ANALYTICAL EVALUATION OF ECONOMIC RISK CAPITAL
FOR PORTFOLIOS OF GAMMA RISKS

BY

WERNER HURLIMANN

ABSTRACT

Based on the notions of value-at-risk and expected shortfall, we consider two
functionals, abbreviated VaR and RaC, which represent the economic risk cap-
ital of a risky business over some time period required to cover losses with a
high probability. These functionals are consistent with the risk preferences of
profit-seeking (and risk averse) decision makers and preserve the stochastic
dominance order (and the stop-loss order). Quantitatively, RaC is equal to VaR
plus an additional stop-loss dependent term, which takes into account the
average amount at loss. Furthermore, RaC is additive for comonotonic risks,
which is an important extremal situation encountered in the modeling of
dependencies in multivariate risk portfolios. Numerical illustrations for port-
folios of gamma distributed risks follow. As a result of independent interest,
new analytical expressions for the exact probability density of sums of inde-
pendent gamma random variables are included, which are similar but differ-
ent to previous expressions by Provost (1989) and Sim (1992).
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1. ECONOMIC RISK CAPITAL USING VAR AND RAC

Suppose a firm is confronted with a risky business over some time period, and
let the random variable X represent the potential loss or risk the firm incurs
at the end of the period. To be able to cover any loss with a high probability,
the firm borrows at the beginning of the time period on the capital market the
amount ERC,, called economic risk capital. At the end of the period, the firm
has to pay interest on this at the interest rate i;. To guarantee with certainty
the value of the borrowed capital at the end of the period, the firm invests ERC,
at the risk-free interest rate iy < ir. The value of the economic risk capital at
the end of the period is thus ERC= ERC,- (1+i,— ig). The risky business will
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108 WERNER HURLIMANN

be successful at the end of the period provided the event {X> ERC} occurs
only with a small tolerance probability.

There exist several risk management principles applied to evaluate ERC.
Two simple methods that have been considered so far are the value-at-risk
and the expected shortfall approach (e.g. Arztner et al. (1997a/b), Arztner
(1999), Embrechts (1995), Hiirlimann (1998a), Schréder (1996), Wirch (1999))
According to the value-at-risk method one identifies the economic risk capi-
tal with the value-at-risk of the loss setting

(1.1) ERC=VAR,[X] = Ox (),

where Qy()=inf {x|Fy(x)>u} is a quantile function of X, with Fy(x)=

Pr(X < x) the distribution of X. This quantile represents the maximum pos-
sible loss, which is not exceeded with the (high) probability a (called security
level). According to the expected shortfall method one identifies the economic
risk capital with the risk-adjusted capital of the loss setting

(1.2) ERC= RaC,[X}:= E[X|X> VaR,[X]]

This value represents the conditional expected loss given the loss exceeds its
value-at-risk. Clearly one has

(13)  RaC,[X]=Qx@)+my[Qx@)]= Ox @+ 1 7y [0x @)

where my(x) = E[X — x| X > x] is the mean excess function, 7,(x) = (1 — Fy{(x))-
my(x) is the stop-loss transform, and &£ =1-aq is interpreted as loss probability
(called loss tolerance level). In Arztner (1999) the expression (4.3) is called ail
conditional expectation and abbreviated TailVaR there (for tail value-at-risk).
Mathematically, VaR and RaC, which have been defined as functions of random
variables, may be viewed as functionals defined on the space of probability
distributions associated with these random variables. By abuse of language,
we will use the terminology functionals when appropriate.

It is important to observe that both ERC functionals satisfy two impor-
tant risk-preference criteria in the economics of insurance (see Denuit et al.
(1999) for a recent review). They are consistent with the risk preferences of
profit-seeking decision makers respectively profit-seeking risk averse decision
makers. To see this let us first recall two partial orders of riskiness.

Definitions 1.1. A risk X is less dangerous than a risk Y in the stochastic order,
written X <Y, if Qy@)< Qr@) for all u€[0,1]. A risk X is less dangerous
than a risk Y in the stop-loss order, written X <gY, if 7x(x) < ny (x) for all x.

To compare economic risk capitals using criteria, which do not depend on the
choice of the loss tolerance level, let us introduce two further partial orders of
riskiness.

Definitions 1.2. A loss X is less dangerous than a loss Y in the VaR order,
written X <y,rY, if the value-at-risk quantities satisfy VaR,[X] < VaR,[Y], for
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ANALYTICAL EVALUATION OF ECONOMIC RISK CAPITAL 109

all a €[0,1]. A loss X is less dangerous than a loss Y in the RaC order, written
X <rac?, if the risk-adjusted capital quantities satisfy RaC,[X ]| £ RaC,[Y], for
all a €[0,1].

The value-at-risk and expected shortfall methods are consistent with ordering
of risks in the sense that profit-seeking (risk averse) decision makers require
higher VaR (RaC) by increasing risk, where risk is compared using the stochas-
tic order < (stop-loss order <y). Reciprocally, increasing VaR (RaC) is always
coupled with higher risk. The following result expresses these ordering prop-
erties mathematically.

Theorem 1.1. If X and Y are two loss random variables, then X <, Y & X <4Y
and X <gucY & X <4Y.

Proof. Since X <Y « Q@) < Qy () for all a € [0, 1], the first property is imme-
diate by (1.1). Consider the Hardy-Littlewood transform defined by

1
' 1
(14 HLyy=| Toa | Qrds u<i
QX(l)’ u=1

Its name stems from the Hardy-Littlewood (1930) maximal function and has
been extensively used in both theoretical and applied mathematics (e.g. Black-
well and Dubins (1963), Dubins and Gilat (1978), Meilijson and Nadas (1979),
Kertz and Rosler (1990/92/93), Riischendorf (1991), Hiirlimann (1998b/c/d)).
One knows that there exists a random variable X associated to X such that
(e.g. Hiirtimann (1998b), Theorem 2.1)

(1.5) HLy W)= Qy#u)= Qx )+ my[Qx W],

hence RAC,[X]= Qx#(a) by (1.3). The result follows from the fact that X <qY
if and only if X "<, Y" where <, denotes the usual stochastic dominance order
{e.g Kertz and Rosler (1992), Lemma 1.8, or Hiirlimann (1998¢), Theorem 2.3).
For the convenience of the reader, an alternative perhaps more accessible
proof should also be pointed out. Consider the so-called distortion function
g.(0)= min{ﬁ, 1}. It is easy to show that

(1.6) RaCa[X]Z_/goga[l—FX(x)]dx
0

identifies the RaC functional with a member of the class of distortion pricing
principles in Wang (1996). The result follows by Dhaene et al. (2000), Theo-
rem 3, which contains a proof of the stated equivalence. ¢

Finally, it is important to observe that, except for a world of elliptical linear
portfolio losses (Embrechts et al. (1998), Fundamental Theorem of Risk Man-
agement), the VaR functional has several shortcomings. It is not subadditive
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110 WERNER HURLIMANN

and not scalar multiplicative, and it cannot discriminate between risk-averse
and risk-taking portfolios (examples 1 to 3 in Wirch (1999)). Some more details
for the practitioner are in order. Recall that a risk measure R[] acting on the
set of all risks is subadditive provided R[X + Y] < R[X]+ R[Y] for all X, Y, that
is merging two risks does not create extra risk. If a firm must meet a require-
ment of extra economic risk capital that did not satisfy this property, the firm
might separate in two subunits requiring less capital, a matter of concern
for the supervising authority. A risk measure is scalar multiplicative provided
R[cX] = cR[X] for all X, all constants ¢>0. In situations where no diversifica-
tion occurs capital requirement depends on the size of the risk. In contrast to
this, the RaC functional, which is subadditve and scalar multiplicative, is a
coherent risk measure in the sense of Arztner et al. (1997) and appears thus
more suitable in general applications. A recent work devoted to the evaluation
of economic risk capital in life-insurance using the VaR and RaC approaches
is Ballmann and Hiirlimann (2000).

2. THE MAXIMUM RAC FOR THE AGGREGATE RISK OF PORTFOLIOS

An important but complex problem is the evaluation of RaC for the aggre-
gate risk of portfolios. Let X = (X, ..., X,) be a portfolio of multivariate risks,
where the marginal risks X; have distributions F,(x), i=1, ..., n. In a first step,
one is interested in the maximum RaC for the aggregate risk S(X)= X, + ...
+ X, whenever Xe D(F,, ..., F,), the set of all multivariate risks with given mar-
ginals F;(x). It will be shown below that the maximum RacC is attained when
the margins X, show the strongest possible dependence structure, an extremal
situation for which one says that X, ..., X, are mutually comonotonic.

A multivariate loss (X7, ..., X)) is called comonotonic whenever an increase
of a single loss X;(w;) < X;(w,) for two events w,, w, implies a nondecrease
of all other losses X(w;) < X;(w,), j# i (Schmeidler (1986), Yaari (1987)). For
Xe D(F,, ..., F) this is exactly the case when X = (Fl_l(l/),...,Fn_'(U)) with U a
uniform (0,1) random variable noting that F;I(U) has distribution F; and Fi_l
is increasing for all i. The distribution F of a comonotonic random vector
is determined by its marginal distributions F; through the relationship
F(x,..., xn):11?i<n{F,-(x,»)}. Mathematically, four equivalent defining conditions

of comonotonicity can be given.
Definition 2.1. (Bauerle and Miiller (1998)) The components of a random vec-

tor X=(X,, ..., X,) € D(F,, ..., F,) are called mutually comonotonic if any of the
following equivalent conditions hold:

(C1) The multivariate distribution F(xi,..., x, ) of (Xi,..., X,,) identifies with the
so-called Fréchet upper bound F(x,..., x,,) :121i<n {Fi(x;)}.

(C2) There exists a random variable Z and non-decreasing real functions u,, ...,
u, such that (u;(Z2), ..., u,(Z)) has the distribution F.
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ANALYTICAL EVALUATION OF ECONOMIC RISK CAPITAL 111

(C3) The random vector (Fl‘l(U),...,Fn_l(U)), where U is uniformly distributed
on [0,1], has distribution F.

(C4) There is a random vector X, distributed as F, such that X;(w;) < X;(w,)
implies X;(w,) < X;(w,) for all j=i.

We need further the notion of supermodular order.

Definition 2.2. A random vector X precedes Y in the supermodular order, writ-
ten X <, Y, if E[f(X)] < E[f(Y)] for all supermodular functions f such that the
expectations exist, where f is called supermodular if

(2.1) fxAy)+fxVy)=fx)+{(y) for all x,y,eR",

with the notation (X;,..., X, )A V1, ..»¥n )= KA V1,..0r X4 A Y1), A the minimum oper-
ator, and (X1,..., Xy )V (Y15 s ¥n ) = K1V Y1500, X3V ¥n ), V the maximum operator.

Intuitively the notion of supermodular function can be grasped as follows.
Let x, ..., x, be n individual losses in a portfolio, and let f(x,, ..., x,) be the
aggregate loss caused by these losses. Then supermodularity of the function f
means that the influence on the aggregate loss of an increase of a single loss
is greater, the higher the other losses are. In the literature supermodular func-
tions are also called superadditive, and have been originally studied in applied
mathematics and operations research (e.g. Marshall and Olkin (1979)). They
have been extensively applied in economics (e.g. Topkis (1998)). The related
supermodular order allows for a comparison of the strength of dependence
between random vectors. Its origin in the statistical literature can be traced
back to Block and Sampson (1988), Joe (1990), Meester and Shanthikumar
(1993), Szekli et al. (1994), Shaked and Shanthikumar (1997). Actuarial appli-
cations of this order are discussed in Miiller (1997), Bauerle and Miiller (1998),
Goovaerts and Dhaene (1999).

To compare the riskiness of portfolios, one says that a portfolio X = (X, ...,
X,) is less risky than a portfolio Y=(17, ..., Y,) if the corresponding aggregate
risks S(X)= X, +...+ X, and S(Y)= Y, +... + Y, are stop-loss ordered, that is
S(X) <4 S(Y). A sufficient condition for this is the supermodular order.

Theorem 2.1. Let X=(X|,...,X,)and Y=(Y, ..., ¥,) be random vectors in D(F,,
... F,) such that X <. Y, then one has S(X) <y S(Y).

Proof. This is shown in Miiller (1997), Theorem 3.1. ¢

The significance of the supermodular order for economic risk capital calcu-
lations is now immediate. Given two portfolios X, Ye D(F,, ..., F,) such that
X<, Y, it is possible to compare the RaC of the aggregate risk S(X) with the

—sm

RaC of the aggregate risk S(Y).

Corollary 2.1. Let X=(X),..., X,) and Y=(Y, ..., ¥,) be random vectors in D(F],
..., F},) such that X <, Y, then one has RaC,[S(X)]< RaC,[S(Y)] for all a € [0,1].
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112 WERNER HURLIMANN

Proof. This is an immediate consequence of Theorem 2.1 and Theorem 1.1. ¢

Even more, one obtains that the portfolio X“= (FI"I(U),...,FI'I(U) e DA,..., F,)
with mutually comonotonic margins yields the maximum RaC.

Theorem 2.2. The maximum RaC for the aggregate risk of a portfolio with
fixed marginal risks is attained at the portfolio with mutually comonotonic
components, that is one has

(2.2) e hax Fn){RaCa[S(X)]} = RaC,[S(x%)]
Proof. By the inequality of Lorentz (1953) (e.g. Theorem 5 in Tchen (1980)),
one knows that X <, X® for all Xe D(F,, ..., F,). The result follows by Corol-
lary 2.1. Alternatively, it is possible to prove directly that X <, X€ for all X e
D(F,, ..., F,) as shown by Goovaerts et al. (2000) (see also Dhaene et al. (2000),
Corollary 6). Then Theorem 1.1 implies the result. ¢

This result means that comonotonicity, which displays the strongest possible
dependence structure, corresponds to the riskiest portfolio under all portfolios
with the same marginal risks and requires the maximum RaC under all these
portfolios. It is further remarkable that under a simple regularity condition the
maximum RacC is an additive functional.

Theorem 2.3. Let X°=(X, ..., X,) be a portfolio of mutually comonotonic risks
with absolutely continuous marginal distributions F;(x), =1, ..., n. Then the
RaC functional satisfies the additive property

2.3) RaC,[S(X*)|= DIRaC, X}

Proof. Denote by F,(x) the distribution of S(X*¢). Consider the quantiles d =
Os(a), d;= QO (a), i=1,..., n, and the stop-loss transforms 7,(x), 7;(x): = 7, (%),
i=1,...,n. By the comonotonic assumption, the quantiles and stop-loss trans-

forms behave additively, that is one has d = >4, (e.g. Landsberger and Meilijson
i=1 n
(1994), Denneberg (1994), Kaas et al. (2000)) and 7,(d)= Zn,- d;) (Dhaene et

i=1
al. (2000), Theorem 8, special case of absolutely continuous distributions, or
Kaas et al. (2000)). The assertion follows from (1.3) using the relationship
(1-Fx(x)) - my(x)= 7y (x) between the mean excess function and the stop-loss
transform by means of the equalities

RaC,[SXO)]=d+ +-m@= 2 d+ 1 md)] =3 Rac, X1, o
i=1 i1

Remark 2.1.

As pointed out by a referee, the additive relation (2.3) is a special case of a
more general result due to Dellacherie (1970) and quoted in Schmeidler
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ANALYTICAL EVALUATION OF ECONOMIC RISK CAPITAL 113

(1986). Let A be a g-algebra of subsets of a set S, and y the set of all bounded
real-valued A-measurable functions on S. For a monotone set function von §
such that v(2) =0, v(S)=1, and a non-negative real valued function Xe y,

consider the Choquet integral H,[X] = f Xdv= f v(X > x)dx. Dellacherie’s result

K 0
states that if X,Y e y are comonotonic, then H[X + Y]= H[X]+ HJ[Y]. In
the special case of a probability space (€2, P, A), consider the distortion func-

tion g,(x)= mm{1 2, 1} and the set function v=g,- P. With (1.6) one obtains
RaC,| f g4/ P(X > x)|dx = H,[ X] The additivity (2.3) for comonotonic risks

follows from Dellacherie’s result. However, note that our Theorem 2.3 is not
restricted to bounded random variables, an essential assumption in Schmeid-
ler’s paper.

An interesting problem concerns the impact of various “positive” depen-
dence structures between risks X, ..., X,, on the evaluation of RaC for the
aggregate risk S(X) = X, + ...+ X,. Independent risks with an aggregate denoted
by S'=X,®..®X, and comonotomc risks with an aggregate S°= X, +....+ X,
are two extreme cases of primary importance. Let us motivate this assertion.
In virtue of Corollary 2.1 and Theorem 2.2 it seems reasonable to restrict
the attention to positive dependent portfolios Xe D(F), ..., F,) satisfying the
supermodular inequality X' <., X <, X%, which implies S <y S(X) < §¢€ and
S <pac S(X) Spac S¢. As an example the family of multivariate elliptically
contoured distributions is increasing in the supermodular order as the cor-
relation increases (Block and Sampson (1988)). Portfolios satisfying only the
stop-loss inequality $7 <; S(X) <,; §¢, which by Theorem 1.1 is sufficient to
imply S¥ <g,c S(X) <gac S¢, might also be of interest (e.g Biuerle and Miiller
(1998), Section 4).

It is well-known that the stop-loss order relation S <; S¢ implies a con-
siderable difference between the corresponding stop-loss premiums. However,
the quantitative impact of this relation on the evaluation of RaC has not yet
been examined. The additive property of Theorem 2.3 is of evident help for
the quantitative analysis of the property RaC,[S] < RaC,[S€]. Since insurance
risks are often quite well approximated by gamma distributed risks or trans-
lations thereof (e.g. Seal (1977), Dufresne et al. (1991), Dickson and Waters
(1993)), we will restrict ourselves in the present paper to a quantitative evalua-
tion of this inequality for gamma risks. Since the exact distribution of sums of
independent gamma random variables is not very well-known among actuaries,
the next Section is of additional independent interest.

3. SUMS OF INDEPENDENT GAMMA RANDOM VARIABLES

Gamma distributions, which include the exponential, Erlang and chi-square
distributions, are among the most important distributions widely used in
applications. They are also of great importance in theoretical work. Thorin
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114 WERNER HURLIMANN

(1977) introduced the class of generalized gamma convolutions, defined as
the smallest class of distributions on the positive real line that contains the
gamma distributions and is closed with respect to convolution and weak
limits, to prove the infinite divisibility of many distributions. The class of
generalized gamma convolutions is surprisingly rich and has a remarkable
structure. It has been extensively studied in the last century by Bondesson
(1992).

Though not noticed in actuarial science (e.g. one misses them in Panjer
and Willmot (1992)), expressions for the exact probability density of sums of
independent gamma random variables are known from the statistical litera-
ture. For example, Johnson et al. (1994), pp. 384-85, refers to Mathai (1982),
Moschopoulos (1985) and Sim (1992). One can add Provost (1989), which
determines the exact density applying the inverse Mellin transform. The
result by Sim (1992) uses the following direct elementary approach. Let
X;~T(a;, p), i=1,...,n, be n independent gamma random variables with
densities

)% hix
6)  S=gBmar= L

> Bi>0.

The special case of identical scale parameters being well-known, one assumes
that 8, > B, > ... > B,. The density of the independent sum S, = X,®... ® X, can
be obtained from the convolution formula

(32) L3@= [ fo O S =Ddt
0

applying mathematical induction. A calculation yields the resuit by Sim (1992)
(see also Johnson et al. (1994), formula (17.110)):
(a"™),

(3.3) fs,,(f) Hﬁa']' L g b, kgck . ( (n)) (81— B2)s]",

I'@ “”) [

where a®=a+ ... + a;, (©i= Llf(;)_k) , and

1, i=2

(34 Ci= P (e Y Ay ST I
i jz(;)c k). ) {ﬂn 12 P ,+23] i=3,.n

A rearrangement shows that (3.3) is an infinite linear combination of gamma
densities with the same scale parameter f;, a property already observed by
Provost (1989). Applying another elementary approach, we obtain below a
new similar representation of the exact probability density, which differs from
the results by Provost (1989) and Sim (1992).
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Theorem 3.1. Let X,~I(a;, §) be n independent gamma random variables
such that ;> f, > ... > f,. Then the density of the independent sum S, = X,®
... @ X, is analytically described by the infinite series

(3.5 Sfa ()= A, ZC,';- g(B: 5,0+ k), with

i

dV=a+ ...+ ap, A= H[ﬂ] , n=2, A=1,
1

[l_é]k, @)k _,

3.6 Ci Al ko
"o . ﬁc"'l‘[‘&r_j'(ai)""' i3,
2C g e 3

C,=0 k=1,2,.., Ci=1 i=1,...,n
Proof. This is shown through induction. Clearly, the series representation holds

for n=1. By induction, assume the representation holds for the index n and
show it for the index n+1. For convenience set

(3.7) $4= X,® Sui€ (0,00), Ry= g2 € 0,1).

Applying the standard method of transformation of random variables based
on Jacobians (e.g. Fisz (1973), p. 77), the density of the sum S, is determined
recursively by the formulas

1
(38) £ [ fnp(sn)dr,
0
Sou k&1 =8 F1,69-f, (A=1)9).

Using this and the induction assumption, one obtains
B 04 fe
N n ad" Vg -Bis 1
3.9 L= A, CE st et [, k),
39 S @A 2C e 1o

with

i
_ n) _ _ _ 75
I(n,k)zfr“”+1 L=p ol g Cmmh)Y g,

(3.10)
_$ —Buw) 7 T@”+ BT @i +))
o I ra™V+k+)
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Through rearrangement it follows that

Bt
Bl & &= 5 Tam+p
Sonn )= Ay [ﬂll} .JE)CP N !r(anH) gBisa™V+k+))

(3.11)

= Ay 26" g Brs;a" P+ k).
k=0

The analytical formula (3.5) is shown. ¢

Remark 3.1.

Though the coefficients of g(B,s5;a™+ k) in (3.3) and (3.5) are evaluated using
different expressions, they are identical. However, the formulas (3.6) are more
symmetric and simpler, and for this reason they should be preferred.

Using the incomplete gamma function defined by

(3.12) G(fx;a)= r—%&j -foﬂxz“‘le"dz,

the distribution function of an independent gamma sum is through integra-
tion of (3.5) equal to

(3.13) F, (5)= A, 22CL G50 + k).
k=0

The evaluation of RaC for portfolios of independent gamma risks requires an
analytical expression for the stop-loss transform of S,.

Corollary 3.1. The stop-loss transform z;, (d)= E [(S,—d),] of a sum S, =X, ®
... ® X, of n independent gamma random variables X;~I'(a; ), i=1,...,n,
such that ;> 3, > ... > f3,, is determined by the analytical formula

(3.14) m, (d)=E[S,]-d"F, (d)- ﬁ - Ay Z(a(”)+k) Cy G d,a”+k+1)

Proof. This follows without difficulty noting that =z, (d)=E[S,]-d F @-
fo sfs, (5)ds, andf sg(Bs;a)ds = ;G(ﬂd a+l). ¢
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Remark 3.2.

The special case B; =... = B, = B of identical scale parameters is well-known.
In this situation, the above formulas are replaced by the very simple ones

fo©=g@Bs;a”), F, )= G(ﬂs; a®),

3.15
G nsn@:(“ﬂ ) F,@+ 41,0,

where the last one is obtained through partial integration.

4. NUMERICAL EXAMPLES

First, let us calculate RaC for portfolios of independent gamma risks. Given
the loss tolerance level g, first determine using (3.13) the solution d, of the
equation F; (d.)= 1-¢. Inserting the obtained value in (3.14), one obtains the

formula

RaCy,[Si|=d,+ 17, d,)
4.1 1 1 = »

:E'[E[S"]_F'A"' N@"+k)- Cl-GBid;aP+ K+ 1).

1 k=0
In the special case B, =... =B, = of Remark 3.2, the quantile d, is solution
of G(fd,; a™)=1-¢ and (4.1) simplifies to
42) RaCi.,[Si)= EIS,) {1+ §- S5 g(Bdiia®)].
a

Second, let us calculate RaC for portfolios of comonotonic gamma risks. The
evaluation uses the additive property of Theorem 2.2. For i=1, ..., n, determine
the solution d;, of G(fd,,; a;)= 1 -&. Replacing a™ by q; in (3.15) one gets

ni(di,e)zg'(E[Xi]—di,e) + iﬁitg'g(ﬁidi,a;ai)-

It follows that

RaCy_ b[s ]: >, RaCi, [ X} = Z{ -n,-(d,-,s)}
4.3) .
% El /}f g(ﬂidi,a;ai)-
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Example 4.1: independence versus comonotonic assumption

In the special case B, =... = B, = B of Remark 3.2, a comparison of (4.2) and
(4.3) yields the difference formula for RaC:

(4.4) pe-(RaCr,[S;]- RaC..[S,]) = 3 dﬁ gBidyia)~d, g (Bd,:a®™),

i=

where G(ﬁdg;a("))z l-¢ and GB.d;,;0;)=1-¢, i=1,...,n. A numerical illustra-
tion for the exponential case =1, a; = ... = a, = 1, is summarized in Table 4.1
below. In this situation RaC,_, [S;] =n-{1-In)} depends linearly on the num-

ber of exponential risks. The difference increases non-linearly according to the
formula
n _—d,

4.5) RaC;_, [S;]—RaCl_g [S;] = % : {n & [~In)] - g:_—l), ,

where G(d,;n)=1-¢. As an interesting observation, one notes for increasing n
a decreasing percentage increase of RaC,_, [S;] over the ¢-range between 0.05

and 0.001.
TABLE 4.1
RAC FOR EXPONENTIAL RISK PORTFOLIOS UNDER INDEPENDENCE (l)
AND COMONOTONIC (C) ASSUMPTION
£ =0.05 £=0.01 £=0.001
n

)] © (i) (© U] ©
1 4 4 5.6 5.6 7.9 7.9
2 5.9 8 7.8 11.2 10.3 15.8
3 7.6 12 9.6 16.8 12.4 23.7
4 9.2 16 11.4 224 14.3 3]1.6
5 10.7 20 13 28 16.1 39.5
10 17.6 40 20.5 56.1 24.2 79.1
20 30.3 79.9 34 112.1 38.6 158.2
50 65.7 199.8 70.9 280.3 77.3 3954
100 121.7 399.6 128.7 560.5 137.2 790.8

Example 4.2: sums of independent gamma risks versus gamma and normal
approximations

Suppose an insurer desires to calculate VaR and RaC for a portfolio of »
independent risks, which follow a classical risk model. Each risk X;=Y;, + ...
+ Y, 5, has a compound Poisson distribution, where N; is Poisson distributed
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and the Y, /s are the individual claims. Assume that one knows the expected
number of claims 4; = £ [N;], as well as the first and second moments v;= E[Y; 1
1

m,~,2=E[Yt.21] of the severity distributions, i =1, ..., n. Let k;=¢;- ,117, with ¢;=
Iy ;- vl."’, be the coefficient of variation of X;. As mentioned previously, it is
often possible to assume that X; is gamma distributed with parameters

1 _4 1
46 T TTE = T, i= 3
o R Py

|
Ty 1S i,...n

The risk S,=X,®...® X, of the portfolio is again compound Poisson distri-
buted with corresponding parameters

N N[ 4 et A ™[ A) (w2
4.7 A=k v=20\ T v k=c 27 =205 G
i=1 i=1 i=1

Now, it is possible to approximate S, either by a sum of » independent gamma
risks with the parameters a,, f; in (4.6) or by a gamma risk with parameters

a :-iz, B= —12— % as defined in (4.7). To illustrate, we compare the VaR and
C c

RaC values of these approximations with the values obtained from a normal
approximation for portfolios of 5 risks with parameters (typical for the aggre-
gate claims of collectives of life insurance policies):

Gy ds)=m-(1,1,1,1,1), m=1,2,5,10,20, 50,

4.8
(4-8) Oy ¥5)=12,2,1,3,2), ¢y ¢5)=(1.25,1.75,2.5,1.5,2).

The parameters for the overall gamma approximation are by (4.7) equal to 1=
Sm, v=2, ¢ =1.74642. Table 4.2 shows that the VaR and RaC values of both
gamma approximations differ only slightly, but the normal approximation
underestimates systematically these values, especially for small As and more
considerably for RaC than for VaR.

TABLE 4.2

VAR AND RAC COMPARISONS BY FIXED € = 0.0S

VaR RaC
m normal gamma sum of ind. normal gamma sum of ind.
approx. approx. gamma approx. approx. gamma
1 22.8 25.3 253 26.1 321 324
2 382 40.9 41.0 42.8 49.1 49.5
5 78.7 81.8 81.9 86.0 92.6 93.0
10 140.6 143.8 144.0 150.9 157.6 158.1
20 257.5 260.7 260.9 272.0 278.8 279.3
50 590.8 594.2 594.4 6139 620.7 621.2
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