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ANALYTICAL PRICING OF THE UNIT-LINKED ENDOWMENT
WITH GUARANTEES AND PERIODIC PREMIUMS

BY

WERNER HÜRLIMANN

ABSTRACT

We consider the unit-linked endowment with guarantee and periodic premiums, 
where at each premium payment date the insurance company invests a certain 
fraction of the premium into a risky reference portfolio. In the dual random 
environment of stochastic interest rates with deterministic volatilities and mor-
tality risk, and for a fi xed guarantee, simple analytical lower and upper bounds 
for the fair periodic premium are explicitly derived. We also consider contracts 
with guaranteed minimum benefi ts that vary over time and we obtain tight 
lower and upper bounds for both fair periodic premiums and guaranteed 
minimum benefi ts that increase over time. The numerical illustrations of our 
results reveal that the analytical bounds are very tight. Moreover, the simple, 
fast and very reliable analytical numerical calculations with controlled accuracy 
avoid time consuming Monte Carlo calculations and are almost always preferred 
by practitioners. Some analytical closed-form solutions for one- and two-year 
maturity dates are also stated.

KEYWORDS
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1. INTRODUCTION

The specifi c feature of a unit-linked life insurance contract is the fact that the 
benefi t payable at expiration depends upon the market value of some reference 
portfolio. A unit-linked endowment with guarantee is a unit-linked contract, 
which additionally provides for a guaranteed minimum benefi t payable on either 
death or survival at maturity date. In contrast to traditional insurance the 
benefi t is random but part of the investment risk is covered by the insurer. This 
product combines mortality risk (uncertain payment date) and investment risk 
(uncertain investment performance). Since the random benefi t is the greater of 
the value of some reference portfolio and some guaranteed minimum payment, 
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the payoff of the contract is equal to the guaranteed amount plus a non-negative 
bonus. This bonus corresponds to a call option on the reference portfolio
with the guaranteed amount as exercise price, which has similarities with an 
Asian option. The present contribution focuses on the unit-linked endowment 
with guarantee and periodic premiums, where at each premium payment date 
the insurance company invests a certain fraction of the premium into a risky 
reference portfolio.

In the literature single and periodic unit-linked contracts have been analyzed 
among others in Brennan and Schwartz (1976/79a/79b), Boyle and Schwartz 
(1977), Corby (1977), Delbaen (1990), Aase and Persson (1994), Persson (1994), 
Bacinello and Ortu (1993a/93b/94), Nielsen and Sandmann (1995/96/2002).
A basic textbook on the modelling and risk management of investment guar-
antees for equity-linked life insurance is Hardy(2003) and a recent survey 
 article is Bacinello (2007). In this already long development, one notes that 
the periodic premium situation with stochastic interest rate dynamics has only 
been discussed since Bacinello and Ortu (1994) and Nielsen and Sandmann 
(1995). The latter authors have applied extensive Monte Carlo simulations to 
the pricing problem. Furthermore, they have shown existence and uniqueness 
of the periodic premium and other interesting properties in Nielsen and Sand-
mann (1996). The most recent contributions have treated this problem in a more 
general context. Bacinello et al. (2009a/b) apply the Least Squares Monte Carlo 
approach to fi nd the fair periodic premium when an additional surrender 
option is embedded into the contract. In their analysis the reference fund 
dynamics includes stochastic volatility and jumps and the interest rates follows 
the Cox-Ingersoll-Ross square root process. However, the lack of analytical 
tractability beyond the Monte Carlo method has only been scarcely discussed. 
Costabile et al. (2009) use a bivariate recombining lattice, which describes the 
joint evolution of interest rates and equity value to compute the periodic pre-
mium in the presence of a surrender option. We focus on the original problem 
and show that it is possible to fi nd tight lower and upper bounds for the fair 
periodic premium, which are based on stochastic ordering convex approxima-
tions derived from comonotonic random sums extensively discussed since Kaas 
et al. (2000) and Dhaene et al. (2002) among others. Our needs relies on the 
developments in Vanduffel et al. (2005a/b/2008a). Since the bonus has simi-
larities with an Asian option, the considered approach has potential to benefi t 
in future from the most recent developments in this area (e.g. Vanduffel et al. 
(2008b)).

The paper is organized as follows. Section 2 introduces shortly the unit-linked 
endowment with guarantee and summarizes the required defi nitions and nota-
tions used throughout. The market price of the periodic premium without 
 mortality risk but within a fi nancial market model, which includes stochastic 
interest rates and a risky reference fund, is determined in Section 3. Due
to the assumption that the mortality process is independent of the fi nancial 
market process, the determination of the periodic premium under mortality 
risk is obtained in Section 4 as implicit solution of an equation containing the 
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 ANALYTICAL PRICING OF THE UNIT-LINKED ENDOWMENT 633

call-option prices determined in Section 3. In Section 5 we determine simple 
analytical lower and upper bounds for the fair periodic premium for the gen-
eral case of deterministic bond price volatilities. The numerical illustration of 
our results reveals rather tight bounds for the fair periodic premium. More-
over, the simple, fast and very reliable analytical numerical calculations with 
controlled accuracy avoid time consuming Monte Carlo calculations and are 
almost always preferred by practitioners. Analytical closed-form solutions for 
one- and two-year maturity dates are also stated. Last but not least, Section 6 
extends the results of Section 5 to guaranteed minimum benefi ts that vary over 
time. Using explicit closed-form analytical formulas, we obtain tight lower
and upper bounds for both fair periodic premiums and guaranteed minimum 
benefi ts that increase over time. The latter product type with increasing guar-
anteed minimum benefi ts is attractive from the policyholder’s point of view 
and is increasingly demanded on the market. Since there has been a lack of 
analytical tractability beyond the Monte Carlo method for many years, the pro-
posed method closes this gap, a fact which is of great practical value. Indeed, 
in recent years the main life insurance players have introduced such products. 
For example, AXA Winterthur has been the fi rst Swiss life insurer to launch 
a private pension contract of this type in May 2006.

2. THE UNIT-LINKED ENDOWMENT CONTRACT WITH GUARANTEE

The unit-linked endowment life insurance with asset value guarantee and 
periodic premium payments is a contract agreement between an insurance 
company and a policyholder where the buyer pays regularly a predetermined 
premium to the company. At maturity date or early death of the insured per-
son the contract stipulates as benefi t the greater of the value of some reference 
portfolio and some guaranteed minimum payment. The reference portfolio is 
usually build up by investing some predetermined percentage of the premium 
in an investment reference fund subject to fi nancial market volatility.

Throughout the paper the following notations and defi nitions are used:

n : number of premium payments
ti : premium payment dates, i  =  0,  …,  n  –  1, with t0  =  0
tn  =   T : maturity date
S(t) : price at time t of  one unit of the reference fund
X(t) : value of the reference portfolio at time t of  the endowment con-

tract
R(t) : instantaneous risk-free rate of interest at time t
P(t, s) : price at time t of  a zero coupon bond with maturity date s  >  t
G : guaranteed minimum death benefi t (GMDB) respectively guaran-

teed minimum accumulation benefi t (GMAB) at maturity date
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P : periodic premium paid at time ti if  the insured is alive, i  =  0,  …, 
n  –  1

D : amount invested in the reference portfolio at the premium payment 
dates, assumed proportional to the premium such that D   =   a  ·  P, 
0   ≤   a   ≤   1

B(t) : random benefi t payable at time t

Vs (B(t)) : market value at time s  ≤   t of  the random benefi t B(t)

Cs(X(t),G) : market value of an European call option at time s  ≤   t to purchase 
the reference portfolio at time t for the exercise price G

Due to the GMDB and GMAB guarantees, the benefi t at time t satisfi es the 
relationship

 .G( ) ( ) +( ) ,maxB X t G tG X= = + -t ^ h# -  (2.1)

The payoff (2.1) is decomposed in a deterministic payment G and a stochastic 
bonus payment identical to a call-option on the market value of the reference 
portfolio with exercise price G. This decomposition allows one to view the 
unit-linked endowment contract with guarantee as a classical life insurance 
contract with deterministic benefi t G subject to a very specifi c bonus formula. 
The value X(t) is stochastic and depends upon the price of one unit of the 
reference fund at time t, the prices of one unit at the past premium payment 
dates ti   ≤  T and the amount to be invested in the reference portfolio. It is given 
by

 t>
i( )t( )
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As usual we will assume that fi nancial and insurance markets are perfectly 
competitive, frictionless and free of arbitrage opportunities. Furthermore we 
assume that the mortality process is independent of the fi nancial market process. 
For a more rigorous mathematical exposé we refer to the original papers by 
Nielsen and Sandmann (1995/96/2002) as well as to the more recent paper by 
De Felice and Moriconi (2005). Using (2.1) one observes that the initial mar-
ket value of the random benefi t at time t is given by

 0 ( ( )) (0, ( ),(B P t GG C0$= +t tX)V .)  (2.3)

In a fi rst step, one is interested in the market price of the call-option in (2.3) 
in the absence of mortality risk as determined in Section 3. Due to the assump-
tion that the mortality process is independent of the fi nancial market process, 
the determination of the periodic premium under mortality risk is obtained in 
Section 4 as implicit solution of an equation containing the call-option prices 
determined in Section 3.
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 ANALYTICAL PRICING OF THE UNIT-LINKED ENDOWMENT 635

3. MARKET PRICE WITHOUT MORTALITY RISK

In a continuous time and complete market framework with fi ltered probability 
space (W, F, Q), where Q is an appropriate arbitrage-free risk neutral measure, 
the bond price market and the reference fund are assumed to follow a two-
factor diffusion model of the type

 

( )

( ) ( )

t

t t

( , ( ,t t
( ,t s

)
)

( ) ) ,

( )
( )

( ) ,

P s
d

R dt s s

d
R dt

0

1

<

S S

1

1 2$ $

#s

s r s r

= +

= + + -

t t

t
t

t

,
P

S
S 2d d

dW

W W

 (3.1)

where W1 (t) and W2 (t) are independent Wiener processes under the Q-measure. 
In Section 5 we assume deterministic bond price volatilities s(t, s). Typically, 
this situation covers the specifi cations s(t, s)  =  s  ·  (s  –  t) (continuous time limit 
of the Ho and Lee(1986) model in Nielsen and Sandmann(1995)) and s(t, s)  =
a
s  (1  –  exp{– a  ·  (s  –  t)} (term structure model of  Vasicek (1977)). However, 
these volatility structures have an oversimplifi ed form that is not consistent 
with the one observed on the market. This inconvenience can be removed.
One can consider the extended Vasicek model by Hull and White (1990), which 
by the way can be fi t to the initial term structure of interest rates (e.g. Yolcu  
(2005), Section 3.2.2). Other interesting models include the humped volatility 
models in Mercurio and Moraleda (2000/01), Moraleda and Vorst (1997) and 
Ritchken and Chuang (1999). The volatility of the reference fund is described 
by the constant sS . The correlation coeffi cient r measures the dependence 
between the bond price and the reference fund price dynamic.

Using the zero coupon bond with maturity T as numeraire for the processes 
S(t) and P(t, s), t  <  s  ≤  T, one considers the T-forward risk adjusted measure Q 
defi ned by the Radon-Nikodym derivative
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This numeraire change of measure technique, fi rst considered by Jamshidian 
(1989/91) and Geman et al. (1995), and applied to the present problem by 
Nielsen and Sandmann (1995/96), allows via Itô’s Lemma to rewrite the sto-
chastic differential system (3.1) as
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where 1 2( ), ( )t (t( ) ( ) , ) , ( ))W dW dt1 2s-d t t T t= (T T d dW W  are standard Wiener 
processes under the QT-measure. In this framework the arbitrage price of a 
fi nancial contract with payoff at maturity date T coincides with the discounted 
expected value under the QT-measure. In particular, the market value of the 
call-option on the reference portfolio at maturity date is determined by
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From (3.3) one derives further that
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and through combination of the expressions (3.5) and (3.6) one obtains
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 (3.7)

For deterministic volatilities the ratio (3.7) follows a log-normal distribution 
under the T-forward risk adjusted measure QT. In this situation we show in 
Section 5 how to get analytical approximations for the call-option prices (3.4), 
where the reference portfolio is given by a sum of correlated log-normal random 
variables under the QT-measure.

4. FAIR PERIODIC PREMIUM WITH MORTALITY RISK

As already stated we assume that the mortality process is independent of the 
fi nancial market process and that the insurance company is risk neutral with 
respect to the mortality risk. Let the infi nitesimal measure denoted by px(t) dt 
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 ANALYTICAL PRICING OF THE UNIT-LINKED ENDOWMENT 637

represent the probability that the endowment contract terminates in the time 
interval (t, t + dt). The fair periodic premium P is obtained by equating the 
expected discounted values of costs and benefi ts, where a proper arbitrage-free 
pricing justifi cation of this statement is presented in Nielsen and Sandmann 
(1996), Section 4. It is given by the implicit solution of the equation
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where Et denotes the t-forward risk adjusted measure Qt defi ned similarly to 
(3.2). Furthermore, the usual simplifi ed assumption that death occurs at the 
end of a year is made. In this situation, the infi nitesimal measure px(t) dt is 
replaced by the conditional probability t  px  qx + t to die in the time interval [t, t + 1) 
given survival at time t and the implicit equation for the fair periodic premium 
with mortality risk can be rewritten as
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Remark 4.1. Suppose that all call-options in (4.2) are out-of-the-money in 
such a way that their corresponding call-option prices can be neglected. Then 
the fair periodic premium coincides with the fair premium of the traditional 
endowment with sum insured G and it is explicitly given by
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5. ANALYTICAL APPROXIMATIONS FOR THE FAIR PERIODIC PREMIUM

In the present Section we show how to determine simple analytical lower and 
upper approximations for the fair periodic premium in the deterministic case 
s(t, s) and illustrate the method numerically. For simplicity we assume yearly 
periodic premiums, which are paid at the time points ti  =  i, i  =  0,  …,  n  –  1, and 
T  =  n.

5.1. Convex lower and upper bounds for the call-option prices

To fi nd useful analytical approximations for the implicit solution of the equa-
tion (4.2) it suffi ces to bound the call-option prices C0(X(t + 1), G), t  =  0,  …, 
n  –  1, where the reference portfolio at time t  +  1 is proportional to the sum of 
correlated log-normal random variables
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For this, we apply the method considered originally in Kaas et al. (2000) and 
Dhaene et al. (2002). The developments by Vanduffel et al. (2005a/b/2008a) 
suits exactly our needs. The representation (5.1) shows that it suffi ces to con-
sider random variables of the general form
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where the ai (k)’s are non-negative and the random vector (Z0(k), Z1(k),   …, 
Zk – 1(k)) follows a multivariate normal distribution with mean vector (mi (k))0  ≤  i  ≤  k  – 1, 
mi (k)  =  E[Zi (k)], and covariance matrix

(rij(k) si (k) sj (k))0  ≤  i,  j  ≤  k  – 1, si (k)2   =  Var[ Zi (k)], rij (k) si (k) sj (k)

                            =   Cov[Zi (k), Zj (k)]

For fi xed k consider the conditioning random variable defi ned by
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for some constants gi (k). Following Kaas et al. (2000) one defi nes a random 
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where ri (k) si (k) sL(k)   =   Cov[Zi
 (k), L(k)]   =   jj 0=

k 1- g/  (k)  Cov[Zi
 (k),  Zj (k)], i  =  0, 

…, k  –  1. One has the equality in distribution

 (Ua ( )e
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d
s)k sk
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F/  (5.5)

with F(x) the standard normal distribution and U a uniform random variable 
on (0,1). If all the correlation coeffi cients ri (k) defi ned in (5.4) are non-negative, 
then Y(k), is a comonotonic sum. In this situation it is well-known that the 
so-called stop-loss transform with deductible d, 0  <  d  <  3, is determined by
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 (5.6)

where F–1( p) is the root of the quantile equation

 a ( )e (k ( (r r+2 2

( ) i i( (Y d(1 ) ) ) )
p i

k k k

i 0

1
i i i2

1 1

= =
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k

Q .F
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From the defi nitions in (5.4) one sees that a suffi cient condition for ri (k)  ≥  0 is 
that all gi (k)  ≥  0 and all CovSZi (k), Zj (k)V  ≥   0. Using Jensen’s inequality it
can be proved that Y(k), is a convex lower bound of  Y(k), a fact written 
Y(k),   ≤cx  Y(k), which means that for any convex function n(x) one has

 E( )Y , n ( )E k Yn .# k` ^j h7 A9 C  (5.8)

In particular, one has for any real number d the inequality

 E( )Y , d( )E k Y .d #- -
+

k
+` ^j h7 A9 C  (5.9)

Note that the idea of using convex lower bounds for Asian option pricing can 
be traced back to Rogers and Shiu (1995). In Dhaene et al. (2002) the como-
notonic convex upper bound, denoted by Y(k)u and such that Y(k)   ≤cx  Y(k)u 
is proposed. In the lognormal context this random variable can be defi ned by 
imposing ri (k)  =  1 in (5.4). For this upper bound one has
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F/   and (5.10)
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where F–1( p) is the root of the quantile equation
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k( )u -( (Y d) )
p i
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1
i i= =
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s)kk

k
Q F .8 B /  (5.12)

Since Y(k),   ≤cx  Y(k)   ≤cx  Y(k)u the following relationships hold:
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(5.14)

    d d d .E E E d Ru
## !- - -

,
+ + +( ) ( ) ( )( ) ( ) ( )Y Y Y ,k k k7 A8 8B B  (5.15)

For more details on these results we refer to Kaas et al. (2000) and Dhaene et 
al. (2002). In view of the inequality (5.14), it is clear that the best comonotonic 
lower bound approximations of Y(k) are the ones for which VarSY(k),V is as 
close to Var[Y(k)] as possible. Vanduffel et al. (2005a/b) were the fi rst to pro-
pose maximization of the fi rst order approximation of VarSY(k),V obtained 
by letting e ( ( ( ( 1 ( ) ( ) ( ) ( )r) ) )r k k k

i ij j
i j i j

.-
ks ) k k k ksr s r s  to get the following coef-

fi cients in (5.3)

 a ( )ek
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m + ()k s )kk i =  (5.16)

This most simple choice is retained here and defi nes the so-called comonotonic 
maximum variance approximation of  Y(k). The above analytical specifi cations 
immediately imply the following lower and upper bounds for the call-option 
prices in (4.2)
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It is remarkable that the upper bound in (5.17) is formally identical to the 
quasi-explicit solution proposed by Kurz (1996) if  one sets in her formulas 
ni

2   =   Var[Zi (k)], i  =  0, …,  k  –  1. To be ready for numerical evaluation, it remains 
to calculate the model parameters ai (k), si (k), rij (k) under the k-forward risk 
adjusted measure Qk for each k  =  1,  …,  n. For this, we note that (3.7) implies 
in case t  =  i, i  =  0,  …,  k  –  1, T =  k, the representation a ( )ek ( ,(

(
S i
S

i
zi=

)k)k
)  where 

Zi (k)   =   Ai (k)  +  Bi (k)  +  Ci (k) with
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and
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Example 5.1 (Nielsen and Sandmann (1995))

In the simplest situation s(t, s)   =   s  ·  (s  –  t) the random variables Ai (k), Bi (k), 
Ci (k) have mean zero, the pairs (Ai (k),  Cj (k))0 ≤ i, j ≤ k – 1, (Bi (k),  Cj (k))0 ≤ i, j ≤ k – 1 and 
(Ai (k),  Bj (k))0 ≤ i ≤ j ≤ k – 1 are independent and for 0  ≤  i  ≤  j  ≤  k  –  1 one has
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 (5.20)

A calculation shows that for i, j  =  0,  …,  k  – 1, i  ≤  j, k  =  1,  …,  n one has (see the 
Appendix in Nielsen and Sandmann (1995))
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Example 5.2 (Mercurio and Moraleda (2000))

In 1996 Mercurio and Moraleda proposed the following deterministic volatility 
structure
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 (lt s t-( , ( ) , , ,t s e1 0>
)$ $s s g s g l= + -

-) s7 A  (5.22)

This specifi cation provides a humped volatility structure for any g  >  l and is 
stationary, that is it depends only on the difference s  –  t.

Example 5.3 (Moraleda and Vorst (1997))

An alternative humped volatility model that overcomes some drawback of the 
previous model is the structure (see Mercurio and Moraleda(2001) for discus-
sion and motivation):

 (l s t-

g
g

( , , , ,t s t
s

e1
1

0>
)$ $s s s g l=

+
+ -)  (5.23)

This function has a humped graph if  g  >  l and t  <  (g  –  l) / gl.

The determination of the required formulas for the Examples 5.2 and 5.3, which 
correspond to the specifi cation (5.21), lies beyond the scope of the present paper.

5.2. Iterative algorithm for analytical evaluation of the fair premium bounds

To get the call-option price lower and upper bounds in (5.17) it suffi ces to
use the formulas (5.18) and (5.19) for each k  =  1,  …,  n, respectively their coun-
terparts in the Examples 5.1 to 5.3, and insert them in the corresponding 
formulas (5.6) and (5.11) for the lower and upper stop-loss transform bounds. 
The specifi cation can be performed using EXCEL spreadsheet calculations, at 
least for Example 5.1. The only step, which is not straightforward and may 
require the EXCEL Solver, is the calculation of the roots F–1(p) in (5.7) and 
(5.12) for each maturity date k  =  1,  …,  n. Let us summarize the required cal-
culations for the lower approximation obtained from the lower bound in (5.17). 
For ease of notation the maturity index n is omitted in the relevant quantities. 
The lower approximation to the unknown fair periodic premium, denoted by 
P,, is defi ned to be the solution P of  the modifi ed equation (4.2ℓ), which is 
obtained from (4.2) by replacing the option prices C0 (X(k),G) by their lower 
bounds in (5.17). In the defi ning equation (4.2ℓ) for P, rewrite the deductibles 
in (5.17) for all indices k  =  1,  …,  n as (the scaling constant P(0,1) is chosen for 
convenience)

 ( , )a P
G

P 0 1$

b
=,

,

 (5.24)

for some unknown b,. Consider the roots x(k) of the implicit equations

 ( (r r+2 2
i i( (( ) ( , ) , ...,P k0 1 1) ) ) ) ( )

i
k k k k x k

i 0

1
i i2

1

g
b

= =
-

=

-

e ssk
k , ,n

,

/  (5.25)

93864_Astin40/2_09.indd   64293864_Astin40/2_09.indd   642 13-12-2010   10:54:1513-12-2010   10:54:15

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.2143/AST.40.2.2061131
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 13:53:14, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.2143/AST.40.2.2061131
https:/www.cambridge.org/core
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which are derived from (5.7). Then, using (4.2ℓ) and (5.6) one sees that b, must 
also solve the implicit equation
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 (5.26)

The non-linear system of n  + 1 equations (5.25)-(5.26) in the n  + 1 unknowns 
x(k), k  =  1,  …,  n,  b,, fully determines the lower premium approximation P,. 
Replacing b, by bu and all ri (k)’s by ri (k)  =  1 a similar system of non-linear 
equations for the upper premium approximation Pu is obtained. In practice, 
the system (5.25)-(5.26) is solved by iteration as follows. Start with an approx-
imation b ,appr  >  0 to the true value b,. Solve (5.25) for the unknowns x(k), 
k  =  1,  …,  n and insert the results into (5.26) to get an approximation aappr to 
the given proportional share a. Change the approximation b ,appr appropriately 
and repeat the iteration until aappr is suffi ciently close to a, which yields a close 
approximation to b,. The upper unknown value bu is obtained similarly. Then, 
the true fair periodic premium is approximated by the quantities

 
( , )

,
( , )

.P
P

a
G P

P
a
G0 1 0 1u$ $

b b
= =

,
u,  (5.27)

Numerical examples suggest that the inequality P,  ≤  P  ≤  Pu holds true, but a 
proof is not provided here. The Newton-Raphson method leads to the follow-
ing simple effi cient algorithm to solve (5.25). For i  =  0, 1,  …,  k  – 1, k  =  1,  …,  n
set  i e ( (r r+2 2

i i( (( )f x ) ) ) )
i

k k k k xi i2
1

g=
- ss( )xk , where ri (k)  =  1 for the upper bound 

specifi cation. Then, for each k  =  1,  …,  n, solving the equations

 if ( ) ( , ) , ...,x P k n0 1 1
i 0

1 b
= =

=

-k
,k

,

,/  (5.28)

which are equivalent to (5.25), is done as follows. For each k  =  1,  …,  n let x(k) 
be the exact solution of (5.25). For k  =  1 one has (noting that r0 (1)  =  1)

 (1) (1)(1) .lnx 2
1 1

0
0

s s b= +
,

$ .  (5.29)
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For 1  <  k  ≤  n, m  =  0, 1, 2,  …, consider the (m + 1)-th Newton-Raphson itera-
tion step xm + 1(k), which satisfi es the recursive relationship
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 (5.30)

By appropriate starting point x0 (k) it is known that ( ) ( ) .lim x x
m m =
"3

k k  Our 
numerical experience has shown that the starting points x0 (2)  =  x(1), x0 (k)  = 
x1 (k  –  1), k  >  2, lead after at most fi ve iteration steps to very accurate solu-
tions. In fact, the fi rst order iterates x1 (k), k  >  1 have been enough accurate to 
obtain all numerical bounds in Table 5.1.

5.3. Numerical illustration

The illustration of our results is based on Example 5.1 for the following fi nan-
cial market parameters

 S8%, 10%, 15%.1Ss r s r= = - =s 2  (5.31)

We have calculated lower and upper bounds for the fair periodic premiums for 
three different maturity dates T  =  10, 12, 15, each with three different specifi ca-
tions of the initial term structure of interest rates (TSIR), namely:

Scenario I : fl at initial TSIR P(0, t)   =   (1.06)– t,   0  ≤  t  ≤  T

Scenario II : normal initial TSIR P(0, t)   =   . ( . ) ,0 04 1 02
t

T
t

+
-

9 C    0  ≤  t  ≤  T

Scenario III : invers initial TSIR P(0, t)   =   . ( . ) ,0 1 022 8
t

T
t

-
-

9 C    0  ≤  t  ≤  T

The mortality risk is assumed to follow Makeham’s distribution such that the 
conditional probability t px  qx+t of a life aged x to die in the time interval [t, t  +  1) 
given survival to time t is given by (values of Nielsen and Sandmann (1995))
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+
+ x

q x,p
 (5.32)

Besides the three TSIR scenarios we consider three age classes x  =  30, 40, 50 
and three investment strategies a  =  0.4, 0.5, 0.6. Table 5.1 lists the lower and 
upper approximations of the fair periodic premiums as well as their average 
for the fi xed guarantee G  =  1000. The very tightness of the approximations in 
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Table 5.1 indicates that the sum of correlated lognormals is likely to be “rather” 
comonotonic. The extent to which this is true and the question whether this 
phenomenon depends upon the model (here Example 5.1) and/or on the
chosen parameters has not yet been analyzed. It is worthwhile to mention that 
up to now only Monte Carlo simulations have been available to determine
the fair periodic premiums. The advantages of simple, fast and very reliable 
analytical numerical calculations with controlled accuracy are self-evident. 
Since such an effi cient approach, which avoids time consuming Monte Carlo 
calculations, is almost always preferred, the proposed method can highly be 
recommended for practical use. Moreover, it might be interesting to analyze 
more deeply why this method should be preferred to the Monte Carlo one. 
A referee has suggested that the problem seems to be quadratic in some sense, 

TABLE 5.1

LOWER AND UPPER BOUNDS FOR THE FAIR PERIODIC PREMIUM UNDER VARIOUS CONDITIONS

Maturity date T 10 12 15

Initial TSIR I     II     III I     II     III I     II     III

Age Share

30 0.4
77.45   75.17   79.75
77.61   75.32   79.92
77.77   75.48   80.08

64.50   62.25   66.79 
64.66   62.40   66.96
64.82   62.56   67.12

52.04   49.84   54.93
52.17   49.97   55.08
52.31   50.10   55.23

0.5
81.40   79.00   83.82
81.66   79.26   84.09
81.92   79.51   84.36

69.32   66.91   71.78 
69.57   67.15  72.03
69.82   67.38   72.28

57.57   55.15   61.16
57.78   55.36   61.40
58.00   55.56   61.64

0.6
87.26   84.69   89.86
87.66   85.09   90.27
88.06   85.48   90.69

76.18   73.55   78.87 
76.56   73.91   79.26
76.93   74.27   79.65

65.30   62.60   70.07
65.64  62.92   70.45
65.97   63.23   70.84

40 0.4
78.48   76.24   80.75
78.65  76.40   80.92
78.82   76.57   81.09

65.79   63.60   68.02 
65.95  63.76   68.18
66.11   63.91   68.35

53.80   51.70   56.64
53.95   51.84   56.79
54.09   51.98   56.95

0.5
82.55   80.20   84.92
82.82   80.47   85.20
83.10   80.74   85.48

70.80   68.46   73.18 
71.05  68.70   73.44
71.30   68.95   73.70

59.68   57.40   63.24
59.91   57.61   63.49
60.14   57.82   63.74

0.6
88.59   86.09   91.13
89.01   86.49   91.57
89.43   86.89   92.01

77.95   75.40   80.55 
78.34  75.78   80.94
78.72   76.15   81.34

67.97   65.43   72.72
68.32   65.77   73.12
68.67   66.10   73.53

50 0.4
81.25   79.12   83.41
81.44  79.31   83.60
81.63   79.50   83.80

69.25   67.22   71.32 
69.43   67.39   71.49
69.60   67.56   71.67

58.62   56.79   61.29
58.77   56.95  61.46
58.93   57.10   61.64

0.5
85.65   83.44   87.90
85.96   83.73   88.21
86.26   84.03   88.51

74.80   72.66   76.98 
75.07   72.92   77.26
75.34   73.18   77.53

65.50   63.58   68.92
65.75  63.82   69.20
66.00   64.06   69.48

0.6
92.20   89.86   94.58
92.67   90.31   95.05
93.13   90.77   95.53

82.77   80.49   85.10 
83.19   80.90   85.53
83.60   81.30   85.95

75.38   73.37   80.10
75.77   73.75  80.55
76.17   74.14   81.00
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which would imply that the analytical solution is of great use. Unfortunately, 
the author must left this point open for further research.

5.4. Two special closed-form analytical solutions

A more detailed analysis of the non-linear system of equations (5.25)-(5.26) 
is done in the Appendix. It yields instructive analytical closed-form formulas 
for the maturity dates n  =  1, 2.

In case n  =  1 the lower and upper bound fair premium coincides with the 
one-year exact fair premium. Setting 0( )c 12

1= s  the exact one-year fair pre-
mium can be expressed as

   ( , ) ( , ) ,F Fln lnP a P G c c c c P G1 0 1 2
1 1

2
1 0 1$b b b b= = + + -c cm m< F  (5.33)

with b solution of the implicit equation

 .F Fln lna c c c c
1

2
1

2
1

$b b b= + + -c cm m  (5.34)

The special closed-form solution for b  = 1 is especially simple and has a nice 
interpretation. Rewrite (5.34) as a  ·  P  =  P(0,1)G to see that the amount invested 
in the one-year reference portfolio is equal to the one-year discounted guar-
anteed amount by death or survival. The corresponding one-year fair premium 
is simply equal to P  =  2F(c)  ·  P(0,1)  ·  G.

For n  =  2 we obtain a special solution, which can be expressed explicitly in 
term of the model parameters. The lower approximation for the fair periodic 
premium is specifi ed by

 

b
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 (5.35)

The upper approximation for the fair periodic premium ( , )P
a

P G1 0 1
$

$
b

=
u

u  

is obtained from (5.35) setting r0 (2)  =  r1 (2)  =  1 and replacing b, by bu.
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 ANALYTICAL PRICING OF THE UNIT-LINKED ENDOWMENT 647

6. A CONTRACT WITH VARIABLE INCREASING GUARANTEES

Instead of constant guaranteed minimum benefi ts in case of death or survival 
it appears more appealing from a policyholder’s point of view to profi t from 
variable guaranteed minimum benefi ts over the contract duration. In this 
 context guaranteed minimum benefi ts that increase over time are especially 
attractive. For example, AXA Winterthur has been the fi rst Swiss life insurer 
to launch such a private pension product in May 2006.

To analyze the unit-linked endowment contract with variable guarantees 
the fi xed guarantee G in the previous development is changed to a variable 
guarantee defi ned and denoted as follows:

Gi  + 1(n): variable guaranteed minimum death benefi t (GMDB) at time ti  + 1, 
i  =  0,  …,  n  –  1, respectively guaranteed minimum accumulation benefi t 
(GMAB) at maturity date tn  =  T, i  =  n  –  1

For simplicity we restrict ourselves to the deterministic case s(t, s)  =  s  ·  (s  –  t) 
and to the yearly periodic case ti  =  i, i  =  0,  …,   n  –  1, T  =  n and illustrate the 
method numerically. Let us fi x the amount D invested in the reference portfolio. 
The comonotonic approximations of  Section 5 will yield lower and upper 
approximations for the variable guaranteed minimum benefi ts Gi  + 1(n),, Gi  + 1(n)u, 
fair periodic premiums P(n),, P(n)u, as well as corresponding fractions a(n),, 
a(n)u of  the premiums such that D  =  a(n),  ·  P(n),, D  =  a(n)u  ·  P(n)u. From 
(5.25)-(5.26) it is straightforward to see that the lower approximations are 
determined by the following explicit and closed-form analytical formulas in 
the n variables x(k), k  =  1,  …,  n:

 D $ e( )=( i
( (r r+2 2

i i( () , , ..., .G n k k n1) ) ) ) ( )
k

k k k k x k

i 0

1
i i2

1

g =, -

=

-
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k
/  (6.1)
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 (6.2)

In our numerical examples below the following simple specifi cation of  the 
variables is made:

 ( ) ( ) ( ), , ..., .x k n12
1

0 0s= =rk k k  (6.3)
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648 W. HÜRLIMANN

Replacing everywhere all ri (k)’s by ri (k)  =  1 similar formulas for the upper 
approximations are obtained.

Let us illustrate these results quantitatively. For a constant yearly invested 
amount D  =  1000 in the reference portfolio, the same fi nancial market parameters, 

TABLE 6.1

LOWER BOUND, AVERAGE AND UPPER BOUNDS FOR THE INCREASING GUARANTEES

Year
Initial TSIR

I II III

 1 1060 1060 1060 1060 1060 1060 1060 1060 1060

 2 2188 2188 2188 2198 2198 2198 2178 2178 2178

 3 3384 3385 3386 3412 3413 3414 3357 3358 3359

 4 4659 4662 4664 4713 4716 4719 4606 4609 4611

 5 6026 6031 6036 6116 6121 6126 5938 5943 5948

 6 7503 7512 7521 7639 7649 7658 7371 7380 7388

 7 9116 9131 9146 9312 9327 9343 8928 8942 8956

 8 10899 10922 10945 11169 11193 11217 10640 10662 10684

 9 12895 12930 12965 13258 13294 13331 12549 12582 12615

10 15163 15214 15264 15641 15694 15748 14708 14756 14804
11 17779 17852 17924 18402 18478 18555 17189 17257 17325

12 20847 20949 21051 21652 21761 21869 20085 20182 20278
13 24506 24650 24793 25544 25698 25851 23528 23662 23797

14 28952 29153 29354 30292 30508 30723 27695 27882 28069

15 34461 34741 35022 36196 36499 36802 32838 33098 33358

TABLE 6.2

LOWER BOUND, AVERAGE AND UPPER BOUNDS FOR THE FAIR PERIODIC PREMIUM

Maturity date T 10 12 15

Initial TSIR I II III I II III I II III

Age

30
1435 
1443
1450

1436 
1443
1451

1434 
1442
1449

1602 
1612
1621

1604 
1614
1623

1601 
1610
1619

1953 
1968
1982

1958 
1973
1988

1947 
1962
1976

40
1437 
1445
1452

1438 
1446
1453

1436 
1443
1451

1605 
1615
1624

1608 
1618
1627

1603 
1612
1621

1956 
1970
1985

1963 
1978
1993

1948 
1962
1977

50
1442 
1450
1457

1445 
1453
1460

1440 
1447
1455

1613 
1623
1632

1619 
1628
1637

1608 
1617
1626

1963 
1977
1991

1977 
1991
2005

1950 
1964
1978
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 ANALYTICAL PRICING OF THE UNIT-LINKED ENDOWMENT 649

initial TSIR and mortality assumptions as in Section 5, we obtain the results 
of  Tables 6.1 and 6.2. One observes that the approximations for both the 
increasing guaranteed minimum benefi ts and the fair periodic premiums are 
rather close together. It is remarkable that the dependence on both the age at 
entry and the TSIR scenario is rather limited. This numerical stability could 
not be expected a priori and is somewhat surprising. However, there is of 
course an important dependence on the level of  interest rates at insurance 
issue. For example, assume a 3% interest rate level instead of a 6% level with 
the following initial TSIR:

Scenario I : fl at initial TSIR P(0, t)   =   (1.03)– t,   0  ≤  t  ≤  T

Scenario II : normal initial TSIR P(0, t)   =   . ( . ) ,0 0 1 02 1
t

T
t

+
-

9 C    0  ≤  t  ≤  T

Scenario III : invers initial TSIR P(0, t)   =   . ( . ) ,2 0 1 04 1
t

T
t

-
-

9 C    0  ≤  t  ≤  T

With this initial TSIR one obtains the results summarized in the Tables 6.3 
and 6.4. The same observations as before can be made. The lower interest rate 
level results in a signifi cant decrease in the guaranteed minimum benefi ts, 
which can be offered, however, at a similar fair periodic premium level.
One notes a somewhat counterintuitive fact, namely that the premium for the 
longer maturity date decreases with the entry age (though very slightly).

TABLE 6.3

LOWER BOUND, AVERAGE AND UPPER BOUNDS FOR THE INCREASING GUARANTEES

Year
Initial TSIR

I II III

 1 1030 1030 1030 1030 1030 1030 1030 1030 1030

 2 2095 2095 2095 2100 2100 2100 2090 2090 2090

 3 3193 3194 3195 3207 3208 3208 3179 3180 3181

 4 4330 4333 4335 4356 4359 4361 4304 4307 4309

 5 5516 5521 5526 5559 5564 5569 5474 5479 5484

 6 6765 6774 6783 6828 6838 6847 6702 6711 6720

 7 8096 8111 8126 8186 8201 8216 8008 8022 8037

 8 9535 9558 9581 9656 9680 9704 9415 9438 9461

 9 11115 11149 11184 11276 11311 11347 10957 10991 11025

10 12880 12931 12981 13089 13141 13193 12676 12725 12774
11 14890 14962 15034 15158 15232 15307 14628 14698 14768

12 17221 17323 17425 17564 17669 17774 16889 16988 17087
13 19982 20125 20268 20417 20565 20713 19560 19698 19837

14 23318 23519 23719 23872 24080 24288 22782 22976 23170

15 27439 27720 28000 28147 28438 28730 26755 27025 27296
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APPENDIX

Derivation of the special closed-form solutions of Section 5.4

One-year maturity date

In case n  =  1 one gets from (5.4) and (5.21) immediately the following model 
parameters

 S(1) ( , ) (1) ., (1)P r0 1
1 1S0 0 3

1
0g s s r s= = + =- ss 2, 2  (A.1)

Setting c  =  2
1  s0(1), b  =  b,  =  bu, the solution to (5.25) equals x(1)  =  c  +  c2

1   ln b. 
Inserted into (5.26) one obtains that b solves the implicit equation (5.34) and 
the exact one-year fair premium is then given by (5.33).

Two-year maturity date

In case n  =  2 the required model parameter from (5.4) and (5.21) are given by

TABLE 6.4

LOWER BOUND, AVERAGE AND UPPER BOUNDS FOR THE FAIR PERIODIC PREMIUM

Maturity date T 10 12 15

Initial TSIR I II III I II III I II III

Age

30
1428 
1436
1445

1428 
1437
1445

1428 
1436
1444

1595 
1606
1616

1596 
1606
1617

1594 
1605
1615

1955 
1973
1991

1958 
1976
1994

1953 
1970
1988

40
1429 
1437
1446

1430 
1438
1446

1428 
1437
1445

1596 
1607
1617

1597 
1608
1619

1595 
1605
1616

1954 
1971
1989

1958 
1975
1993

1950 
1968
1985

50
1432 
1440
1448

1433 
1441
1449

1430 
1439
1447

1599 
1609
1619

1601 
1611
1622

1596 
1607
1617

1950 
1967
1984

1956 
1973
1991

1944 
1961
1978
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The system (5.25)-(5.26) is equivalent to the system with unknowns x(1), x(2), 
b,:
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This system implies without diffi culty the special solution (5.35).
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