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Abstract—The generators of subordinate symmetric (sub-) Markov processes and their domains are

exhibited by using spectral theory. The construction preserves sets of essential self -adjointness of the

generators.

General non local symmetric quasi regular Dirichlet forms and the corresponding processes (with jumps)

are shown to be constructible by subordination of processes properly associated to symmetric quasi

regular Dirichlet forms (in particular local ones). It is proven that subordination preserves the property

of a process to be a symmetric m -tight special standard process. A characterization of the subordinate

processes in terms of solutions of the corresponding martingale problems is obtained.

Keywords: Infinite dimensional, stochastic differential equations, stochastic partial differential

equations, subordination, pseudo -differential operators, Dirichlet forms, uniqueness

1. INTRODUCTION

The theory of (symmetric quasi -regular) Dirichlet forms provides a unified framework
for constructing and discussing ”nice” processes on finite and infinite dimensional state
spaces, even in the case where the associated generators have non regular coefficients.
The state space can be an arbitrary Hausdorff topological space equipped with a σ
-finite , positive measure. The quasi -regularity property is the analytic counterpart for
having càdlàg strong Markov processes (with additional properties, technically making
up what are called ”m -tight special, standard processes”, see e.g. [37], [1] and references
therein). The processes are solutions of corresponding martingale problems, and in this
sense the theory extends to singular coefficients, resp. infinite dimensional state spaces

Random Oper. and Stoch. Equ., Vol. 13, No. 1, pp. 17–38 (2005)

c© VSP 2005

Subordination of symmetric quasi -regular Dirichlet
forms

Sergio ALBEVERIO1,2,3,4 and Barbara RÜDIGER2,5,6
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the well known relations between Feller semigroups, Hunt processes and martingale
problems, see [4], [5],[6], [7], [9], [16].
Detailed properties, especially with regards to applications, of the processes and gen-
erators involved have up to now been worked out especially well for the case of local
Dirichlet forms, i.e. for the case of diffusion processes. In many problems however,
in mathematical physics as well as, e.g. , in biology and mathematical finance theory,
processes with jumps play an increasing rule, see e.g. [21],[22],[47], [50]. The theory of
Dirichlet forms provides the possibility of constructing processes with jumps (see e.g.
[11]), associated with non local Dirichlet forms (by Beurling -Deny formula, see e.g.
[26], [37], any quasi -regular (q.r.) Dirichlet form on a ”manifold like” space splits into
a local and non local part). However the construction in this way of processes with
jumps in the infinite dimensional case or the finite dimensional case with singularities
has not been yet pursued with the same intensity as in the case of diffusions. In the
present paper we provide a systematic way to construct such examples by subordination,
starting from known cases (e.g. diffusions). More precisely, we study subordination of
a given quasi -regular symmetric Dirichlet form in the general setting and show that
in this way one again obtains a large class of quasi -regular symmetric Dirichlet forms,
with known generators and other properties which can be deduced from those of the
original Dirichlet form. The technique of subordination was introduced by Bochner in
1952 and applied first in the case of locally compact spaces to construct a (subordinate)
sub -Markov semigroup ”associated” to a process with jumps, by changing the time
(through a ”subordinator”) of a starting sub -Markov semigroup (see also [14], [17],
[18], [20], [25], [28], [29], [31], [36], [45], [46] and references there). Here we prove that
subordination preserves the property of a process to be a symmetric m-tight special
standard process. In particular non -local q.r. DFs are obtained by subordinating sym-
metric diffusion processes, i.e. local Dirichlet forms. We characterize the subordinate
processes through the corresponding martingale problems, on any set of essential self
-adjointness for the generator of the starting process. Our results hold in infinitely
dimensional spaces but yield also new applications for the case where the state space
is finite dimensional (especially concerning the domain of the generator of the subor-
dinate process). Some of the results of the present paper were announced in [9] or
[44]. In [8] we apply our general results for the concrete construction of SDEs with non
Gaussian white noise (and the corresponding unique pathwise solutions) obtained by
subordination of (generalized) Ornstein -Uhlenbeck processes.

2. SUBORDINATION OF SUB-MARKOV SEMIGROUPS

This Section recalls the basic concepts of the theory of subordination of (sub -Markov
semigroups), see e.g. [14], [31], [45] and references therein for more details.

Definition 2.1 A subordinator is a vaguely continuous convolution semigroup of prob-
ability measures (µf

t )t≥0 on [0,∞), with µ0 = δ0, such that the Laplace transform µ̃f
t

is given in terms of a Bernstein function f , through :

µ̃f
t (x) :=

∫ ∞

0

exp(−sx)µf
t (ds) = exp(−tf(x)) (1)

A Bernstein function f is (uniquely) represented in the following way:

f(x) = bx +
∫ ∞

0

(1 − exp (−xs)) µf (ds) + c (2)
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with b, c ≥ 0, and µf a non negative Borel measure on (0,∞), which satisfies
∫ ∞

0

s

(1 + s)
µf (ds) < ∞ , (3)

For the following statement and Definition see, e.g., [45], [32](p. 172ff):

Definition 2.2 A stochastic process (y(t))t≥0 (with state space IR) on a probability
space (Ω,F , P ) is a Lévy process in law, if it is stochastically continuous, has indepen-
dent increments, y(0) = 0 a.s., the distribution of the increments y(t + s) − y(t) does
not depend on s. (y(t))t≥0 is a Lévy process if it is a Lévy process in law, and there is
a set L ∈ F with P (L) = 1, s.t. y(t)(ω) is càdlàg (i.e. is right continuous in t ≥ 0 and
has left limits in t > 0, ∀ω ∈ L).

Theorem 2.3 There is a one to one correspondence between increasing (as a function
of time) Lévy processes (y(t))t≥0 on IR+ and Bernstein functions: the distribution µf

t

of an increasing Lévy process y(t) on IR+ has Laplace transform (1) given in terms of
a Bernstein function f , and vice versa any (µf

t )t≥0, whose Laplace transform is given
in terms of a Bernstein function through (1), is the distribution of an increasing Lévy
process on IR+.

Remark 2.4 From Bochner’s Theorem, applied to the Fourier transform of (µf
t )t≥0, it

follows that the finite -dimensional distributions of (y(t))t≥0 define a unique measure νf

on the Skorohod space D[IR+ → IR], so that there is in particular a canonical process
with the above properties, i.e. a canonical Lévy process associated to (µf

t )t≥0.

Let (Tt)t≥0 be a symmetric sub -Markov semigroup on L2(E,m) ≡ L2(E,B,m), with
(E,B,m) any measure space. When E is a topological vector space we take B= B(E),
the corresponding Borel σ -algebra. (·, ·)L2(E,m) (resp. ‖ · ‖L2(E,m)) will denote the
scalar product (resp. norm) in L2(E,m), whenever there is no danger of confusion the
notation will be simplified to (·, ·) (resp.‖ · ‖).
Definition 2.5 (Subordinate semigroup) Let f be a Bernstein function and (µf

t )t≥0

the corresponding convolution semigroup. Then the semigroup (T f
t )t≥0 defined by the

Bochner integral

T f
t u =

∫ ∞

0

Tsuµf
t (ds) u ∈ L2(E,m), t ∈ IR+ (4)

is called the subordinate semigroup of (Tt)t≥0 with respect to f . It is a symmetric sub
-Markov semigroup on L2(E,m) ([42], [13], [51]).

Remark 2.6 Given a sub -Markov semigroup of kernels on a Polish space E there is a
sub -Markov process associated to it and viceversa (see e.g. [12]).

Theorem 2.7 Let a (sub -Markov) process M = (Ω,F∞, (Xt)t≥0, (Px)x∈X) be asso-
ciated with the sub -Markov semigroup (Tt)t≥0 Let (y(t))t≥0 be a Lévy process inde-
pendent of (Xt)t≥0 and associated to a subordinator with Bernstein function f . If
the process Mf = (Ω,Ff

∞, (Xf
t )t≥0, (P f

x )x∈X) is associated with the subordinate semi-
group (T f

t )t≥0, then Xf
t has the same finite -dimensional distributions as Xy(t) (with

Xy(t)(ω) ≡ Xy(t)(ω)(ω)).
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Proof. It is enough to prove

Ef
x [eiα1Xf

t1 ...eiαnXf
tn ] = Ex[eiα1Xy(t1) ...eiαnXy(tn) ] , (5)

∀t1 ≤ t2 ≤ . . . ≤ tn, ti ∈ IR+, i = 1, . . . , n , α1, ..., αn ∈ IR, n ∈ IN

where Ex(resp. Ef
x ) denotes the expectation w.r.t. Px(resp.P f

x ) (since the Fourier trans-
forms of finite dimensional distributions determine the whole distributions of (Xf

t )t≥0)).
We first remark that, with F ∈ Cb(E)

T f
t F (x) =

∫ ∞
0

TsF (x)µf
t (ds) (6)

=
∫ ∞
0

Ex[F (Xs)/y(t) = s]µf
t (ds) (7)

= Ex[F (Xy(t))] , (8)

hence (5) holds for the case n = 1.
We now verify that if equation (5) holds for n then it holds for n + 1, so that the
statement in Theorem 2.7 follows by induction. Indeed one has

Ef
x [eiα1Xf

t1 ...e
iαn+1Xf

tn+1 ]

= Ef
x [e

n∑
j=1

αjXf
t1

EXf
t1

[eiα2Xy(t2−t1) ...eiαn+1Xy(tn+1−t1) ]] (9)

= T f
t [e

n∑
j=1

αjx

Ex[eiα2Xy(t2−t1) ...eiαn+1Xy(tn+1−t1) ]] (10)

=
∫ ∞
0

Ts[e

n∑
j=1

αjx

Ex[eiα2Xy(t2−t1) ...eiαn+1Xy(tn+1−t1) ]]µf
t1(ds) (11)

=
∫ ∞
0

Ex[e

n∑
j=1

αjXs

EXs
[eiα2Xy(t2−t1) ...eiαn+1Xy(tn+1−t1) ]]µf

t1(ds) (12)

=
∫ ∞
0

Ex[e

n∑
j=1

αjXs

EXs
[eiα2Xy(t2−t1) ...eiαn+1Xy(tn+1−t1) ]/y(t1) = s]µf

t1(ds) (13)

= Ex[e

n∑
j=1

αjXy(t1)

EXy(t1) [e
iα2Xy(t2−t1) ...eiαn+1Xy(tn+1−t1) ]] (14)

= Ex[eiα1Xy(t1) ...eiαn+1Xy(tn+1) ] (15)

(where in (9) we have used that the distribution of Xf
ti+1

−Xf
ti

is the same as the one of
Xf

ti+1−ti
, in (13) we have used that the process is independent of the process X, in (9)

we have used the induction hypothesis, and in (14) we have used (6)-(8)).The theorem
is proved.

Remark 2.8 From Kolmogorov’s Theorem (see e.g. [12]) it follows that in case E is a
Polish space, (Xy(t))t≥0 defines a unique probability measure P f on (EIR+ ,B(EIR+)),
and a process (ωf

t )t≥0 with state space E on (EIR+
,B(EIR+

), P f ), such that ωf
t (ω) =

ω(t), ∀ω ∈ EIR+
. (ωf

t )t≥0 is the ”canonical process corresponding to the finite -
dimensional distributions of (Xf

t )t≥0”.
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3. GENERATION OF SUBORDINATE SYMMETRIC SUB-MARKOV SEMIGROUPS

Even if we assume that E is a Polish space Remarks 2.6, 2.8 do not completely inform
us about the properties of the subordinate process (Xf

t )t≥0, e.g., whether there is an
equivalent ”nice” process, and about how the corresponding generator (Lf ,Dom(Lf ))
looks like. Also it should be clarified whether the process uniquely satisfies a martingale
problem for (Lf ,D) on a ”good” subset D ⊂ Dom(Lf ), how this martingale looks like,
e.g., whether it is driven by a non Gaussian white noise.
In the case where E is locally compact we could however try to answer part of the
above questions by classical methods. In fact for the construction of Hunt processes
on locally compact spaces through the semigroup theory one usually proceeds by, e.g.,
proving the Feller property (and then use correspondence between Feller semigroups,
Hunt processes and (classical) martingale problems (MPs) on such spaces). In the case
where the state space is not locally compact, it is however not clear a priori in which
form this correspondence holds. Below we shall provide answers to these questions.
We recall that a contraction semigroup is symmetric iff its generator is positive and
self-adjoint. Below we shall prove the following:

Theorem 3.1 Let L denote the generator of a symmetric sub -Markov semigroup
(Tt)t≥0) on L2(E,m). Let f be a Bernstein function and let Dom(Lf ) be the generator
of the subordinate sub -Markov semigroup (T f )t≥0 then

(Lf ,Dom(Lf )) = (−f(−L),Dom(f(−L))) (16)

where

−f(−L) = −
∫ ∞

0

f(λ) dPλ , (17)

and Pλ is the projection valued measure associated to the operator −L.

Remark 3.2 Characterizations of domains of generators Lf of (non necessarily sym-
metric) subordinate (sub -Markov) semigroups have been given before (see e.g. [20],
[28]). The symmetric case with X = IRd, f a complete Bernstein function, and L a
pseudo - differential operator with symbol satisfying certain conditions is detailed dis-
cussed in [31] (Corollary 5.1). In [46] an extension in the direction of our Theorem 3.1
was given (even for general contraction semigroups in Banach spaces), using Dunford-
Taylor integrals, keeping the assumption that f is a complete Bernstein function (see,
however, the note added in proof on p. 395 - which appeared after the results of the
present paper were announced).

Proof (of the Theorem 3.1).

The proof is based on the following Prop. 3.3, 3.5 and Lemma 3.6, 3.7:

Proposition 3.3 [42]
a) For any u ∈ Dom(L)

Lfu = bLu +
∫ ∞

0

(Ttu − u)µf (dt) (18)

b) (Lf ,Dom(L)) is an operator core for (Lf ,Dom(Lf )).
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3. GENERATION OF SUBORDINATE SYMMETRIC SUB-MARKOV SEMIGROUPS
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0
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We remark that b) follows from a) by showing T f
t (Dom(L)) ⊆ Dom(L), for all t ≥ 0.

Remark 3.4 As (Lf ,Dom(Lf )) is by Definition 2.5 self-adjoint, Proposition 3.3 b) is
equivalent to the statement that (Lf ,Dom(L)) is essentially self-adjoint and (denoting
the closure by -)

(Lf ,Dom(L)) = (Lf ,Dom(Lf )) (19)

Proposition 3.5
(Lf ,Dom(L)) = (−f(−L),Dom(L)) (20)

To prove Proposition 3.5 we need the following Lemma

Lemma 3.6 The following properties hold

i) there are two constants c ≥ 0 and K ≥ 0 such that

(f(−L)φ, φ) ≤ c(−Lφ, φ) + K‖φ‖2 ∀φ ∈ Dom(L)

ii) there are two constants c2 ≥ 0 and K2 ≥ 0 such that

‖ − f(−L)φ‖2 ≤ c2‖Lφ‖2 + K2‖φ‖2 ∀φ ∈ Dom(L)

iii) Dom(L) ⊆ Dom(−f(−L))

Proof. One has the representation

Dom(−g(−L)) = {φ ∈ L2(E,m) :
∫ ∞

0

g2(λ) d(φ, Pλφ) < ∞} (21)

for g(x) = x, resp. g(x) = f(x). Moreover we use the following remark:
to prove that a non negative measure µf on (0,∞) satisfies condition ( 3) (in the
definition of Bernstein function) is equivalent to prove that the following two conditions
hold: ∫ 1

0

s µf (ds) < ∞ (22)

and ∫ ∞

1

µf (ds) < ∞ , (23)

It follows then that

f(λ) ≤ bλ +
∫
(0,∞)

|1 − exp (−sλ)|µf (ds) (24)

≤ bλ + λ
∫ 1

0
s µf (ds) + 2

∫ ∞
1

µf (ds) (25)
≤ cλ + K (26)

with

c = b +
∫ 1

0

s µf (ds) , K = 2
∫ ∞

1

µf (ds) . (27)

Inequality (24) implies also i), as seen using the spectral theorem for f(−L), resp. −L.
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Moreover from (24) also property ii) follows, as the spectral theorem and the properties
of the projective measures Pλ imply that for any Borel function g : IR → C, which is
(φ, Pλφ) -integrable,

‖g(−L)φ‖2 =
∫

(0,∞)

|g(λ)|2 d(φ, Pλφ) (28)

(see, e.g., [35] Chap. VI §2). iii) is then an immediate consequence of ii). The lemma
is proved.
Proof of Proposition 3.5 As Dom(L) is a closed linear subspace of L2(E,m) it is
sufficient to prove that

(Lfφ, ψ) = (−f(−L)φ, ψ) ∀φ ∈ Dom(L), ψ ∈ L2(E,m) (29)

From (18), (2) it follows, for such φ, ψ,

(−f(−L)φ, ψ) = −b

∫ ∞

0

λd(φ, Pλψ) (30)

+
∫ ∞

0

∫ ∞

0

(exp (−tλ) − 1)µf (dt)d(φ, Pλψ) ∀φ ∈ Dom(L) (31)

We shall prove∫ ∞

0

∫ ∞

0

| exp (−tλ) − 1|µf (dt)d(φ, Pλψ) < ∞ ∀φ ∈ Dom(L) (32)

so that we can apply Fubini’s theorem to the last term in (31), obtaining then

(−f(−L)φ, ψ) = −b(−Lφ,ψ) (33)
+

∫ ∞
0

∫ ∞
0

(exp (−tλ) − 1)d(φ, Pλψ)µf (dt) ∀φ ∈ Dom(L) (34)

Proof of (32):

∫
(0,∞)

∫ 1

0
| exp (−tλ) − 1|µf (dt)d(φ, Pλψ) (35)

≤ ∫
(0,∞)

λ
∫ 1

0
tµf (dt)d(φ, Pλψ) + 2

∫
(0,∞)

∫ ∞
1

µf (dt)d(φ, Pλψ) (36)

= −(Lφ,ψ)
∫ 1

0
tµf (dt) + 2(φ, ψ)

∫ ∞
1

µf (dt) < ∞ (37)

Using the relation between generators and semigroups we obtain

(−f(−L)φ, ψ) = b(Lφ,ψ) +
∫ ∞

0

((Tt − 1)φ, ψ)µf (dt) (38)

We shall prove
∫ ∞

0

((Tt − 1)φ, ψ)µf (dt) =
(∫ ∞

0

(Tt − 1)φµf (dt), ψ
)

(39)

so that (38) becomes (29). In fact (39) is a consequence of the following inequality
∫ ∞

0

((Tt − 1)φ, ψ)µf (dt) < ∞ , (40)
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which is proven as follows
∫
(0,∞)

((Tt − 1)φ, ψ)µf (dt) ≤ ‖ψ‖ ∫
(0,∞)

‖(Tt − 1)φ‖µf (dt) (41)

≤ ‖ψ‖ ∫ 1

0
‖ ∫ t

0
TsLφds‖µf (dt) + 2‖ψ‖‖φ‖ ∫ ∞

1
µf (dt) (42)

≤ ‖ψ‖ ∫ 1

0
t‖Lφ‖µf (dt) + 2‖ψ‖‖φ‖ ∫ ∞

1
µf (dt) (43)

< ∞ ∀φ ∈ Dom(L), ψ ∈ L2(E,m) (44)

where we used the contraction property of (Tt)t≥0. Proposition 3.5 is proved.

We will use Proposition 3.5 to prove the following

Lemma 3.7 (−f(−L),Dom(f(−L))) is a closed extension of (Lf ,Dom(L))

Proof. (−f(−L),Dom(f(−L))) is the unique closed extension of (−f(−L),Dom(L)),
due to Lemma 3.6, ii). The statement follows then from Proposition 3.5.

Theorem 3.1 is easily proved by Lemma 3.7, since there is a unique closed self- adjoint
extension of (Lf ,Dom(L)) , which by Remark 3.4 is given by (Lf ,Dom(Lf )). From
Lemma 3.7 it follows that (−f(−L),Dom(f(−L))) is a closed self-adjoint extension of
(Lf ,Dom(L)), so that equation (16 ) holds. Theorem 3.1 is proved.

We now prove that the property of being essentially self -adjoint of (L,D), with D ⊂
Dom(L), is inherited by the operator (f(−L),D)), if D is an operator core for (L,Dom(L)).

Theorem 3.8 [45] If D is an operator core for (L,Dom(L)) then it is also an operator
core for (−f(−L),Dom(f(−L)).

4. CLOSABILITY OF SUBORDINATE DIRICHLET FORMS

We shall consider subordination of symmetric sub -Markov semigroups (Tt)t≥0 on
L2(E,m) := L2(E,B,m), with (E,B,m) a given measure space. From the general
theory of semigroups (Tt)t≥0 as above (see e.g. [35], [26], [27], [37]) we know that the
generator L of (Tt)t≥0 is a densely defined, self- adjoint, negative-definite Dirichlet oper-
ator (see e.g. [19], [37] Chapt. I for the definition of Dirichlet operator), and viceversa,
any Dirichlet operator is the generator of a symmetric sub -Markov semigroup ([19]).
(To simplify notations, from now on we simply write A for an operator, with the un-
derstanding that A has definition domain D(A). If A is taken on another domain we
specify it. We also make the same convention for bilinear forms.) Moreover Dirichlet
operators are also in one -to -one correspondence with symmetric Dirichlet forms (DFs)
E on L2(E,m), the relation being given by

Dom(E) = Dom(
√−L) (45)

E(φ, ψ) = (
√−Lφ,

√−Lψ) ∀φ, ψ ∈ Dom(
√−L) , (46)

E is by definition the Dirichlet form corresponding to the semigroup (Tt)t≥0 generated
by L.
Moreover the following properties are well known:

1) E(φ, ψ) = (−Lφ,ψ) ∀φ ∈ Dom(−L), ψ ∈ Dom(E)
2) Dom(L) is an operator core for

√−L

3) ‖√−Lφ‖2 ≤ ‖ − Lφ‖‖φ‖ ∀φ ∈ Dom(L)
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We denote by Ef the Dirichlet form corresponding to the subordinate semigroup (T f
t )t≥0).

From Theorem 3.1 it follows that the Dirichlet form associated to (T f
t )t≥0 is given by

Ef with
Dom(Ef ) = Dom(

√
f(−L)) (47)

Ef (φ, ψ) = (
√

f(−L)φ,
√

f(−L)ψ) ∀φ, ψ ∈ Dom(
√

f(−L)) (48)

1’) Ef (φ, ψ) = (f(−L)φ, ψ)∀φ ∈ Dom(f(−L)), ψ ∈ Dom(
√

f(−L))

Moreover the following properties hold:

2’) Dom(f(−L)) is an operator core for
√

f(−L)

3’) ‖√f(−L)φ‖2 ≤ ‖f(−L)φ‖‖φ‖ ∀φ ∈ Dom(f(−L))

We prove below (after Corollary 4.6) the following:

Theorem 4.1 If D is an operator core for
√−L then D is an operator core for

√
f(−L)

Remark 4.2 This theorem was announced with a short proof in [44]. In the meantime
a paper by Okura appeared [41] which also contains a proof of Theorem 4.1 for locally
compact separable metric spaces E.

Let us denote by ‖ · ‖E1 the norm induced by the form E1 ≡ E + 1, i.e.

(‖u‖E1 )
2

= E(u, u) + ‖u‖2 ∀u ∈ Dom(E) . (49)

Remark 4.3 Let D ⊂ Dom(E) then the following three statements are equivalent

i) if D is an operator core for
√−L then D is an operator core for

√
f(−L)

ii) if D is ‖ · ‖E1 -dense in Dom(E) it is also ‖ · ‖Ef

1 dense in Dom(Ef )

iii) if (E ,D) is closable then (Ef ,D) is closable.
This is easily seen from, e.g., [35].

We recall that a symmetric positive bilinear form (E ,D) is called closable if any Cauchy
sequence in the norm ‖ · ‖E1 is convergent.

In other words property ii) in Theorem 4.1 gives us information about the closability
of the subordinate Dirichlet form Ef .

In order to prove Theorem 4.1 we need first to state and prove further results

Remark 4.4 Properties 2), 3) and 2’), 3’) in this Section together with Proposition
3.3 and Lemma 3.6 easily imply the following properties

i) Dom(L) ⊂ Dom(
√−L)

ii) Dom(L) ⊂ Dom(f(−L)) ⊂ Dom(
√

f(−L))

iii) (
√−L,Dom(L)) = (

√−L,Dom(
√−L))

iv) (f(−L),Dom(L)) = (f(−L),Dom(f(−L)))

v) (
√

f(−L),Dom(f(−L))) = (
√

f(−L),Dom(
√

f(−L)))
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A further property is easily proven similarly as for Lemma 3.6., using (22)-(24) and the
spectral theorem

vi) Dom(
√−L) ⊂ Dom(

√
f(−L)) and there are two constants c ≥ 0, K ≥ 0, such

that
‖
√

f(−L)φ‖2 ≤ c‖√−Lφ‖2 + K‖φ‖2 ∀φ ∈ Dom(
√−L) (50)

Proposition 4.5

vii) (
√

f(−L),Dom(L)) = (
√

f(−L),Dom(
√

f(−L))) (51)

Before proving this Proposition we give the following Corollary:

Corollary 4.6

viii) (
√

f(−L),Dom(
√−L)) = (

√
f(−L),Dom(

√
f(−L))) (52)

Proof (of Corollary 4.6). From properties i) and vi) it follows

Dom(−L) ⊂ Dom(
√−L) ⊂ Dom(

√
f(−L)) (53)

so that Corollary 4.6 follows from Proposition 4.5 and the fact that
(
√

f(−L),Dom(
√

f(−L))) is self -adjoint and therefore also closed. Corollary 4.6 is
proved.

Proof (of Proposition 4.5).
Because of property v) Domf(−L) is dense in Dom(

√
f(−L)).

By property 2’) and an ε
2 -argument, we then have Prop. 4.5.

Proof of Theorem 4.1
From Corollary 4.6, Dom

√
f(−L) is dense in Dom(

√−L).
By the hypothesis that D is an operator core for

√−L, D is dense in Dom(
√−L). An

ε
2 -argument then yields Theorem 4.1.

4.1. Subordinate quasi -regular (regular) Dirichlet forms

From now on we assume that E is a Hausdorff topological space, B = B(E) = σ(C(E)),
with B(E) the Borel σ -algebra, C(E) the set of continuous functions on E, and m
a σ- finite, positive measure on (E,B(E)). It is known that if the Dirichlet form
E is a ”quasi -regular” Dirichlet form (q.r. D.F.) [37], the process ”properly as-
sociated” to E (or equivalently to the corresponding sub -Markov semigroup) is an
m -tight special standard process , and has in particular the ”nice” properties of being
a càdlàg process which is also quasi -left continuous and strong Markov.
We give here some more details about this relation, which are needed for the concrete
construction of subordinate processes. (For a more systematic presentation of all con-
cepts related to Dirichlet forms, and their origin in potential theory, we refer to [37].
For a shorter survey and newer applications see [1]). We do not however give here the
definition of ”m -tight special standard process”. We just mention that it is a suitable
substitute in the case of an infinite dimensional state space E of the corresponding con-
cept of Hunt process used for locally compact spaces. In fact, in the special case where
the state space is locally compact, and the life time of the process M is infinite, one has
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that M is a Hunt process (see e.g. [15]) and the corresponding q.r. DF E is a regular
DF. (Viceversa if E is locally compact, a regular DF on L2(E,m) is always q.r. and the
corresponding Hunt process on E∆ = E ∪ ∆, with E∆ the one -point compactification
of E, is an m-tight special standard process).
To introduce the concept of q.r. D.F., we need some more definitions.

Definition 4.7 (Capacity). Given an open set A ⊂ E , the capacity CapE(A) of A
with respect to the Dirichlet form (E ,Dom(E) is given by

CapE(A) = inf
φ∈LE

A

E1(φ, φ) ifLE
A �= ∅ (54)

∞ ifLE
A = ∅ (55)

where
LE

A := {φ ∈ Dom(E) : φ ≥ 1 m − a.e. onA} (56)

If N is any subset of E then

CapE(N) = inf
N⊂A∈O

CapE(A) (57)

where O is the collection of open subsets of E.

The sets N with CapE(N) = 0 are precisely the sets which are never reached by the
corresponding process. Moreover if CapE(N) = 0 then m(N) = 0 (but not viceversa
in general). If a property holds outside such a set one says the property holds quasi
-everywhere (q.e.).

Definition 4.8 (E -Nest). An increasing sequence (Fk)k∈N of closed subsets Fk ⊂ E,
Fk ⊂ Fk+1 is an E -nest if

lim
k→∞

CapE(Fk) = 0.

Definition 4.9 E -exceptional set N is an E -exceptional set if N ⊂ ∩k∈INF c
k , where

F c
k is the complementary set of Fk, and (Fk)k∈IN is an E -nest.

Remark 4.10 N ⊂ E is E-exceptional iff CapE(N) = 0. For this see, e.g., [26].

Definition 4.11 (E -quasi -continuous function) A function φ ∈ L2(E,m) is E -quasi
-continuous if there exists an E-nest (Fk)k∈IN such that the function φ|Fk

, (i.e. φ
restricted to Fk), is continuous for any k ∈ IN .

Remark 4.12 φ ∈ L2(E,m) is E -quasi -continuous iff ∀ε > 0 there exists an open set
G such that CapE(G) < ε and φ|Gc is continuous. For this see, e.g., [26].

Definition 4.13 E -quasi -continuous m-version φ̃ ∈ L2(E,m) is an E-quasi-continuous
m - version of φ ∈ L2(E,m) if φ̃ = φ m-a.e. and φ̃ is E -quasi -continuous.
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Definition 4.14 (Quasi -regular Dirichlet form) A symmetric Dirichlet form (E ,Dom(E)
on L2(E,m) is quasi -regular if
1) there exists an E -nest (Fk)k∈IN consisting of compact sets
2) there exists a ‖ · ‖E1 -dense subset D of Dom(E) whose elements have an E -quasi
-continuous m -version.
3) there exists a sequence (φn)n∈IN with φn ∈ Dom(E), having E -quasi -continuous
m - versions φ̃n, and an E -exceptional set N ⊂ E such that {φ̃n, n ∈ IN} separates the
points of E\N .

Theorem 4.15 (see [37]) Let E be a quasi -regular Dirichlet form on L2(E,m), then
up to m -equivalence there is a unique m -tight special standard process

M = (Ω,F∞, (Xt)t≥0, (Pz)z∈X∆)

on the extended space E∆ adapted to the natural filtration (Ft)t≥0 such that M is
properly associated with (E ,DomE).

(∆ is an isolated point and is the cemetery of the process M. If the life time of M is
infinite ∆ is never reached by M.)
(Two right processes M and M′ with state space E and transition function pt (resp.
p′t) are ”m -equivalent”, if there is a set S ⊂ B(E), with m(S) = 1, s.th. S is M - (resp.
M ′-) invariant and ptf(x) = p′tf(x) ∀f ∈ Bb(E) and x ∈ E. [37])

4.2. Quasi regular subordinate Dirichlet forms

Theorem 4.16 Let f be a Bernstein function. If the symmetric Dirichlet form E on
L2(E,m) with generator L is quasi -regular then the symmetric Dirichlet form Ef with
generator −f(−L) is also quasi -regular.

Proof. The proof is an easy consequence of the following Lemma, and the subsequent
remarks.

Lemma 4.17 There is a constant C ≥ 0 such that for any subset N ⊂ E.
CapE

f

(N) ≤ CCapE(N) (58)

Proof. From Lemma 3.6 it follows that there is a constant C ≥ 0 such that
Ef
1 (φ, φ) ≤ CE1(φ, φ) ∀φ ∈ Dom(E) (59)

(where Ef
1 ≡ Ef + (, )).

This implies inequality (58). Lemma 4.17 is proved.

Remark 4.18 From Lemma 4.17 it follows in particular that
i) any E-nest is also an Ef -nest,
ii) any E-exceptional set is also Ef -exceptional,
iii) if φ ∈ L2(X,m) is E -quasi -continuous then it is also Ef -quasi -continuous.

Applying Remark 4.18 we see immediately that Properties 1) and 3) in Definition 4.14
follow.

Proof (of property 2 in Definition 4.14).
By hypothesis there exists an ‖ · ‖1-dense subset D of Dom(E) whose elements have
an E -quasi -continuous version. By Remark 4.18 , if φ ∈ D then φ has also an Ef
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-quasi -continuous version. Moreover the statement that D is ‖ · ‖1-dense in Dom(E) is
equivalent to the statement that D is an operator core for

√−L and by Theorem 4.1
this implies that D is an operator core for

√−f(−L), i.e. D is an ‖ · ‖f
1 -dense subset

of Dom(Ef ) The property is proved.

4.3. Non local DFs obtained by subordination of local DF’s

In recent years an important use has been made of DFs in the construction of (strong)
local DFs and the corresponding diffusion processes (see, e.g.,[1], [2], [3], [6], [5], [4],
[49]). For the following definitions and results see [37].

Definition 4.19 (Diffusion process) A diffusion process is an m -tight special standard
process which satisfies the following property:

Pz(Xt is continuous in time) = 1 for m − a.e. z (60)

Definition 4.20 (Strong local Dirichlet form) A Dirichlet form E is strong local if
∀u, v ∈ Dom(E), such that u constant on every open set I which contains the support
supp[v] of v, it follows E(u, v) = 0.

Definition 4.21 Local Dirichlet form A Dirichlet form E is local if E(u, v) = 0, for all
u, v ∈ Dom(E) with supp [u] ∩ supp [v] = ∅

Remark 4.22 A strong local Dirichlet form is local.

Theorem 4.23 A quasi -regular Dirichlet form on L2(E,B,m) is strong local iff the
m -tight special standard process properly associated to it is a diffusion process.

From the following Proposition it follows that the subordinate of a local quasi regular
Dirichlet form (i.e. the Dirichlet form corresponding to the subordinate semigroup) is
a non local quasi regular Dirichlet form (i.e. a quasi regular Dirichlet form which is not
local). The m -tight special standard process Mf properly associated to it is then a
process with jumps.

Proposition 4.24 Suppose that E is a symmetric, quasi -regular, local Dirichlet form
on L2(E,m) corresponding to the semigroup (Tt)t≥0, let φ ≥ 0, φ ∈ Dom(E), and
suppose that there is a function ψ ≥ 0, ψ ∈ Dom(L), s.t. supp [φ] ∩ supp [ψ] = ∅ then
Ef (φ, ψ) = 0 implies

Ttψ(x) = ψ(x) for m − a.e. x ∈ supp [φ] (61)

Proof. From Proposition 3.3 we know that

−Ef (φ, ψ) = b(φ,Lψ) + (φ,

∫ ∞

0

(Ttψ − ψ)µf (dt)) (62)

and from equation (39 ) it follows

−Ef (φ, ψ) = b(φ,Lψ) +
∫ ∞

0

(φ, (Ttψ − ψ))µf (dt)) (63)
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By hypothesis however (φ,Lψ) = 0, so that Ef (φ, ψ) = 0 implies

0 = (φ, (Ttψ − ψ)) ≥ 0 µf − a.e. (64)

so that
Ttψ(x) = ψ(x) = 0 for m × µfa.e. x ∈ supp [φ] (65)

and the Proposition follows then by the strong continuity of (Tt)t≥0. Proposition 4.24
is proved.

Remark 4.25 The subordinate Dirichlet form Ef of a non local Dirichlet form E is
non local. This can be proven easily using (20), (47), (48) and Remark 2.2.1, vi).

4.4. ”Nice” processes characterized by the corresponding martingale prob-
lems

In this Section we first recall the decomposition theorem for additive functionals related
to quasi -regular Dirichlet forms (Theorem 4.26) as well as Theorem 4.28 where the
corresponding (continuous) quadratic variation is given. (Theorem 4.28 is proven in
[8].) These are then used to prove Theorem 4.33, which characterizes the subordinate
processes in terms of the unique solutions of the corresponding martingale problems on
the sets of essentially self -adjointness of the starting generator, for which subordination
is performed.

Let M = (Ω,F∞, (Xt)t≥0, (Pz)z∈E∆) be an m -tight special standard process properly
associated to (E ,Dom(E))

Let u ∈ Dom(E) and

A
[u]
t := ũ(Xt) − ũ(X0) (66)

where ũ is an E -quasi continuous version of u ∈ Dom(E) , then (A[u]
t )t≥0 is an additive

functional (AF) of M (see Def.2.2 Chapt. 6 §2 [37]).
The following result holds (Theorem 2.5 Chapt.VI [37])

Theorem 4.26 (Decomposition Theorem) If u ∈ Dom(E), then there exists a

unique (M [u])t≥0 ∈ ◦
M, (N [u])t≥0 ∈ N c , such that

A
[u]
t = M

[u]
t + N

[u]
t (67)

where ◦
M := {M ∈ M|e(M) < ∞} (68)

where with e(A) we denote the energy of the AF (At)t≥0, i.e.

e(A) := lim
t→0

1
2t

Em[A2
t ] (69)

and with
M := {M |M is an AF of M, Ez[M2

t ] < ∞,

Ez[Mt] = 0, for E − q.e. z ∈ E and all t ≥ 0}
(70)

N c := {N : N is a continuous AF s.th. e(N) = 0,

Ex[|Nt|] < ∞ q.e. for each t > 0}
(71)
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Remark 4.27 M
[u]
t , N

[u]
t are, by definition of additive functionals of M [37], Ft -

adapted, where (Ft)t≥0 is the natural filtration of M
- For any M ∈ M , M

[u]
t is a square integrable martingale [26], [27], [37], and the

(continuous part of) the quadratic variation < M [u] >t is a positive continuous additive
functional (PCAF).
- If u ∈ Dom(L), then ũ(Xt) − ũ(X0) is a semimartingale, and

N
[u]
t =

∫ t

0

Lu(Xs) ds (72)

On the other hand, < M [u] >t can be computed by means of the following theorem
proven in [8] and announced in [9], [44] which extends [4] (from the case of classical
Dirichlet forms to more general Dirichlet forms):

Theorem 4.28 Let (E ,Dom(E)) be a symmetric quasi-regular Dirichlet form on L2(E,m).
Suppose that 1 ∈ Dom(L), where L is the generator corresponding to E , then for any
u ∈ Dom(L), such that u2 ∈ Dom(L)

< M [u] >t=
∫ t

0

ρ(Xs)ds (73)

where
ρ(x) = Lu2(x) − 2u(x)Lu(x) (74)

Remark 4.29 In the case of locally compact spaces E this was already discussed e.g.
in [23]. In [19] the relation between the ”carré du champ” of Dirichlet forms and Feller
semigroups is discussed. The validity of the corresponding relation for right semigroups
on such state spaces E is mentioned in Remark 4.3.10 of [19].

The theory of DFs provides the possibility to characterize m-tight special standard
processes by proving the existence and uniqueness of the solution to the corresponding
martingale problems. In fact if ”Markov uniqueness” (see [7], [24] for this concept)
holds for (E ,D) with D ⊂ Dom(L) ⊂ Dom(E) where E is a quasi regular Dirichlet form,
then the m -tight special standard process properly associated to E uniquely solves the
martingale problem for the generators L on D [7]. If E is a symmetric quasi -regular DF
Markov uniqueness for (E ,D) is garanteed in case (L,D) satisfies the stronger property
of being essentially self -adjoint. We reformulate the statement here only for this case,
and refer to [7] for the general case where Markov uniqueness holds.

Definition 4.30 ( MP for (L,D).) Let E be a symmetric quasi -regular Dirichlet form
with generator L on L2(E,m), and let D ⊂ Dom(L). An m -tight special standard
process M = (Ω,F∞, (Xt)t≥0, (Pz)z∈X∆) satisfies the MP for (L,D) under (Pz)z∈X∆ if
for any u ∈ D

M
[u]
t := ũ(Xt) − ũ(X0) −

∫ t

0

Lu(Xs)ds (75)

is an Ft -Martingale under (Pz)z∈X∆ for E -q.e. starting point z = E0 ∈ E, where Ft

is the natural filtration of M , and ũ is any Ef -quasi continuous version of u.
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Theorem 4.31 [7] Let E be a symmetric quasi -regular Dirichlet form with generator
L on L2(E,m). Assume (L,D) is essentially self -adjoint for some D ⊂ Dom(L), then
up to ”m-equivalence” there is a unique m -symmetric, m -tight special standard process
M = (Ω,F∞, (Xt)t≥0, (Pz)z∈E∆) satisfying the MP for (L,D).

Remark 4.32 Under the same hypothesis of Theorem 4.31 there is up to ”m-equivalence”
a unique m -symmetric, m -tight special standard process M = (Ω,F∞, (Xt)t≥0, (Pz)z∈E∆)
satisfying the MP for (L,D) under Pm :=

∫
Pzdm, i.e. s.th. for any u ∈ D M

[u]
t is an

Ft -Martingale under Pm.

From Theorem 4.31, Theorem 3.8, Theorem 4.28 the following Theorem follows easily:

Theorem 4.33 Let f be a Bernstein function and E be a symmetric quasi -regular
Dirichlet form with generator L on L2(E,m). Assume that D ⊂ Dom(L) and (L,D)
essentially self -adjoint. Then up to m-equivalence there is a unique m -symmetric, m
-tight special standard process
Mf = (Ω,Ff

∞, (Xt)
f
t≥0, (Pz)

f
z∈E∆

) satisfying the following Ef - MP for (−f(−L),D):
for any u ∈ D

M
[u],f
t := ũ(Xf

t ) − ũ(Xf
0 ) +

∫ t

0

f(−L)u(Xf
s )ds (76)

is an Ff
t -martingale under (Pz)

f
z∈E∆

) for Ef -q.e. starting point E0 = z ∈ E, where
Ff

t is the natural filtration of Mf , and ũ is any Ef -quasi continuous version of u.
Mf is properly associated to the subordinate sub -Markov semigroup (T f

t )t≥0

If in addition u2 ∈ Dom(f(−L)), then the quadratic variation of M
[u],f
t is

< M [u],f >t=
∫ t

0

[−f(−L)u2(Xf
s ) + 2u(Xf

s )f(−L)u(Xf
s )] ds (77)

4.5. Example. Subordination of Ornstein -Uhlenbeck processes on IR

In this Section we first list some known results concerning Ornstein -Uhlenbeck (OU)
processes on IR and then analyze the corresponding subordinate processes. All the
results mentioned here can be easily generalized to the case of IRd. We do not do it
here explicitely, since this case will appear as a special case of our treatment of infinite
-dimensional state spaces in [8].

Let E = IR, and m = µa, a > 0, a Gaussian measure on IR with zero mean and variance
a−1. Let

Ea(u, v) =
∫

∇u∇v dµa ∀u, v ∈ Ha (78)

where Ha is the linear span of Hermite polynomials in IR associated to µa, i.e. the set
of finite linear combinations of the scaled Hermite polynomials

: xn :a := Hn(x/
√

a−1) (79)

where

H0(x) := 1 (80)

Hn(x) = (−1)n

√
n!

exp(x2/2) dn

dxn (exp(−x2/2) (81)

are the normalized Hermite polynomials.
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Let
: exp(ux) :a:= exp(ux − a−1u2/2) (82)

then

: exp(ux) :a=
∞∑

n=0

un

√
n!

a−n/2 : xn :a (83)

Remark 4.34 The so defined functions ((IR, µa) -random variables) : xn :a differ from
the usually defined n -th Wick powers random variables (see e.g. [48]) by the factor

1√
n!

a−n/2. (82) corresponds instead exactly to the usual defined Wick exponential, (83)
differs from the usual relation between Wick exponential and Wick powers by the coef-
ficient factor 1√

n!
a−n

2 instead of 1
n! .

It is well known (see e.g. [43], [19]) that the Hermite polynomials : xn :a, n ∈ IN form
an orthonormal basis (ONB) in

L2(µa) := L2(IR, µa),

which is the direct sum of the subspaces

Hn
a := {α : xn :a , α ∈ IR},

i.e.
L2(IR, µa) = ⊕Hn

a , n ∈ IN.

This decomposition is called the ”chaos decomposition”. Moreover the following results
are well known (see e.g. [19], [6], [30], [40])

Theorem 4.35 (Ea,Ha) is closable in L2(µa), its closure Ea is a regular Dirichlet form.
The corresponding generator La is essentially self -adjoint on Ha (and other natural
domains, like S(IR) and C∞

0 (IR) in L2(µa)) .

Let T a
t be the semigroup associated to Ea. It is well known that

T a
t : xn :a= e−ant : xn :a . (84)

T a
t is called the Ornstein -Uhlenbeck semigroup (given by µa).

Let (Ja
n)n∈IN be the projections of L2(µa) onto Hn

a . The following results are well known
(see e.g. [30]):

Theorem 4.36 The Ornstein -Uhlenbeck semigroup (T a
t )t≥0 (resp. generator La, Dirich-

let form Ea) admits the following decomposition on L2(µa)

T a
t u(ω) =

∞∑
n=0

e−natJa
n(u)(ω), ω ∈ E, u ∈ L2(µa) (85)

Dom(La) = {u ∈ L2(IR, µa) :
∑∞

n=0 n2‖Ja
n(u)‖2 < ∞} (86)

Lau = −∑∞
n=1 naJa

n(u) (87)

Dom(Ea) = Dom(
√−La) = {u ∈ L2(IR, µa) :

∑∞
n=0 n‖Ja

n(u)‖2 < ∞} (88)
Ea(u, v) =

∑∞
n=1 nJa

n(u)Ja
n(v) ∀u, v ∈ Dom(

√−La) (89)

where all the sums are converging in the norm ‖ · ‖L2(µa).
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From Theorem 4.31, Remark 4.32 it follows that there is a unique Hunt process

Ma = (Ω,F∞, (Xt)t≥0, (Px)x∈IR),

which solves the martingale problem for (La,Ha). From the decomposition theorem
applied to u(x) = x and further results in [4], where the theory of Dirichlet forms
is applied, it follows in particular that there is an Ea -exceptional set N , such that
∀x ∈ E \ N , ω ∈ Ω.

Xt(ω) − x = −a

∫ t

0

Xs(ω)ds + Bt(ω) (90)

X0(ω) = x (91)

With the notations
◦
M, N c of Section 2.8, we have that

(Bt)t≥0 ∈ ◦
M is a Brownian motion adapted to (Ft)t≥0 with zero mean and variance 2t

(i.e Px(Bt ∈ A) =
∫

A
1√
2t

e
−y2

2t dy and Bt(ω) ∈ C(IR+ ∈ IR) for every ω ∈ Ω). Moreover

−a

∫ t

0

Xs(ω) ds =
∫ t

0

LaXs(ω)ds ∈ N c (92)

From Theorem 4.31 it follows that (Xt)t≥0 is the unique solution of the initial value
problem (90), (91) for every x ∈ E \ N . It is well known that Xt has a version with
continuous paths (as seen, e.g., by Kolmogorov -Prohorov criterium), that can be started
at every point x ∈ IR. See e.g. [10], [43].

Of course, in this case, stronger results (uniqueness of strong solutions of (90),(91) on the
Wiener space) can be obtained by using more ”classical” methods (see e.g. [10],[43]),
rather than the theory of Dirichlet forms, but our aim was just to provide a simple
illustration of our methods.

Remark 4.37 In [8] several results have been established concerning the subordinates of
the Ornstein-Uhlenbeck semigroups and process. Let us recall them briefly. Let (T a,f

t )t≥0

be the subordinate semigroup of the Ornstein -Uhlenbeck semigroup (T a
t )t≥0 w.r.t. the

Bernstein function f on L2(µa). Let Lf
a (resp. Ef

a ) be the corresponding generator
(resp. Dirichlet form).

The following facts have been established:

i) T a,f
t F =

∑∞
n=0 e−f(na)tJa

n(F ), F ∈ L2(µa)

ii) Dom(Lf
a) = {u ∈ L2(µa) :

∑∞
n=0 f(na)2‖Ja

n(u)‖2 < ∞}
Lf

au = −∑∞
n=1 f(na)Ja

n(u)

iii)Dom(Ef
a ) = Dom(

√−La) = {u ∈ L2(µa) :
∑∞

n=0 f(na)‖Ja
n(u)‖2 < ∞}

Ef
a (u, v) =

∑∞
n=1 f(na)Ja

n(u)Ja
n(v) ∀u, v ∈ Dom(

√
−Lf

a)

iv) T a,f
t (exp(iξx)) = e−a−1ξ2/2

∑∞
n=1

(iξ)na−n/2
√

n!
e−tf(na) : xn :a
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where all the sums are converging in the ‖ · ‖L2(µa) -norm.
As a corollary from Theorem 3.8, Theorem 4.16, Theorem 4.35 and Theorem 4.33 one
then has that Ef

a is a regular Dirichlet form, and it is the closure of (Ef
a ,Ha). The

generator Lf
a is essentially self -adjoint on Ha.Up to µa-equivalence there is a unique

µa -symmetric, µa -tight special standard process Mf
a = (Ω,F∞, (Xf

t )t≥0, (Pz)z∈X)
satisfying the MP for (−f(a),D) with D = Ha.

In [8] we also proved corresponding results for generalized Ornstein -Uhlenbeck processes
on abstract Wiener spaces resp. on the the space of tempered distributions S′(IRd). We
also constructed the corresponding stochastic differential equations and proved unique-
ness of the pathwise solutions of the corresponding initial valued problems, with the
solutions being uniquely defined by the finite dimensional projections.
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where all the sums are converging in the ‖ · ‖L2(µa) -norm.
As a corollary from Theorem 3.8, Theorem 4.16, Theorem 4.35 and Theorem 4.33 one
then has that Ef

a is a regular Dirichlet form, and it is the closure of (Ef
a ,Ha). The

generator Lf
a is essentially self -adjoint on Ha.Up to µa-equivalence there is a unique

µa -symmetric, µa -tight special standard process Mf
a = (Ω,F∞, (Xf

t )t≥0, (Pz)z∈X)
satisfying the MP for (−f(a),D) with D = Ha.

In [8] we also proved corresponding results for generalized Ornstein -Uhlenbeck processes
on abstract Wiener spaces resp. on the the space of tempered distributions S′(IRd). We
also constructed the corresponding stochastic differential equations and proved unique-
ness of the pathwise solutions of the corresponding initial valued problems, with the
solutions being uniquely defined by the finite dimensional projections.
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600, (1996).

30. T. Hida, H.-H. Kuo, J. Potthoff, L. Streit. White Noise: An Infinite Dimensional
Calculus. Kluwer Academic, Dordrecht (1993).

31. N. Jacob. Pseudo-Differential Operators and Markov Processes. Akademie Verlag,
Berlin (1996).

32. N. Jacob. Pseudo-Differential Operators and Markov Processes: 1. Fourier Analysis
and Semigroups. World Scientific, Singapore (2001).

33. N. Jacob. Further pseudodifferential operators generating Feller semigroups and
Dirichlet forms. Revista Matemática Iberoamericana 9, (1993).
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45. K. I. Sato. Lévy Processes and Infinitely Divisible Distributions. Cambridge studies
in advanced mathematics 68. Cambridge University Press (1999).

46. R. Schilling. Subordination in the sense of Bochner and related functional calculus,
J. Austr. Math, Soc. Ser. A 64, 368–396 (1998).

47. M. F. Shlesinger, G. M. Zavslavsky and U. Frisch, eds. Lévy Flights and Related
Topics in Physics. Springer-Verlag (1995).

48. B. Simon. The P (ϕ)2 Euclidean (Quantum) Field Theory. Princeton Univ. Press
(1975).

49. B. Schmuland. Dirichlet forms: some infinite -dimensional examples. Canad. J.
Statist. 27 4, 683–700 (1999).

50. B. West. An Essay of the Importance of Being Non Linear. Lecture Notes in
Biomathematics 62, Springer-Verlag, Berlin (1985).

51. K. Yosida. Fractional powers of infinitesimal generators and the analyticity of the
semigroup generated by them. Proc. Japan. Acad. 36, 86–89 (1960).


