variety of popular game development platforms.
Conceptually, TwoA uses a modified version of the Computer Adap-
tive Practice algorithm. Our version offers two improvements over the
original algorithm. First, the TwoA improves balancing of player’s moti-
vation and game challenge. Second, TwoA reduces the selection bias that
may arise for items of similar difficulty by adopting a fuzzy selection rule.
These improvements are validated using multi-agent simulations.

1 Introduction

Serious games [1, 2] are becoming an effective tool for pedagogy and learning in
general [3]. In this domain, one of the questions we are interested in is how to
assess player’s learning progress. Player assessment can provide teachers and stu-
dents with formative and summative information about learning progress. Data
from the player assessment can be used to dynamically adjust game mechanics
which in turn improves the learning experience.

We introduce the Adaptation and Assessment (TwoA) component, an open-
source library that offers automated game difficulty adaptation and player’s
learning assessment. TwoA is being developed within the RAGE project [4], an
EU’s initiative for supplying serious game developers with portable and reusable
open-source software components providing pedagogical utility.

In TwoA, we implemented a modified version of the Computerized Adaptive
Practice algorithm [5] for game difficulty and player skill assessments and a real-
time adaptation of the game difficulty to the player skill. The CAP algorithm
offers many benefits. First, it was extensively validated in many studies involving
human players [6–8]. Second, it was specifically designed for serious games to
assess and match game difficulty to player skill to promote learning. It is a
major distinction from existing matchmaking algorithms, such as TrueSkill [9]
or variations of Elo [10], that are aimed at competitive matching of two human
players. Finally, the CAP algorithm is not proprietary.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at Open Universiteit Nederland

https://core.ac.uk/display/85227467?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

TwoA’s version of the algorithm provides two main benefits over the orig-
inal CAP algorithm. First, we describe and validate improvements to CAP’s
real-time adaptation of game difficulty. Second, TwoA adopts an RAGE-client
architecture [11] making the TwoA component easy to integrate and use with
game development platforms.

2 Computerized Adaptive Practice System

In this section, we briefly introduce the original CAP algorithm. Not all equations
are discussed here. For a more in-depth overview of the CAP system, the reader
can refer to the original study [5].

The CAP system assumes that a player m should have a skill rating θm to
solve a problem i with a difficulty rating βi. Given above notions, the CAP sys-
tem provides two main functions. First, it can assess the skill ratings θm and
the difficulty rating βi based on the player m’s performance in the problem i.
Second, given a player with a known skill rating θ, the CAP system can recom-
mend a problem with the desired difficulty β where the player has a probability
P of successfully solving the problem.

Assessment of ratings depends on the accuracy xim and the response time
tim. If the player m is able to solve the problem i then xim is one and zero
otherwise. tim is time the player m spent on the problem i. These two measures
are translated into the observed score Sim in equation 1 using the High Speed
High Stakes scoring rule [6] that accounts for the speed-accuracy trade-off. The
expected score E(Sim) is calculated based on the skill rating θm and difficulty
rating βi as shown in equation 1. The term di is time limit for problem i. Fol-
lowing equation 2, the difference between E(Sim) and Sim is used to update the
two ratings using a modified Elo function [10]. The terms Km and Ki are factors
reflecting uncertainties in measurements of skill and difficulty ratings [12]. Equa-
tions 1 and 2 are of little relevance to our study and described for the purpose
of providing a basic understanding of the CAP system’s dynamics.

Sim = (2xim − 1)(1− tim/di);E(Sim) =
e2(θm−βi) + 1

e2(θm−βi) − 1
− 1

θm − βi
(1)

θ̃m = θm +Km (Sim − E(Sim)) ; β̃i = βi +Ki (E(Sim)− Sim) (2)

βt = θm + ln (Pt/(1− Pt)) (3)

The problem selection process involves three steps: (a) defining a target prob-
ability of success Pt, (b) estimating a target difficulty rating βt, and (c) selecting
a problem that closely matches the target difficulty rating. Equation 3 is used for
estimating the βt. Pt is drawn from a normal distribution N(P = 0.75, SD = 0.1)
and restricted such that 0.5 < Pt < 1. Such value of Pt allows the player to
maintain an average success rate of 75% [5, 13]. According to these studies, the
success rate of P = 0.75 provides a reasonable balance between keeping a player

motivated and maintaining measurement accuracies of ratings. The problem i is
selected if it has the difficulty rating closest to the βt: min|βi − βt|. We refer to
it as a minimum distance rule. The original study [5] provides a full description
of the CAP algorithm including the recommended values for the free parame-
ters. In our study, we used the recommended values. In other cases, we explicitly
mention values used by TwoA.

3 Improving the Problem Selection in the CAP system

We made two improvements to the problem selection algorithm of the CAP
system. First, we changed equation 3 so that the target difficulty rating βt reflects
better the target probability of success Pt. Second, we changed the selection
criteria for a problem i to minimize the chances of having a selection bias for a
particular item.

3.1 Maintaining the Target Success Rate

The problem difficulty rating β and the player skill rating θ are measured along
the same scale and directly comparable. For example, equation 3 shows that the
skill rating and the difficulty rating are equal βt = θm if Pt = 0.5. Logically, the
following properties should hold: θm > βt if Pt > 0.5, and θm < βt if Pt < 0.5.
If these properties do not hold then the player’s actual success rate may not
follow the normal distribution N(P, SD) from which the Pt is drawn. These
properties are not enforced by equation 3. For example, θ < βt when Pt = 0.75.
To address the issue, we changed the sign for the logarithmic component resulting
in equation 4. The new logarithmic component ln((1−Pt)/Pt) is always negative
when Pt > 0.5 and always positive when Pt < 0.5. Thus, the above-mentioned
properties always hold.

βt = θm + ln ((1− Pt)/Pt) (4)

3.2 Problem Selection Bias

Problems of the same difficulty may have small differences in difficulty ratings
estimated by the CAP. Let us assume that problems i and j have the same
difficulty but slightly different ratings βi and βj . This discrepancy in ratings
can affect the problem selection and result in a bias. Let us assume that the
target difficulty rating βt is closer to βi. Ideally, there should be a 50% chance of
selecting either problems i or j. However, the problem i is preferred due to the
minimum distance rule. If βt is repeatedly estimated closer to the βi then the
problem i is repeatedly chosen over the problem j. The issue can become worse
since the problem’s rating is re-estimated after each administration resulting in
an increasing discrepancy between βi and βj . This is an undesirable feature.
Ideally, problems of similar difficulty should be administrated equally often so
that ratings are updated at the same rates and stay close to each other.

One way to address the above issue is to select the least played problem
among the N number of problems closest to the βt. For example, problems i and
j can be administered in turns if N = 2. The drawback with this approach is the
difficulty of finding an appropriate value for N . If N is too big then it may include
problems with ratings too distant from βt. Administration of such problems will
affect negatively the system’s ability to maintain the desired success rate P .

We propose a solution inspired by fuzzy intervals used in fuzzy systems.
Instead of the single probability Pt, we use two core probabilities Pc,L and Pc,U ,
and two support probabilities Ps,L, and Ps,U such that Ps,L < Pc,L < Pc,U <
Ps,U . The core probabilities Pc,L and Pc,U are randomly drawn from a normal
distribution N(P, SD) where P is a desired success rate. Ps,L is randomly drawn
from a normal distribution N(P−w∗SD, SD) provided that Ps,L < (P−w∗SD).
Similarly, Ps,U is randomly drawn from a normal distribution N(P+w∗SD, SD)
so that Ps,U > P − w ∗ SD. The term w is a weight parameter controlling the
amount of shift in distributions’ means. Its default value is one so that there is
a distance of one standard deviation between distributions from which support
and core probabilities are drawn. The term w is the only new free parameter
added to TwoA. For the parameters inherited from the CAP algorithm, TwoA
uses the default values recommended in the original study [5].

With four probability values, we calculate four difficulty ratings with equa-
tion 4: βc,L, βc,U , βs,L, and βs,U . Given these ratings, all problems can be di-
vided into three categories: problems with difficulty ratings within the core range
[βc,L, βc,U]; problems with ratings within one of two support ranges [βs,L, βc,L)
and (βc,U , βs,U]; and problems with ratings outside of the range [βs,L, βs,U]. Any
problem within the core range is preferred to the problems outside of the core
range. Any problem within the range [βs,L, βs,U] is preferred to the problems
outside of it. Within the core and support ranges, the least played problem is
preferred to others. If the range [βs,L, βs,U] does not contain any problems, then
the problem with the rating closest to the range is chosen.

β
c,L

β
c,U

β
s,L

β
s,U

β
min

β
max

D

ф
c,L

ф
c,U

ф
s,L

ф
s,U

IF

0

1

0

1

(a) (b)

Fig. 1. (a) A fuzzy interval specified by four parameters φ. (b) A visualization of four
support and core ratings forming a shape resembling a fuzzy interval.

This solution is inspired by fuzzy selection rules [14] used in fuzzy logic. A
fuzzy rule consists of an antecedent with one or more selectors (predicates) and
a consequent with a class assignment. In an ordinary rule, a selector is a binary
condition verifying if some value k belongs to some interval I = [u, v]. In a
fuzzy rule, the selector has a fuzzy interval defined with trapezoidal membership

function (e.g., Fig. 1a) specified by four parameters φ. Given some value k, the
degree k belongs to the interval IF is defined by the position of k relative to
the four parameters. The likelihood of the term k belonging to the interval IF

decreases as k’s distance to the core interval [φc,L, φc,U] increases.
Fig. 1b visualizes the four support and core ratings. βmax and βmin are the

maximum and minimum ratings among all problems. The term D is a reverse
distance to the desired success rate P calculated as D = (P − w ∗ SD)/P . For
the core range, the weight parameter w is equal to zero. For the support ranges,
w can be set to a positive non-zero value. For the remaining two ranges, D <
(P−w∗SD)/P . As can be observed, the shape roughly replicates the trapezoidal
membership function. It provides a fuzzy estimation of problem’s closeness to
the desired success rate P . The problems with the highest reverse distance D are
preferred, but problems’ frequencies are integrated as a nested selection criterion
for problems inside the range [βs,L, βs,U]. Therefore, the fuzzification avoids bias
toward either of selection criteria defined by success rate or problem frequency.

4 Validation of TwoA’s Algorithm

4.1 Simulation tool

We validate our improvements to the algorithm using multi-agent simulations.
For this purpose, we used the game TileZero, a variation of the Qwirkle game
(released by MindWare, http://www.mindware.com). Qwirkle is a turn-based
board game with colored and shaped tiles. There are six colors and six shapes
resulting in 36 unique tiles. Two or more players compete against each other.
A player can put up to six tiles on the board per turn. The goal is to build
sequences of tiles where each sequence has the same color and different shapes
or vice versa. The player earns a score equal to the length of the sequences built
in the turn. The player with the highest score wins. The game was chosen for its
clear success criteria, short game duration, easy difficulty level generation, and
easy AI coding.

In TileZero, a human player can play against one of six AI opponents of
varying difficulties. We refer to the six AI opponents as Very Easy, Easy, Medium
Color, Medium Shape, Hard and Very Hard. The Very Easy opponent puts only
one tile per turn. The Easy opponent puts a random combination of tiles per
turn. The Medium Color opponent puts a combination of tiles of the same color
that gives the maximum score per turn. The Medium Shape opponent does the
same but using tiles of the same shape. The Hard opponent always selects the
combination with the second highest score among all available combinations of
tiles. The Very Hard opponent always selects the combination resulting in the
highest score per turn.

We can objectively evaluate difficulties of AI opponents by having them to
play against each other. Each AI opponent played 4000 games against the Very
Hard opponent. The win rates are 0.0, 0.02, 0.23, 0.23, 0.23, and 0.49 for Very
Easy, Easy, Medium Color, Medium Shape, Hard and Very Hard respectively.
These win rates can be correlated with difficulty ratings to verify ratings’ validity.

4.2 Simulation 1: Demonstrating TwoA’s Adaptive and Assessment
Capabilities

In this subsection, we demonstrate that TwoA’s adaptive and assessment ca-
pabilities are not negatively affected by the modifications to the original CAP
algorithm.

Simulation Setup The simulations consisted of ten independent blocks where
parameters were reset to initial values after each block. The block design was
used to compensate for random factors present in the game and TwoA. The
human player was simulated by a ”learning” AI. We refer to it as the player.
Each block consisted of 2400 games played in sequence by the player. The player
adopted a new strategy after every 400 games. The strategies changed in the
following order: Very Easy, Easy, Medium Color, Medium Shape, Hard and Very
Hard. Thus, the player started the first game with the same strategy as the
Very Easy opponent and played the last 400 games using the strategy from the
Very Hard opponent. These changes in strategies simulated gradual learning in
human players.

In each block, the player and all opponents started with the rating of one. The
opponent to the player was selected by TwoA at the beginning of each game.
TwoA re-estimated the player’s skill rating and the AI opponent’s difficulty
rating after each game. The target probability Pt was drawn from a normal
distribution N(P = 0.75, SD = 0.1). For all other free parameters, TwoA used
values recommended by the original study of the CAP algorithm [5].

First, TwoA is expected to estimate the difficulty ratings of the opponents so
that there is a high and significant correlation between ratings and the win rates.
Second, TwoA is expected to capture the learning in the player. The player’s
skill rating should gradually increase after every 400 games. The exceptions are
when the player transitions from Medium Color to Medium Shape and to Hard
given their similar objective difficulties. In these cases, there should be a plateau
in player’s ratings since no learning is happening.

Simulation Results First, we explore changes in player’s skill rating and oppo-
nents’ difficulty ratings. Fig. 2a shows how these ratings changed over the course
of 2400 games. The ratings were averaged over all ten blocks. Standards errors
are too small to be visually identifiable. The horizontal dashed line indicates the
starting rating of one. The vertical dashed lines indicate the points of strategy
transitions.

The initial skill rating of the player is an overestimation relative to the dif-
ficulty rating of the AI opponents. TwoA corrects it by lowering the skill rating
within the first 100 games. After the transition to the Easy strategy, there is
a rapid increase in the player’s skill rating. The next transition to the Medium
Color strategy also results in an increase of the skill ratings. It is followed by
a plateau for the next 800 games. It is expected since Medium Color, Medium
Shape and Hard are similar in difficulty. Finally, the transition to the Very Hard

strategy invokes another increase in the player’s skill ratings. Overall, TwoA was
able to capture the learning process happening in the simulated player.

TwoA also adjusted its recommendations of the opponents based on the
player’s learning progress. Fig. 2b shows frequencies of the opponents in every 400
games. These are mean values averaged from all 10 blocks. Standard errors are
too small to be visible. Note how the frequency of the Very Easy opponent drops
almost to zero in the second half of the games. This opponent was too easy for
the player using the Medium Color, Medium Shape, Hard or Very Hard strategy.
TwoA reacted by administering more frequently the Easy opponent instead. In
the last 400 games, the Easy opponent became less challenging resulting in the
decreased frequency of its administrations.

0 400 800 1200 1600 2000 2400

−0
.5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Skill and difficulty ratings

Games

R
at

in
gs Medium Color AI

Player Very Hard AI

Very Easy AI
Easy AI

Hard AI
Medium Shape AI

1 2 3 4 5 6

0
10

0
20

0
30

0

Frequencies of opponents in every 400 games

Intervals of 400 games

Fr
eq

ue
nc

ie
s

Very Easy AI
Easy AI
Medium Color AI
Medium Shape AI
Hard AI
Very Hard AI

(a) (b)

Fig. 2. Player skill rating and opponents’ difficulty ratings over 2400 games.

Note how changes in the opponents’ frequencies reflect on its difficulty ratings
shown in Fig. 2a. As the frequencies of opponents increase, TwoA is able to gain
more information about their difficulties and gradually correct the ratings. We
can estimate the accuracy of difficulty ratings by correlating them with the win
rates. The ratings after 2400 games are -0.384, 0.117, 1.520, 1.519, 1.48 and 2.066
for Very Easy, Easy, Medium Color, Medium Shape, Hard and Very Hard op-
ponents, respectively. The Pearson’s product-moment correlation between these
ratings and the win rates is r(4) = .92, p < .01. This is a very high correlation
indicating that TwoA was able to accurately capture relative difficulties of AI
opponents.

4.3 Simulations 2 and 3: Original Versus Adjusted Log Probability
Models

In this and the following subsection, we demonstrate how changes to the original
CAP algorithm improved TwoA’s performance. In this subsection, we describe
two simulations.

Each simulation consisted of ten blocks with 1000 games per block. The
human player was imitated by AI that adopted the same strategy as the Very

Hard opponent. We refer to it as the player. In each game, the player had to
play against one of six AI opponents. The opponent was selected by TwoA at
the beginning of the game. The selection algorithm used by TwoA differed in
simulations. TwoA re-estimated the player’s skill rating and the AI opponent’s
difficulty rating after each game. These estimates were reset at the start of a
new block. The starting difficulty ratings for the AI opponents are -0.369, 0.268,
1.656, 1.624, 1.613, and 2.0 for Very Easy, Easy, Medium Color, Medium Shape,
Hard and Very Hard respectively. The Pearson’s product-moment correlation
between these ratings and the win rates is r(4) = .88, p = .02. The starting
skill rating for the player was 2.011. The starting difficulty ratings and player’s
starting skill rating were taken at the end the 2000-th game of simulation 1.

In simulation 2, TwoA used the original CAP equations [5] without any
modifications. In simulation 3, equation 3 was substituted with equation 4. In
both simulations, the target probability Pt was drawn from a normal distribution
N(P = 0.75, SD = 0.1). Therefore, the player was expected to achieve an average
win rate of 75% in each block of games. For all other free parameters, TwoA
used values recommended by the original study of the CAP algorithm [5]. We
compared the results from the two simulations to identify the equation that is
best able to maintain the expected win rate.

Fig. 3 shows how win rates changed every 200 games within a block of 1000
games. The values are averages of all ten blocks. Standard errors are too small to
be shown on the graph. In simulation 2, the player achieved the average win rate
of 49% (SE < 1%) in each block. This is significantly lower than expected 75%.
The low win rate is explained by the fact that the original algorithm selected
Very Hard as the opponent in most games. The opponents with lower difficulties
were mostly ignored due to overestimation of the target beta βt. With θ = 2.011
and Pt = 0.75, equation 3 results in βt = 3.11. With this high target beta, the
original algorithm is highly biased toward the Very Hard opponent.

1 2 3 4 5

0
.4

0
.6

0
.8

1
.0

Win rates in every 200 games

Game intervals

W
in

 r
a

te

Simulation 2

Simulation 3

Fig. 3. Win rates in every 200 games. Values were averaged over all 10 blocks.

In simulation 3, the player achieved the average win rate of 74% (SE < 1%)
per block. This is in good agreement with the predefined expectation value. It
is enabled by equation 4 which resulted in a more liberal target beta allowing
selection of less difficult opponents. With θ = 2.011 and Pt = 0.75, equation 4

results in βt = 0.91. With such target beta, TwoA most often selected Easy,
Medium Color, Medium Shape, and Hard opponents. Occasionally, Very Easy
and Very Hard are selected due to the stochastic nature of the target probability
Pt. The slight downward tendency in Fig. 3 is a stochastic walk following the
normal distribution N(P = 0.75, SD = 0.1).

0 200 400 600 800 1000

0
1

0
0

2
0

0
3

0
0

4
0

0
Opponent's cumulative frequencies

Games

F
re

q
u

e
n

c
y

Medium Color AI

Medium Shape AI

Hard AI

0 200 400 600 800 1000

1
.2

1
.4

1
.6

Changes in opponents' ratings

Games

R
a

ti
n

g
s

Medium Color AI

Medium Shape AI

Hard AI

Simulation 3: Original selection algorithm

Medium Color AI

Medium Shape AI

Hard AI

Medium Color AI

Medium Shape AI

Hard AI

Simulation 4: New selection algorithm

0 200 400 600 800 1000

0
1

0
0

2
0

0
3

0
0

4
0

0

Opponent's cumulative frequencies

Games

F
re

q
u

e
n

c
y

0 200 400 600 800 1000

1
.2

1
.4

1
.6

Changes in opponents' ratings

Games

R
a

ti
n

g
s

(a) (b)

(c) (d)

Fig. 4. (a) The original algorithm has a selection bias indicated by differences in cu-
mulative frequencies of the opponents. (b) Large divergence in difficulty ratings due
to the selection bias. (c) The new selection algorithm decreases the selection bias. (d)
The difficulty ratings of three opponents remain close to each other.

4.4 Simulations 3 and 4: Original Versus Adjusted Item Selection
Rules

In this section we reused simulation 3. The algorithm used in simulation 3 still
suffers from the selection bias. Three AI opponents, Medium Color, Medium
Shape and Hard, have the same objective difficulty. In an ideal situation, TwoA
should be selecting these opponents equally often and their difficulty ratings
should not diverge much. Fig. 4a shows cumulative frequencies of the three op-
ponents. The frequencies were averaged over all 10 blocks. The dotted lines
indicate standard errors. There is a clear selection bias toward the Hard oppo-
nent. During the first 200 games, the Hard opponent was clearly favored over
the two other opponents resulting in steep increases in frequency discrepancies.

The bias is due to the Hard opponent having the starting rating (βHard = 1.613)
closest to the starting target beta (βt = 0.91). The selection bias diminished in
later games due to the self-correcting nature of the algorithm. Hence, the lines
in both graphs of Fig. 4 are becoming parallel. However, as Fig. 4b shows, the
bias caused the Hard opponent’s difficulty rating to diverge from the ratings of
the other two opponents. The divergence is relatively small in this case. Yet, it
is desirable to avoid it. In a real system with multiple players, the divergence
may increase sharply for the ratings to become significantly different.

In simulation 4, TwoA used equation 4 and the fuzzy rule for selecting items
described in section 3.2. As in previous simulations, the target probability Pt
was drawn from a normal distribution N(P = 0.75, SD = 0.1). The term w
was set to one for calculating the support probabilities. Default values were
used for other parameters inherited from the CAP algorithm. Results of the
simulation are shown in Fig. 4. Fig. 4c depicts cumulative frequencies of three
AI opponents: Medium Color, Medium Shape and Hard. Cumulative frequencies
were averaged over the ten blocks. Standard errors are too small to be visually
identifiable. Unlike in simulation 3, the frequencies of the opponents stay close to
each other indicating that the opponents were chosen equally often by TwoA’s
new fuzzy selection rule. The absence of bias also has a positive effect on the
ratings as shown in Fig. 4d. The ratings are much closer to each other compared
to those in Fig. 4b. Overall, we can conclude that the fuzzy rule was able to
better compensate for the small discrepancies in the ratings of the problems of
similar difficulty.

5 Discussion

In the future, we are planning to test TwoA in a game environment with human
players. To this end, we are collaborating with game development companies
within the RAGE project to create and test practical serious games that make
use of TwoA. While our simulations showed that the modified algorithm works
well, unexpected issues may arise in real-time applications especially in those
that involve large numbers of players and problems. We are especially interested
in validating the modified algorithm with cases where multiple players can simul-
taneously access the same problem set. This will allow us to verify the robustness
of the algorithm in selecting problems for multiple (simultaneous) users. Finally,
we are looking for opportunities to collaborate with the authors of the CAP
system that may give us access to large amount of empirical data on which we
can test TwoA.

We are also planning to add other assessment, adaptation and matchmaking
algorithms to TwoA so that game developers can choose the best one that suits
their needs. Finally, it is possible to use TwoA for matching two human players. It
will be interesting to compare TwoA with other human-to-human matchmaking
algorithms. In the original work [5], the CAP system was already favorably
compared with the Elo system. However, comparison with more state-of-the-art

matchmaking systems remains problematic due to its proprietary nature where
details of the algorithms are not revealed.

Its current version is fully functional and available to the public. TwoA was
implemented as a software component that can be easily integrated with pop-
ular game development platforms. This portability is enabled by the RAGE
architecture [11], an open-source library that was specifically created to simplify
development and use of pedagogical components. The RAGE architecture imple-
ments a set of well-established design patterns from component-based software
development [15, 16].

For the game developers, the architecture offers simple and standardized
interfaces for integrating TwoA into different game development platforms such
as Xamarin or Unity3D game engines. Since the architecture imposes restrictions
on having platform-specific code within the component, the game developers do
not have to worry about potential conflicts between component code and game
code. Moreover, the architecture provides pre-implemented interfaces for cases
where access to platform-specific functionalities is required. For example, for
loading and saving to local files the architecture provides interfaces that connect
to a platform-specific input-output library.

Overall, compliance of TwoA with the RAGE architecture offers a highly
portable pedagogical component that can be easily integrated with different
game development platforms. The source code for simulations can be down-
loaded from https://github.com/E-Nyamsuren/TwoA-TileZero-simulation.
The source code and binary for the TwoA component as a standalone library
can be downloaded from https://github.com/rageappliedgame/HatAsset.

Acknowledgment This work has been partially funded by the EC H2020
project RAGE (Realising an Applied Gaming Eco-System);
http://www.rageproject.eu/; Grant agreement No 644187.

References

1. Zemliansky, P., Wilcox, D.: Design and Implementation of Educational Games:
Theoretical and Practical Perspectives. Information Science Reference. ISBN
978-1-61520-781-7 (2010)

2. Abt, C.: Serious games. New York: Viking Press (1970)
3. Connolly, T.M., Boyle, E.A, MacArthur, E., Hainey, T, Boyle, J.M.: A sys-

tematic literature review of empirical evidence on computer games and se-
rious games. Computers & Education, vol. 59, no. (2), pp.661686, DOIdoi:
10.1016/j.compedu.2012.03.004 (2013)

4. RAGE: Realising an Applied Gaming Eco-system, Retrieved from http://

rageproject.eu (2017, March 25)
5. Klinkenberg, S., Straatemeier, M., Van der Maas, H. L. J.: Computer adaptive

practice of maths ability using a new item response model for on the fly ability
and difficulty estimation. Computers & Education, 57 (2), 1813-1824 (2011)

6. Klinkenberg, S.: High Speed High Stakes Scoring Rule. In International Com-
puter Assisted Assessment Conference (pp. 114-126). Springer International
Publishing. (2014)

7. Jansen, B. R., Louwerse, J., Straatemeier, M., Van der Ven, S. H., Klinkenberg,
S., Van der Maas, H. L.: The influence of experiencing success in math on
math anxiety, perceived math competence, and math performance. Learning
and Individual Differences, 24, 190-197. (2013)

8. Gierasimczuk, N., van der Maas, H. L., Raijmakers, M. E.: Logical and psy-
chological analysis of deductive mastermind. In ESSLLI Logic & Cognition
Workshop (pp. 1-13). (2012)

9. Herbrich, R., Minka, T., Graepel, T.: TrueSkill: a Bayesian skill rating system.
In Proceedings of the 19th International Conference on Neural Information
Processing Systems (pp. 569-576). MIT Press (2006)

10. Elo, A. E.: The rating of chess players, past and present. Arco Pub (1978)
11. Van der Vegt, W., Nyamsuren, E., Westera, W.: RAGE reusable game software

components and their integration into serious game engines. In International
Conference on Software Reuse (pp. 165-180). Springer International Publishing
(2016)

12. Glickman, M. E.: A comprehensive guide to chess ratings. American Chess
Journal, 3, 59-102 (1995)

13. Eggen, T. J., Verschoor, A.J.: Optimal testing with easy or difficult items
in computerized adaptive testing. Applied Psychological Measurement, 30(5),
379-393 (2006)

14. Huhn, J. C., Hullermeier, E.: An analysis of the FURIA algorithm for fuzzy
rule induction. In Advances in machine learning I (pp. 321-344). Springer Berlin
Heidelberg. (2010)

15. Bachmann, F., Bass, L., Buhman, C., Comella-Dorda, S., Long, F., Robert,
J., Sea-cord, R., Wallnau, K.: Technical concepts of component-based software
engineering, Volume II. Carnegie Mellon University, Software Engineering In-
stitute, Pittsburgh (2000)

16. Mahmood, S., Lai, R., Kim, Y.S.: Survey of component-based software devel-
opment. IET software, 1 (2), 57-66.(2007)

