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ABSTRACT

The Benktander (1976) and Neuhaus (1992) credibility claims reserving methods
are reconsidered in the framework of a credible loss ratio reserving method.
As a main contribution we provide a simple and practical optimal credibility
weight for combining the chain-ladder or individual loss ratio reserve (grossed
up latest claims experience of an origin period) with the Bornhuetter-Ferguson
or collective loss ratio reserve (experience based burning cost estimate of the
total ultimate claims of an origin period). The obtained simple optimal cred-
ibility weights minimize simultaneously the mean squared error and the vari-
ance of the claims reserve. We note also that the standard Chain-Ladder, Cape
Cod and Bornhuetter-Ferguson methods can be reinterpreted in the credible
context and extended to optimal credible standard methods. The new approach
is inspired from Mack (2000). Two advantages over the Mack method are
worthwhile to be mentioned. First, a pragmatic estimation of the required para-
meters leads to a straightforward calculation of the optimal credibility weights
and mean squared errors of the credible reserves. An advantage of the collective
loss ratio claims reserve over the Bornhuetter-Ferguson reserve in Mack (2000)
is that different actuaries come always to the same results provided they use
the same actuarial premiums.
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1. INTRODUCTION

The design of our new claims reserving method is inspired from and similar
but different from the Benktander method reviewed in Mack (2000), Section 2.
While Mack worked for simplicity in the context of a single origin period
(accident year or underwriting year), our approach is based on a full loss
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development triangle of paid claims (or alternatively incurred claims) with sev-
eral origin periods. As in other methods we require additionally the knowledge
of a measure of exposure like premiums for each origin period.

The standard claims reserving methods include the commonly used reserving
methods as the Chain-Ladder, the Cape Cod and the Bornhuetter-Ferguson
methods (consult the Swiss Re brochure by Boulter and Grubbs (2000) for a
useful elementary description of these methods). While the standard methods
apply the so-called chain-ladder factors defined by link ratios (average ratio of
cumulative paid claims between two consecutive development periods) our
approach is based on loss ratios (average ratio of incremental paid claims to
exposure for each development period). The main contribution is Theorem 6.1,
which provides an optimal credibility weight for combining the chain-ladder
or individual loss ratio reserve (grossed up latest claims experience of an origin
period) with the Bornhuetter-Ferguson or collective loss ratio reserve (experience
based burning cost estimate of the total ultimate claims of an origin period).
The obtained simple optimal credibility weights minimize simultaneously the
mean squared error and the variance of the claims reserve.

The organization of the paper is as follows. Section 2 contains the neces-
sary prerequisites and the definition of the mentioned collective and individual
loss ratio claims reserves. Section 3 defines the credible loss ratio claims reserves.
Formulas for the optimal credibility weights, which minimize the mean squared
errors of the credible loss ratio reserves, as well as formulas for the mean
squared errors are derived in Section 4. The practical evaluation of these
quantities is based on a pragmatic estimation method, which is motivated in
Section 5. In Section 6, the remaining unspecified parameters of the pragmatic
estimation method are chosen such that they minimize additionally the vari-
ance of the optimal credible claims reserve. This is a desirable property because
from a statistical point of view estimates with lower variances are usually pre-
ferred. Fortunately, the minimum variance optimal credible claims reserve is
parameter-free and comparable in simplicity to the Neuhaus and Benktander
loss ratio reserves. Finally, Section 7 presents numerical examples. Based on our
pragmatic estimation method, we observe that the Neuhaus and Benktander
loss ratio reserves are quite close to the optimal credible reserve. In our exam-
ples, the Neuhaus reserve is closer to the optimal one than the Benktander reserve
for all origin periods. Through application of a credible loss ratio reserving
method, the reduction in mean squared error is substantial. In absence of sufficient
information to estimate the optimal credibility weights more precisely, the three
simple credible methods are highly recommended for actuarial practice.

2. THE COLLECTIVE AND INDIVIDUAL LOSS RATIO CLAIMS RESERVES

Let n be the number of origin periods, say one-year periods, for which histor-
ical data on paid claims is available. Let Sik, 1 # i, k # n, be the paid claims
from origin period i reported in period i + k – 1. Under the assumption that after
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n development periods all claims incurred in an origin period are known and
closed, the amount ik 1=

n
kS! is the total ultimate claims from origin period i. The

sums Cik = ij 1= j
k S! , 1 # i, k # n, denote the accumulated paid claims incurred

in calendar year i and reported after i + k – 1 years of development. At the
end of the current calendar year only the amount Ci,n – i + 1 = ik 1=

n i 1- +

kS! is
known. The required amount for the incurred but unpaid claims of period i,
called i-th period claims reserve, is equal to Ri = ik n i 2= - +

n
kS! , i = 2, …, n. The

total required amount of incurred but unpaid claims over all periods R =

i 2= Ri
n! is called total claims reserve.

To fix ideas, we suppose that the measure of exposure Vi is the premium
belonging to the origin period i = 1, …, n. Our analysis is based on (expected)
loss ratios representing the incremental amount of expected paid claims per unit
of premium in each development period, which are defined by
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Since the sum k 1= mk
n! represents the loss ratio over all reporting periods, the
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is nothing else than the expected value of the burning cost Ui
BC of the total

ultimate claims required for the origin period i. This quantity is similar to the
expected value of the Bornhuetter-Ferguson prior estimate U0 of the total ulti-
mate claims in Mack (2000). By definition of the loss ratios, the quantities Vi ·

k 1= mk
n i 1- +! , i = 1, …, n, represent the expected burning cost of the paid claims

for the origin period i, which are required in the current calendar period. The
loss ratio payout factor (also called loss ratio lag-factor) defined by
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represents the proportion of the total ultimate claims from origin period i,
which is expected to be paid in the development period n – i + 1. The quantity
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called loss ratio reserve factor, represents the proportion of the total ultimate
claims from origin period i, which remain unpaid in the development period
n – i + 1.

From this an estimate of the total ultimate claims is obtained by grossing
up the latest accumulated paid claims amount. Since it is based solely on the
individual latest claims experience of an origin period, it is called individual total
ultimate claims amount and is given by

Ui
ind = i ,

C ,

i

n i 1- +

p i = 1, …, n. (2.5)

This estimate is similar to the chain-ladder estimate in Mack (2000). A corre-
sponding estimate of the claims reserve, called individual loss ratio claims reserve,
is defined by

Ri
ind = Ui

ind – Ci,n – i + 1 = qi · Ui
ind = p

q
i

i · Ci,n – i + 1, i = 1, …, n. (2.6)

On the other side, the burning cost of the total ultimate claims leads to the
alternative claims reserve

Ri
coll = qi · Ui

BC, Ui
BC = i
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It is called collective loss ratio claims reserve because it depends solely on the
portfolio claims experience of all origin periods. It coincides with the claims
reserve set according to the loss ratio reserving method as defined in Mack
(1997), Section 3.2.2, p. 230-234. The associated collective total ultimate claims
is given by

Ui
coll = Ri

coll + Ci,n – i + 1, i = 1, …, n. (2.8)

This estimate is similar to the Bornhuetter-Ferguson posterior estimate of the
total ultimate claims in Mack (2000). An advantage of the collective loss ratio
claims reserve over the Bornhuetter-Ferguson reserve in Mack (2000) is that
different actuaries come always to the same results provided they use the same
premiums. This is also true for the individual claims reserve without restriction.

3. CREDIBLE LOSS RATIO CLAIMS RESERVES

Like the Bornhuetter-Ferguson and the chain-ladder estimates in Mack (2000),
the considered collective and individual loss ratio claims reserve estimates
represent extreme positions. Indeed, the individual claims reserve considers the
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latest accumulated paid claims amount Ci,n – i + 1 to be fully credible predictive
for future claims and ignores the burning cost Ui

BC of the total ultimate claims,
while the collective claims reserve ignores the current accumulated paid claims
and relies fully on the burning cost. Therefore it is natural to apply the credi-
bility mixture to those reserves and use the credible loss ratio claims reserve
estimate

Ri
c = Zi · Ri

ind + (1 – Zi) · Ri
coll, i = 1, …, n, (3.1)

where Zi is the credibility weight associated to the individual loss ratio reserve.
It is interesting to reconsider two popular choices of the credibility weights pro-
posed in the literature. As the credibility weight should increase similarly as the
accumulated paid claims Ci,n – i +1 develop, Gunnar Benktander (1976) proposed
the credibility weight Zi

GB = pi, i = 1, …, n. This leads to the Benktander loss
ratio claims reserve

Ri
GB = pi · Ri

ind + qi · Ri
coll, i = 1, …, n. (3.2)

According to Mack (1997), p. 242, the choice made by Walter Neuhaus (1992)
corresponds to the credibility weight Zi

WN = k 1= mk
n i 1- +! = pi · k 1= mk

n! . It leads
to the Neuhaus loss ratio claims reserve

Ri
WN = Zi

WN · Ri
ind + (1 – Zi

WN) · Ri
coll, i = 1, …, n. (3.3)

It is remarkable that in numerical examples these simple choices are both quite
close to an optimal credible loss ratio claims reserve, whose credibility weights
are derived in Section 6.

On the other side, remarks similar to those made by Mack (2000) at the end
of Section 2 can be made. The functions Ri(Ui) = qiUi and Ui(Ri) = Ri +
Ci,n – i + 1 are not inverse to each other except for Ui = Ui

ind. Similarly to the
“iterated Bornhuetter-Ferguson method”, there is an “iterated collective loss
ratio reserving method”. The successive iteration of the collective and Benk-
tander loss ratio reserving methods for an arbitrary start point Ui

0 leads in the
infinite limit to the individual loss ratio reserving method. It is worthwhile to
restate this result, which paraphrases Theorem 1 in Mack (2000).

Theorem 3.1. For an arbitrary starting point Ui
(0) = Ui

0, the iteration rule

Ri
(m) = qi · Ui

(m), Ui
(m + 1) = Ci,n – i + 1 + Ri

(m), m = 0, 1, 2, …, (3.4)

gives credibility mixtures

Ui
(m) = (1 – qi

m ) · Ui
ind + qi

m · Ui
0,

(3.5)
Ri

(m) = (1 – qi
m ) · Ri

ind + qi
m · Ri

0,
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between the collective and individual loss ratio reserving methods, which starts
at the collective method and lead via the Benktander method finally to the
individual method for m = �.

4. THE OPTIMAL CREDIBILITY WEIGHTS AND

THE MEAN SQUARED ERROR

In the following, we suppose that the burning cost estimate Ui
BC, defined in

(2.7), of the total ultimate claims is independent from Ci,n – i + 1, Ri and Ui =
Ri + Ci,n – i + 1, and has expectation E [Ui

BC ] = E [Ui
ind ] = E [Ui ] (usual unbiased-

ness) and variance Var [Ui
BC ]. This key working assumption is similar to the

assumption made to get Theorem 2 in Mack (2000).

Theorem 4.1. The optimal credibility weights Zi
* which minimize the mean

squared error mse(Ri
c) = ES(Ri

c – Ri )
2
V is given by
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i
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Proof. By definition (3.1) of the credible loss reserve one has

ES(Ri
c – Ri)

2
V = ES(Zi · (Ri

ind – Ri
coll) + Ri

coll – Ri)
2
V

= Zi
2 · E [(Ri
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coll)2 ] – 2Zi · E [(Ri
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coll)] + E [(Ri
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From the first order condition
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Inserting the expressions Ri
ind = qi · Ui

ind = p
q

i

i · Ci,n – i +1 and Ri
coll = qi · Ui

BC one gets
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By definition (2.5) and the made assumption one has E [Ci,n – i + 1] = piE [Ui
ind ] =

pi E [Ui
BC ], hence E [Ri] = E [Ui – Ci,n – i +1] = (1 – pi) · E [Ui

BC] = qi · E [Ui
BC ]. Using

this and the assumption that Ui
BC is independent from Ci,n – i + 1, Ri and Ui , one

gets the desired formula (4.1). ¡

To estimate the optimal credibility weights, one needs a model for Var[Ci,n – i + 1]
and Cov [Ci,n – i + 1, Ri ]. Consider the following conditional model for the loss
ratio payout (see Mack (2000), p. 338):

i i i, ,E p Var p b, ,

i

i n i
i

i

i n i
i i i

1 1 2
= =

- + - + q
C C

UU UU U ^ h= =G G i = 1, …, n. (4.4)

The factor qi ensures that Var i
,

i

i n i 1- +C
UU= G = 0 when i = 1 and that

Var i
,

i

i n i 1- +C
UU= G " 0 in case of very small values pi. In the following the nota-

tion ai
2(Ui ) = Ui

2 · bi
2(Ui ) is used.

Theorem 4.2. Under the assumption of model (4.4), the optimal credibility
weights Zi

* which minimize the mean squared error mse(Ri
c) = ES(Ri

c – Ri )
2
V

is given by

Zi
* =

i
,p t

p
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i
+ with (4.5)
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i = 1, …, n. (4.6)

Proof. From (4.4) one obtains

E [Ci,n – i +1 |Ui ] = piUi, Var [Ci,n – i +1 |Ui ] = pi qi ai
2(Ui), i = 1, …, n. (4.7)

It follows that

Var [Ci,n – i +1] = E [Var [Ci,n – i +1 |Ui ]] + Var [E [Ci,n – i +1 |Ui ]]
= pi qi E [ai

2(Ui)] + pi
2Var [Ui ] (4.8)

= pi E [ai
2(Ui)] + pi

2 · (Var [Ui ]– E [ai
2(Ui)]),

and

Cov [Ci,n – i +1,Ui ] = E [Cov [Ci,n – i +1,Ui |Ui ]] + Cov [E [Ci,n – i +1 |Ui ],Ui ] = pi Var [Ui ].

(4.9)
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From (4.8) and (4.9) one obtains further

Cov [Ci,n – i +1,Ri ] = Cov [Ci,n – i +1,Ui ] – Var [Ci,n – i +1] = pi qi · (Var [Ui ]– E [ai
2(Ui)]).
(4.10)

Inserting (4.8) and (4.10) into (4.1) the desired formula follows. ¡

Simple formulas for the mean squared errors are derived in a similar way.

Theorem 4.3. Under the assumption of model (4.4), the following formulas
for the mean squared errors hold:
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Proof. Using (4.8) and (4.9) one obtains

Var [Ri ] = VarSUi – Ci,n – i +1V = Var [Ui ] – 2CovSCi,n – i +1,UiV + VarSCi,n – i +1V

= Var [Ui] · (1 – 2pi + pi
2) + pi qi E [ai

2(Ui)] = qi
2 · Var [Ui ] + pi qi E [ai

2(Ui)]

= qi E [ai
2(Ui)] + qi

2 · ((Var [Ui ] – E [ai
2(Ui)]) (4.12)

Since E [Ri
coll ] = qiE [Ui

BC ] = qiE [Ui ] = E [Ui – piUi
ind ] = E [Ui – Ci,n – i +1] = E [Ri ]

and by assumption Cov [Ri
coll, Ri ] = qiCov [Ui

BC, Ri ] = 0, one has

mse (Ri
coll) = ES(Ri

coll – Ri)
2
V = Var [Ri

coll – Ri ] = Var [Ri
coll] + Var [Ri]

= qi
2 · Var [Ui

BC ] + qi
2 · ((Var [Ui ] – E [ai

2(Ui)]) + qi · E [ai
2(Ui)] (4.13)

= E [ai
2(Ui)] · i ,q t

q
i

i
+

2J

L

K
K

N

P

O
O

where the last equality follows from (4.6) of Theorem 4.2. Similarly, one has
E [Ri

ind] = E [Ri ] and it follows that

mse(Ri
ind) = ES(Ri

ind – Ri)
2
V = Var[Ri

ind – Ri ] =Var[Ri
coll] – 2Cov[Ri

ind, Ri ] + Var[Ri]

= pi

i
2q

d n · Var [Ci,n – i +1] – 2 pi

iq
Cov [Ci,n – i +1, Ri ] + Var [Ri ]. (4.14)
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Inserting (4.8), (4.10) and (4.12) one gets without difficulty the desired for-
mula (4.11). The third formula follows from

mse (Ri
c) = ES(Zi (Ri

ind – Ri) + (1 – Zi) (Ri
coll – Ri))2

V (4.15)

= Zi
2mse (Ri

ind) + 2Zi(1 – Zi) E [(Ri
ind – Ri)(Ri

coll – Ri)] + (1 – Zi)
2 mse (Ri

coll),

and

E [(Ri
ind – Ri)(Ri

coll – Ri)] = Cov [Ri
ind – Ri , Ri

coll – Ri ] = Var [Ri ] – Cov [Ri
ind,Ri ]

= Var [Ri ] – pi

iq
Cov [Ci,n – i +1, Ri ] = qi E [ai

2(Ui)] (4.16)

using the formulas for mse (Ri
ind) and mse (Ri

coll). ¡

5. A PRAGMATIC ESTIMATION METHOD

To evaluate the optimal credibility weights and the mean squared errors, it is
necessary to estimate the quantities Var [Ui

BC ], Var [Ui ] and E [ai
2(Ui)]. The pro-

posed estimators are based on a full loss triangle of paid claims statistics Sik,
1 # i, k# n, subject to the restriction i + k – 1 # n, and the knowledge of expo-
sures Vi for each origin period i = 1, …, n. Working in an unconditional envi-
ronment we use the following standard estimate for Var [Ui

BC ], which follows
from the analysis by Mack (1997), p. 231-233:
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It is intuitively appealing that Ui should be at least as volatile than the burn-
ing cost estimate Ui

BC (similar to the fact that Var [U ] should be larger than
Var [U0] in Mack (2000)). As pragmatic estimates we assume that

i ii i
BC BC, ,EVar f Var U Ui $= =U U% %

6 9 6@ C @ (5.3)
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with some factor fi $ 1, and that an estimate of bi
2(Ui) in (4.4) is a constant bi

2

for all underwriting periods i = 1, …, n. The quantities fi and bi can be statis-
tically justified as follows. Arguing that Ui

BC is a good unbiased point estimate
of the total ultimate claims, it is reasonable to assume that Ui belongs to the

confidence interval i i i i
BC BC BC BC,U c Var U U c Var Ui i$ $- +

% %
9 9< C CF for some

constant ci > 1. On the other side Ui should belong to the confidence interval

i i i ii i,E Ed Var d Var$ $- +U U U U% %
6 6 6 6< @ @ @ @F for some constant di # ci (Ui

at least as volatile than Ui
BC ). If E [Ui ] = Ui

BC, one must have Var%[Ui ] = fi ·
Var%[Ui

BC] for some constant fi $ 1. On the other side, if the ratio Ci,n – i +1 /Ui

given Ui has a Beta(ai pi, aiqi) distribution with some constant ai > 0, then one
has necessarily bi

2(Ui) = (ai + 1)–1, which is a constant independent of Ui . Recalling
that ai

2(Ui) = Ui
2 · bi

2(Ui), one obtains from (5.3) the following estimate

i i
BC BC

ii i .E a Var U Ubi

2
$ $= +2 2U f %

^ `h j9 9C C' 1 (5.4)

The above estimates are inserted in the formulas of Theorems 4.2 and 4.3 to
get estimates of the optimal credibility weights and the mean squared errors.
In particular, an optimal credibility estimate is obtained from

i
i

i ,t
u

u
f

f

b

b

1 i i

i

$

$
=

+ - +

+

2

2

f ^

^

h

h
(5.5)

where
i

i

BC

BC

k

u u
Var U

U

si

kk

n

k
k

n
2

1

1

2

= = =

=

=

2

m

w!

!

%
`

e
j

o

9 C

is an estimate of the inverse of the

coefficient of variation of the burning cost estimate Ui
BC of the total ultimate

claims, which is independent of the origin period.

6. THE OPTIMAL CREDIBLE CLAIMS RESERVE WITH MINIMUM VARIANCE

The pragmatic estimation method of Section 5 depends on the unknown para-
meters ( fi, bi)1 # i # n. As in the preceding Section, we work in an unconditional
framework and compare the variances of the individual, collective and optimal
credible claims reserves in order to determine a set of parameters ( fi, bi)1# i# n,
which minimizes the variance of the optimal credible claims reserve. This is a
desirable property because from a statistical point of view estimates with lower
variances are usually preferred. Fortunately, the minimum variance optimal
credible claims reserve is parameter-free and attained at the parameter value

ti
* = ,pi i = 1, …, n, (6.1)

90 W. HURLIMANN

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.2143/AST.39.1.2038057
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 13:52:32, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.2143/AST.39.1.2038057
https:/www.cambridge.org/core


in Theorem 4.2. It compares with the Benktander estimate

ti
GB = qi, i = 1, …, n, (6.2)

and the Neuhaus estimate

i ,t q
m

m1
WN

i

k
k

n

k
k

n

1

1= +

-

=

=

!

!
i = 1, …, n. (6.3)

All three methods yield monotone decreasing credibility weights in the origin
periods. Since ti

* = 1 the optimal credibility weights satisfy the inequality

Zi
* # ,2

1 i = 1, …, n, (6.4)

where the equality is attained for the first origin period. Note that usually the
Benktander and Neuhaus methods lead to higher credibility weights. The pro-
posed new method is the special case fi = 1 of the following more general result.
This choice, which implies identical volatilities for Ui and Ui

BC, is the most
appealing one. Besides the minimum variance of the credible loss reserves
among all choices fi $ 1, it yields the smallest credibility weights for the indi-
vidual loss reserves putting thus more emphasis on the collective loss reserves.

Theorem 6.1. Under the assumption of Sections 4 and 5, the optimal credibil-
ity weights Zi

* which minimize the mean squared error mse(Ri
c) = ES(Ri

c – Ri)
2
V

and the variance Var [Ri
c ] are given by

Zi
* =

i

,
p t

p

i

i

+ *
with (6.5)

i ,t
p

2
1 1 1 2i i i i$ $

=
- + + - +

*
f f f^ ^h h

i = 1, …, n. (6.6)

Proof. Recall that Ri
c = Zi · Ri

ind + (1 – Zi) · Ri
coll, i = 1, …, n, with Ri

ind = pi
iq

˙
Ci,n – i +1, Ri

coll = qi ˙ Ui
BC. By the assumption at the beginning of Section 4, the

covariance between the individual and the collective reserve vanishes, that is

Cov [Ri
ind, Ri

coll] = i
p
q

i

2

˙ Cov [Ci,n – i +1,Ui
BC] = 0. It follows that

Var [Ri
c ] = Zi

2 · Var [Ri
ind ] + (1 – Zi)

2 · Var [Ri
coll], with

Var [Ri
ind ] = pi

i
2q

d n ˙ Var [Ci,n – i +1] , Var [Ri
coll ] = qi

2
˙ Var[Ui

BC].
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Using (4.8) and the estimates (5.3), (5.4) and the definition of u after (5.5), one
gets the estimate

Var%[Ci,n – i+1] = ( fi · pi · [(1 – pi) bi
2 + pi ] + pi (1 – pi) bi

2u ) · Var [Ui
BC].

Inserted into the above formulas, together with the estimate Zi =
itp

p

i

i

+
of the

optimal credibility weight (4.5), one obtains the estimate

Var%[Ri
c ] = Zi

2 · pi

i
2q

d n [ fi · pi · [(1 – pi) bi
2 + pi ] + pi (1 – pi) bi

2u ]

· Var [Ui
BC] + (1 – Zi )

2 · Var [Ri
coll]

= i iZ up
p

b
1

1i
i

i
i i

2 2
$ +

-
+ + -2 Zf f^ `d h j n< F · Var [Ri

coll].

From (5.5) one has bi
2( fi + u ) = (1 + fi )

i

i ,
1 + t

t
which yields further

i

i

i

i

i

ii i

i

ZVar R p
p

Var R

p
p

Var R

1 1
1

1
2 1

1
1

2 1

i
i

i
i

i

i
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2
$ $ $
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- +
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c coll
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t
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t
t

t

Zf
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^e

^
e
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o

9 = 9

9

C G C

C

An optimization with respect to ti shows that the minimum variance is attained
at (6.6). ¡

Remark 6.1.

An important difference with the standard approach to claims reserving must
be emphasized. Though in Mack (2000) the meaning of the payout factor pi

is general, in practice it has up to now most often been estimated using stan-
dard link ratios leading to chain-ladder payout or lag-factors pi

CL instead of the
loss ratio based factors (2.3). Clearly, our main result can also be reused in the
traditional as well as more advanced and recent stochastic chain-ladder con-
text. In practice, the standard methods use the so-called chain-ladder factors
defined by the average link ratios (here by abuse of stochastic notation as sta-
tistical estimates)

k i i/ ,f CL
k

i

n k

k
i

n k

1
1 1

= +
=

-

=

-

S S! ! k = 1, ..., n – 1. (6.7)

From this one gets the ultimate loss development factors, so-called LDF paid
factors,

92 W. HURLIMANN

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.2143/AST.39.1.2038057
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 13:52:32, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.2143/AST.39.1.2038057
https:/www.cambridge.org/core


jk ,F fCL CL

j k

n 1

=
=

-

% k = 1, ..., n – 1, Fn
CL = 1, (6.8)

which represent the average ratio of the ultimate claims to the (cumulative) paid
claims of each origin period after k years of development. From the LDF paid
factors one gets immediately the chain-ladder lag-factors

n i 1- +

,p
F

1
i CL=CL i = 1, …, n, (6.9)

and the chain-ladder reserve factors

qi
CL = 1 – pi

CL, i = 1, …, n. (6.10)

The standard methods can be reinterpreted in our context and extended to
optimal credible standard methods as follows.

The Chain-Ladder Method
It is similar to the individual loss ratio method with the loss ratio lag-factors
(2.3) replaced by the chain-ladder lag-factors (6.9):

,R
p

q
,

CL

i

i
i n i 1$= - +CL

CL

i C i = 1, …, n. (6.11)

The Cape Cod Method
It is a (Benktander type) credibility mixture of the type (3.1) with

i i, , ,

, , ..., .

R
p

q
R q LR LR

p

Z p i n1

,

,

i

i
i n i i i

i i
i

n

i n i
i

n

i i

1

1

1
1$ $ $

$

= = =

= =

- +

=

- +
=ind coll

CL

CL
CL

CL

CL

C
C

V
V!

!

(6.12)

The Optimal Cape Cod Method
It is the modified credibility mixture (6.12) with optimal credibility weights

,Z
p p

p
i

i i

i=
+CL CL

CL

i = 1, …, n. (6.13)

The Bornhuetter-Ferguson Method
It is a (Benktander type) credibility mixture of the type (3.1) with
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i i, , ,R
p

q
R q LR p,

i

i
i n i i i i i i1$ $ $= = =- +

ind coll
CL

CL
CL CLZC V i = 1, …, n, (6.14)

where LRi is some selected initial loss ratio for each origin period (e.g. Boul-
ter and Grubbs (2000), p. 19-21).

The Optimal Bornhuetter-Ferguson Method
It is the modified credibility mixture (6.14) with optimal credibility weights (6.13).

7. NUMERICAL EXAMPLES

It is instructive to illustrate the obtained results at some practical examples. Let
us start with the published full loss triangle of paid claims and exposures in
Mack (1997), Table 3.1.5.1:
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TABLE 7.1

LOSS TRIANGLE OF PAID CLAIMS

Development period
Origin period

1 2 3 4 5 6

1 4’370 1’923 3’999 2’168 1’200 647
2 2’701 2’590 1’871 1’783 393 –
3 4’483 2’246 3’345 1’068 – –
4 3’254 2’550 2’547 – – –
5 8’010 4’108 – – – –
6 5’582 – – – – –

The used exposures and relevant parameters, which are obtained through appli-
cation of the described method, are summarized in Table 7.2.

TABLE 7.2

PARAMETERS OF CREDIBLE LOSS RATIO METHOD

Parameters
Origin period

V m p q t Z*

1 13’085 0.29667 1 0 1.00000 0.50000
2 14’258 0.17770 0.94496 0.05504 0.97209 0.49292
3 16’114 0.20072 0.88010 0.11990 0.93814 0.48404
4 15’142 0.11549 0.75153 0.24847 0.86691 0.46435
5 16’905 0.05826 0.52808 0.47192 0.72669 0.42086
6 20’224 0.04945 0.33026 0.66974 0.57469 0.36495
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The next two Tables compare the loss ratio reserves and the total ultimate
claims obtained through application of the collective, individual, Neuhaus,
Benktander and optimal methods.
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TABLE 7.3

CREDIBLE LOSS RATIO RESERVES

Method
Origin period

collective individual Neuhaus Benktander optimal

all periods 25’154 26’972 25’913 25’999 25’914
2 705 544 568 553 626
3 1’736 1’518 1’564 1’544 1’630
4 3’380 2’761 2’962 2’915 3’092
5 7’166 10’829 8’904 9’101 8’708
6 12’167 11’320 11’916 11’887 11’858

TABLE 7.4

CREDIBLE LOSS RATIO ULTIMATE CLAIMS

Method
Origin period

collective individual Neuhaus Benktander optimal

all periods 86’752 87’810 86’751 86’837 86’486
1 14’307 14’307 14’307 14’307 14’307
2 9’964 9’882 9’906 9’891 9’966
3 12’772 12’660 12’706 12’686 12’779
4 11’443 11’112 11’313 11’266 11’484
5 20’826 22’947 21’022 21’219 20’364
6 17’440 16’902 17’498 17’469 17’586

The Table 7.5 displays mean squared errors of the different methods expressed
as ratios to the minimal mean squared error of the optimal credible reserve.
For this the minimum variance estimator of Section 6 is applied with fi = 1
and ti = .pi

TABLE 7.5

MEAN SQUARED STANDARD ERRORS (RATIO TO MINIMAL ERROR)

Method
Origin period

collective individual Neuhaus Benktander optimal

2 1.027133 1.028713 1.014146 1.022818 1
3 1.058036 1.065943 1.003002 1.038856 1
4 1.115378 1.153525 1.002692 1.044128 1
5 1.198612 1.376096 1.120972 1.012892 1
6 1.244417 1.740080 1.409648 1.002206 1
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The Neuhaus and Benktander loss ratio reserves are quite close to the opti-
mal credible reserve. In the present situation, the Neuhaus reserve is closer to
the optimal one than the Benktander reserve for all origin periods. Through
application of a credible loss ratio reserving method, the reduction in mean
squared error is substantial. In absence of sufficient information to estimate
the optimal credibility weights, the three simple credible methods are highly rec-
ommended for actuarial practice.

The next practical example stems from a slightly modified real life project.
The same conclusions as before are made. Again, the minimum variance esti-
mator of Section 6 is applied with fi = 1 and ti = .pi
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TABLE 7.6

LOSS TRIANGLE OF PAID CLAIMS

Development period
Origin period

1 2 3 4 5 6

1 3’789’045 2’860’826 506’651 151’996 65’141 24’203
2 3’582’774 2’687’080 1’250’163 535’784 880’143 –
3 4’221’853 3’166’390 2’249’388 207’853 – –
4 4’074’429 2’949’557 1’162’885 – – –
5 1’227’618 3’906’617 – – – –
6 6’839’930 – – – – –

TABLE 7.7

PARAMETERS OF CREDIBLE LOSS RATIO METHOD

Parameters
Origin period

V m p q t Z*

1 8’000’000 0.40230 1 0 1.00000 0.50000
2 9’000’000 0.33129 0.99687 0.00314 0.99843 0.49961
3 10’000’000 0.13971 0.93925 0.06075 0.96915 0.49217
4 10’000’000 0.03317 0.90488 0.09512 0.95125 0.48751
5 10’000’000 0.05561 0.76012 0.23988 0.87185 0.46577
6 12’000’000 0.00303 0.41685 0.58315 0.64564 0.39233

TABLE 7.8

CREDIBLE LOSS RATIO RESERVES

Method
Origin period

collective individual Neuhaus Benktander optimal

all periods 10’600’143 12’714’477 11’219’478 11’241’879 11’378’317
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As a third example, let us analyze whether the published and practically used
A.M. Best loss development factors are “best” in the sense of the proposed
credible loss ratio method. We compare the inverse of the loss ratio payout fac-
tors obtained from the ratio 

,i n i

i

1- +

U
C for the various methods. As a single illus-

tration, we just look at the 2004 A.M. Best Table of paid claims for General
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TABLE 7.9

CREDIBLE LOSS RATIO ULTIMATE CLAIMS

Method
Origin period

collective individual Neuhaus Benktander optimal

all periods 56’940’469 59’054’803 57’559’804 57’582’205 57’718’643
1 7’397’862 7’397’862 7’397’862 7’397’862 7’397’862
2 8’963’172 8’964’045 8’964’011 8’964’042 8’963’608
3 10’431’787 10’482’293 10’477’569 10’479’225 10’456’645
4 9’104’890 9’047’490 9’054’763 9’052’950 9’076’907
5 7’449’305 6’754’511 6’939’614 6’921’178 7’125’691
6 13’593’453 16’408’602 14’725’985 14’766’948 14’697’930

TABLE 7.10

MEAN SQUARED STANDARD ERRORS (RATIO TO MINIMAL ERROR)

Method
Origin period

collective individual Neuhaus Benktander optimal

2 1.001629 1.001634 1.001405 1.001615 1
3 1.029900 1.031834 1.021187 1.024673 1
4 1.046368 1.051243 1.029035 1.033985 1
5 1.111731 1.146991 1.036943 1.044625 1
6 1.228790 1.548854 1.000149 1.000894 1

Method
Origin period

collective individual Neuhaus Benktander optimal

2 27’228 28’101 28’067 28’098 27’664
3 586’303 636’809 632’085 633’741 611’161
4 918’019 860’619 867’892 866’079 890’036
5 2’315’070 1’620’276 1’805’379 1’786’943 1’991’456
6 6’753’523 9’568’672 7’886’055 7’927’018 7’858’000
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One notes that the A.M. Best factors slightly but systematically overestimate
the optimal and nearly optimal Benktander and Neuhaus factors.
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TABLE 7.11

LOSS TRIANGLE OF PAID CLAIMS FOR GENERAL LIABILITY CLAIMS MADE POLICIES

Origin Development period

period 1 2 3 4 5 6 7 8 9 10

1994 394’645 991’758 1’601’166 2’048’315 2’286’923 2’464’913 2’578’083 2’632’786 2’678’889 2’691’701
1995 353’192 969’542 1’592’009 1’974’155 2’272’665 2’438’559 2’566’985 2’671’750 2’741’844
1996 388’218 1’078’557 1’646’205 2’171’862 2’443’991 2’709’179 2’827’232 2’934’048
1997 389’758 1’082’588 1’874’868 2’427’603 2’867’146 3’125’564 3’277’475
1998 449’549 1’312’383 2’190’150 2’989’522 3’671’202 4’103’170
1999 391’147 1’398’570 2’506’347 3’448’315 4’134’317
2000 683’853 1’720’774 3’136’015 4’112’141
2001 586’225 1’962’547 3’283’757
2002 810’359 2’149’450
2003 648’230

TABLE 7.12

INVERSE OF LOSS RATIO PAYOUT FACTORS

A.M. Best optimal Benktander Neuhaus collective individual

1994 1.000 1.000 1.000 1.000 1.000 1.000
1995 1.010 1.005 1.005 1.005 1.005 1.005
1996 1.030 1.027 1.027 1.027 1.027 1.027
1997 1.066 1.062 1.062 1.062 1.061 1.062
1998 1.114 1.112 1.113 1.113 1.112 1.113
1999 1.226 1.220 1.221 1.221 1.219 1.222
2000 1.471 1.439 1.439 1.439 1.441 1.438
2001 1.986 1.917 1.914 1.915 1.927 1.903
2002 3.475 3.322 3.328 3.331 3.366 3.245
2003 9.903 9.595 9.652 9.655 9.696 9.285

Liability claims made policies, but note that similar results hold for other insur-
ance categories. Table 7.11 lists the used triangle of paid claims and Table 7.12
displays the calculated factors. The optimal credibility weights are calculated
using the minimum variance estimator of Section 6 with fi = 1 and ti = .pi
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