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ABSTRACT

In the Bayesian approach, the experience rated premium is the value which
minimizes an expected loss with respect to a posterior distribution. The pos-
terior distribution is conditioned on the claim experience of the risk insured,
represented by a n-tuple of observations. An exact analytical calculation for the
experience rated premium is possible under restrictive circumstances only,
regarding the prior distribution, the likelihood function, and the loss function.
In this article we provide an analytical asymptotic approximation as n → ∞ for
the experience rated premium. This approximation can be obtained under more
general circumstances, it is simple to compute, and it inherits the good accu-
racy of the Laplace approximation on which it is based. In contrast with numer-
ical methods, this approximation allows for analytical interpretations. When
exact calculations are possible, some analytical comparisons confirm the good
accuracy of this approximation, which can even lead to the exact experience
rated premium.

KEYWORDS AND PHRASES
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1. INTRODUCTION

The determination of the premium for an insured risk is one of the important
problems of risk theory. In the risk process the accumulated claim process
is a random sum, and premium calculation is concerned with determining
the appropriate compensation process. By premium calculation we mean the
determination of the adequate premium for the risk assumed by an insured
individual within a collectivity. Generally, we are in position to determine the
collective premium only. But if some claim experience for the given individual

1 The author thanks an anonymous referee for thoughtful comments which improved the quality of
this article.
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is available, we seek to determine the premium which exploits these actual
claim amounts. A premium which is based on this claim experience is called
an experience rated premium or a credibility premium. Generally, the credibility
theory is concerned with the question of how to use the individual claim expe-
rience in order to obtain the credibility premium. Some important pioneer
contributions are Bailey (1945, 1950), Lundberg (1964), Mayerson (1964), Bich-
sel (1964), and Bühlmann (1964, 1967). The first Bayesian foundations for
credibility were laid down by Bailey (1950), whereas Bühlmann (1967) is con-
sidered as the beginnings of sustained Bayesian research in credibility. For a
recent general review about Bayesian methods in actuarial sciences, refer e.g.
to Makov (2001). For textbooks, see e.g. Bühlmann (1970) and Klugman (1992).

Heilmann (1989) gives an approach to the problem of determining the expe-
rience rated premium which is based on loss functions and which allows to
embed the problem into a Bayesian model. In this model, we designate by the
random variable X ≥ 0 the collective risk, which is the claim amount of the risk
measured within a whole collectivity. The distribution function FX(x) = P[X ≤ x]
is assumed known. The collective premium is then defined as 

pC = arginfv L# (x,v)dFX(x) (1)

= arginfv E[L (X,v)],

where L : R+ ≈ R+ → R+ is a loss function. L(x,v) is the loss incurred by a deci-
sion maker taking the action v and facing the outcome x. Here, we consider
the following loss functions: the quadratic loss function L1(x,v) = (x – v)2, the
exponentially scaled loss function L2(x,v) = (e�x – e�v)2, � > 0, and the exponen-
tially tilted loss function L3(x,v) = e�x(x – v)2, � > 0. These three loss functions
lead respectively to the well known net, exponential and Esscher premium prin-
ciples. For a graphical representation of these loss functions, see Figure 1,
and for other important loss functions, refer to Heilmann (1989, Section 4).
We suppose that every individual risk within a collectivity is determined by an
unknown parameter q which is the realization of a random variable Q, with
known structure or prior distribution FQ(q) = P[Q ≤ q ]. With this, we define
the individual claim amount distribution as FX | Q (x |q ) = P[X ≤ x | Q = q ]. In
analogy with the collective premium (1), we define the individual premium as

pI(q) = arginfv L# (x,v)dFX | Q(x | q ) (2)

= arginfv E[L (X,v) | Q = q ].

Consider the random variables X, X1, …, Xn defined so that, given Q = q, X,
X1, …, Xn are independent with distribution FX | Q (x |q ). An individual claim
experience based on the last n periods is then (X1, …, Xn) | Q = q. Hence, for a
fixed individual, the claim amounts of consecutive periods are independent
and identically distributed. Let Ú = (y1, …, yn) denote an individual observed
claim experience during the last n periods, i.e. a realization of the conditional
random vector (X1, …, Xn) | Q = q. The posterior distribution of Q for this
individual with experience Ú is given by FQ | ⁄(q | Ú) = P[Q ≤ q | ⁄ = Ú]. For this
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FIGURE 1: Loss functions L1(x,v) = (x – v)2, L2(x,v) = (e�x – e�v)2, and L3(x,v) = e�x(x – v)2.

same individual, the experience rated premium or credibility premium is defined
by

pE(Ú) = arginfv L# (pI(q),v)dFQ | ⁄(q | Ú) (3)

= arginfv E[L (pI(Q),v) | ⁄ = Ú ].

Note that in (3), the loss function which appears directly is not necessarily the
same as the one which appears indirectly, through the function pI(q). Viewed
as a function of Ú, pE(Ú) is a Bayes rule for estimating pI(q), see e.g. Rohatgi
(1976, Section 8.8). For more details about this summary, refer to Heilmann
(1989).

In order to compute the experience rated premium, we need to evaluate
the integral in (3). Unfortunately, this can be solved analytically under rather
restrictive circumstances only, which concern the choice of the loss function,
and the choices of the prior FQ and of the likelihood FX | Q, within classes of
conjugate distributions. For the definition of a conjugate class and for some
examples, see e.g. Heilmann (1989, Section 3). Note that under these circum-
stances, the experience rated premium can sometimes be re-expressed as a cred-
ibility formula, namely in the form of pE(Ú) = zn pI (g(y)) + (1 – zn)E[X], where
zn ∈ (0,1) is called credibility factor, satisfying zn ≤ zn + 1, ∀n, where y = n –1

i 1=
yi

n! , and where g(y) is a maximum likelihood estimate of q. However, the
choices of the prior, of the likelihood and of the loss function should be based
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on objective criteria, possibly related with the real environment of the insurer,
rather than on the feasibility of the ensuing calculations. Our scope is to pro-
vide a method which is valid under more general circumstances. Of course,
numerical integration or simulation provide the most general solutions, but
they do not yield an analytical result which would allow for interpretations.
In this context, the Laplace method gives an asymptotic approximation of the
integral appearing in (3) with a small asymptotic relative error, and this allows
to obtain an accurate asymptotic approximation to the experience rated pre-
mium. The Laplace approximation has already proved to be an useful method
in Bayesian statistics, see Tierney and Kadane (1986).

The rest of this article is organized as follows. The application of the Laplace
approximation to the experience rated premium is described in Section 2.
In Section 3, we compute analytically some approximated experience rated
premiums with the technique introduced in Section 2. We mainly consider
cases where the exact experience rated premium can be also obtained, in order
to make analytical comparisons. These comparisons show that our approxi-
mated experience rated premiums are close to the exact ones. We also give an
example where the approximation leads to the exact experience rated premium.

2. THE ASYMPTOTIC APPROXIMATION

The following theorem is based on the Laplace method of asymptotic analysis
and it gives an accurate approximation for the experience rated premium. Two
alternative approximations are given by Remarks 3 and 4 following Theorem 1
below.

Theorem 1. Let Ú denote a realization of ⁄ given a fixed value of Q, and suppose
that FQ | ⁄(q | Ú) is an absolutely continuous distribution with density fQ | ⁄(q | Ú)
which is > 0 over the interval (a,b). If fQ | ⁄(q | Ú) is differentiable over (a,b),
if fQ | ⁄(q | Ú) has a unique maximum at the interior point q = q̂ of (a,b), if q̂ is
the only point in (a,b) satisfying (∂ /∂q)fQ | ⁄(q | Ú) = 0, if (∂ /∂q)2fQ | ⁄(q̂ | Ú) exists
and is < 0, and if we define

pL(Ú) = arginfv L(pI (q̂),v),

then, ∀ Ú ∈ Rn
+,

pL(Ú) ∼ pE(Ú), as n → ∞, (4)

where pI (q) is given by (2) and pE(Ú) by (3).

Note that q̂ is the posterior mode estimator (PME) of Q, given ⁄ = Ú .

Proof. Denote by

Sn(v) = L# (pI (q),v)dFQ | ⁄(q | Ú),
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by g(q) = – n –1 log fQ | ⁄(q | Ú), and by h (q,v) = L (pI (q),v) . We can thus write

Sn(v) = h# (q,v)e –ng(q)dq, v ≥ 0. (5)

If fQ | ⁄(q | Ú) satisfies the hypotheses of this theorem, then g (q) satisfies the fol-
lowing hypotheses: g(q) is differentiable over (a,b), g(q) has a unique minimum
at the interior point q = q̂ of (a,b), q̂ is the only point satisfying (∂ /∂q)g(q) = 0,
(∂/∂q)2g(q̂) = – n– 1(∂/∂q)2 fQ | ⁄(q̂ | Ú) / fQ | ⁄(q̂ | Ú) exists and is > 0. These hypothe-
ses are required in order to apply the Laplace method to Sn(v), which leads to
the Laplace approximation

( )
( )

, , ,
q

qS v
ng

h v e
n

e nO asp
2 �

( )
( )

q
q

n
ng

ng2
1

2
3 " 3= +-

-

e ` co j m (6)

where g �(q) = (∂ /∂q)2 g(q). The Laplace approximation is established by an
appropriate change of variables and a series expansion, both applied to the inte-
grand in (5), followed by an application of Watson Lemma; see e.g. Bleistein
and Handelsman (1986, Section 5.1). From (6) it follows that

arginfv Sn(v) = arginfv [h (q,v){1 + O(n –1)}]
= arginfv [L (pI (q),v){1 + O(n –1)}]
∼ arginfv L (pI (q),v), as n → ∞. (7)

Note that in general the error term in (6) involves v, otherwise the asymptotic
approximation above would be an exact one.

The asymptotic equivalence (7) can be detailed as follows. Denote by Sn(v)
the Laplace approximation to Sn(v), i.e. the first term in the right-hand-side of
(6), vn = arginfv Sn(v) and vn = arginfv Sn(v). We see that S ( j)

n (v) = O(n–1/2e–ng(q̂)),
j = 0,1,…, where f ( j) denotes the j-th derivative of a function f, and we can also
deduce that S ( j)

n = O(n –1/2e –ng(q̂)), j = 0,1,…. From Taylor expansions, we have

Sn(vn) – Sn(vn) = † (vn – vn)2S �n (vn) + o([vn – vn]2 n –1/2e –ng(q̂)),

and 
Sn(vn) – Sn(vn) = † (vn – vn)2S �n (vn) + o([vn – vn]2 n –1/2e –ng(q̂)).

By summing both equations we obtain 

(vn – vn)2† [S �n (vn) + S �n (vn)] + o([vn – vn]2n –1/2e –ng(q̂)) = O(n 2
3- e –ng(q̂)),

which implies

vn = vn + O(n 2
1- ), as n → ∞.

This justifies (7) and completes the proof. ¡
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Remark 1. An important advantage of the approximation pL(Ú) for the expe-
rience rated premium, with respect to e.g. numerical integration or simulation,
is that it leads to accurate numerical results often through a simple closed form
expression, which is very useful for deriving other related properties or for
interpretations. In the examples presented in Section 3, one can for instance
directly see the effect of the prior parameters on the experience rated premium.

Remark 2. There are other ways of expressing the integral Sn(v) in the form
suggested by (5). The function g is the central element which determines
the quality of the Laplace approximation by means of its critical point q̂.
The derivation of the Laplace approximation is based on expansions of both
g and h around q̂. Two helpful guidelines for an appropriate identification of
g and h are the following: h must be dominated by e –ng, and h should be a
slowly varying function.

A consequence of this is that the Laplace approximation and its ensuing
premium pL(Ú) may not always be accurate when using the exponentially scaled
loss function L2(x,v) = (e�x – e�v)2 and the exponentially tilted loss function
L3(x,v) = e�x(x – v)2 with large values of �; for an illustration of this refer to
Example 5 in Section 3.

Remark 3. An alternative approximation is as follows. Define

S †
n(v) = L# (pI (q),v) fQ(q)e l(q | Ú)dq,

where fQ is the prior density of Q, and l (q | Ú) = i 1= logn! fX | Q (yi | q) is the log-
arithmic likelihood. Clearly, S †

n(v) is equal to Sn(v), up to a factor independent
of v. If we denote by g†(q) = – n –1l (q | Ú), and by h†(q,v) = L(pI(q),v) fQ(q), we
retrieve the suitable expression for applying the Laplace method

S †
n(v) = h# †(q,v)e –ng† (q)dq. (8)

Omitting details, we are finally led to the approximation

pE(Ú) ∼ arginfv L(pI(q̂),v ), as n → ∞,

where q̂ is the solution of the likelihood equation (∂ /∂q)l (q | Ú) = 0, therefore
the maximum likelihood estimator. The hypotheses required on g† follow from
some standard regularity conditions on the likelihood, namely: l (q | Ú) is con-
cave in q, the maximum likelihood estimator is the solution of the likelihood
equation, and the observed Fisher information –(∂/∂q)2l(q̂ | Ú) exists. The error
of this alternative approximation is of the same order as the one of the approxi-
mation of Theorem 1, but the form of the approximation is not satisfactory,
because all the prior information is kept away from the exponential appearing
in (8) and this information is finally lost.

Remark 4. Another approximation can be obtained by defining g*(q,v) = – n– 1

[l (q | Ú) + log fQ(q) + L(pI(q),v)], which leads to the expression 
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Sn(v) = e# – ng*(q,v)dq,

also suitable for the Laplace method. If g* satisfies the conditions expressed
in terms of the function g in the proof of Theorem 1, we obtain

pE(Ú) ∼ arginfv [{g*�(q̂ (v),v)} 2
1

- e–ng*(q̂ (v),v)], as n → ∞, (9)

where q̂ (v) is solution of g*�(q̂ (v),v) = 0, and where g*�(q,v) = (∂ /∂q)g*(q,v)
and g*�(q,v) = (∂ /∂q)2g*(q,v). The approximation (9) to pE(Ú) depends on the
prior information, and it is based on the slow varying function h = 1. This should
give accurate approximations, but the drawback comes from the complexity of
the solution, which does in general not admit a closed form, consequently
making interpretations difficult.

Remark 5. Posterior densities which are unimodal are often approximated by
a normal density centered at the posterior mode. Indeed, as q → q̂,

( ) ,

log log
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q

q q

f y f y

d
d f y o
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q
2
1

2

2

+ -
-

_ i as n → ∞,

where s2(Ú) = – [(d /dq)2 log fQ | ⁄ (q | Ú) | q = q̂ ] –1. The Laplace approximation of
Theorem 1 roughly consists on approximating g by a quadratic function around
its minimum and on integrating over a small neighborhood of this minimum
only. The expansion above shows that this is equivalent to integrating with
respect to a normal distribution centered at its mode, only locally around this
mode. The small asymptotic error of the Laplace approximation results from
the fact that the normal approximation is considered only locally around its
center, where it is the most reliable.

The normal approximation above illustrates also that the expectation appear-
ing in pE(Ú) is taken with respect to a distribution which tends to a point mass
in q, and because for the loss functions considered arginfvL(x,v) = x, the approx-
imation pI(q) to pE(Ú) can be admitted quite intuitively. But the proof via the
Laplace approximation provides a formal justification, and it also gives the
asymptotic error O(n –1/2) for the experience rated premium.

3. APPLICATIONS

In this section we apply the approximation to the experience rated premium
given by Theorem 1 in various examples with different classes of conjugate
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distributions, and different loss functions. In Example 1, our approximation
leads to the exact experience rated premium. In Example 2 to 5, the approxi-
mated premium rates admit closed forms which allow for direct interpreta-
tions. Some small numerical examples suggest that the relative error of this
approximation is around 5% when the claim experience period is around n = 20.
Example 6 represents a situation where no simple form for the exact premium
is available, whereas our approximations yields again a simple and practical
formula.

Example 1. Gamma-exponential conjugate class, quadratic loss

Suppose that the prior distribution of Q is Gamma(a,b), with density baG–1(a)
e–bqqa – 1, q > 0, and that the likelihood is Exponential(q), having density qe–qx,
x > 0. It follows that the posterior distribution of Q | ⁄ = Ú is Gamma(a +
n, b + ny). Consider also the quadratic loss function L1(x,v) = (x – v)2. With this
choice, it is straightforward to obtain the individual premium

( ) .p XEq q qQ 1
I = = =6 @

The exact experience rated premium is 

( ) ( ) .p y p X y a n
b n

E Q
y
1E I= = =

+ -
+

7 A

As the mode of Gamma(�, b) is (� – 1)/b, it follows that the posterior distribution
of Q |⁄ = Ú satisfies the conditions of Theorem 1 and that, given ⁄ = Ú, the PME
of Q is

.q b n
a n

y
1=

+
+ -

With this, we easily obtain the approximation to the exact premium

( ) ( ) .qp y p a n
b ny

1L I= =
+ -
+

Although Theorem 1 tells us that pE(Ú) ∼ pL(Ú), we have here pE(Ú) = pL(Ú), namely
that our approximation yields the exact experience rated premium. In this case
we obtain also the simple credibility formula pE(Ú) = pL(Ú) = zny + (1 – zn)E[X],
where zn = n / (a + n – 1) and E[X] = b / (a – 1).

Example 2. Gamma-Poisson conjugate class, quadratic loss

Suppose that the prior distribution of Q is Gamma(a,b) and that the likelihood
is Poisson(q), with probability function qx(x!) –1e –q, x = 0,1,…. It follows that
the posterior distribution of Q | ⁄ = Ú is Gamma(a + ny, b + n). We also con-
sider the quadratic loss function L1(x,v) = (x – v)2. Simple algebra leads to 

pI(q) = E[X | Q = q ] = q,
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and to

( ) ( ) .p y E p X y b n
a n

Q
y

E I= = =
+
+

7 A

The posterior distribution satisfies the conditions of Theorem 1 whenever a +
ny > 1. The PME of Q is

.q b n
a ny 1

=
+

+ -
(10)

Hence, our approximation is

( ) ( ) ,qp y p b n
a ny 1

L I= =
+

+ -

which is close to the exact solution for a sufficiently large value of n. For a numer-
ical illustration, we choose a = b = 1 and y = 1. It then follows that pE(Ú) = 1
and that pL(Ú) = n / (n + 1). The relative error of our approximation, defined as
REn = | pL(Ú) – pE(Ú) | /pE(Ú), is REn = | –1/(n + 1)|. For example, RE9 = 10% and
RE19 = 5%.

Example 3. Beta-binomial conjugate class, quadratic loss

Suppose that the prior distribution of Q is Beta(a,b), having density B–1(a,b)
q a – 1 (1 – q) b – 1, 0 < q < 1, where B(a,b) = q

0

1# a – 1 (1 – q) b – 1dq is the beta func-
tion, and that the likelihood is Binomial (m,q), having probability function
m! [(m – x)!x ! ]–1qx(1 – q)m – x, x = 0,…,m. It follows that the posterior distribu-
tion of Q | ⁄ = Ú is Beta(a + ny, b + mn – ny). Consider also that the quadratic
loss function L1(x,v) = (x – v)2. Simple algebra leads to

pI(q) = E[X | Q = q] = mq,

and to

( ) ( ) .p y p X y m a b mn
a n

E Q
y

E I= = =
+ +

+
7 A

From the fact that the mode of Beta(�,b) is (� – 1) / (� + b – 2), it follows that
the posterior distribution of Q | ⁄ = Ú satisfies the conditions of Theorem 1
whenever a + ny > 1 and b + mn – ny > 1. The PME of Q is

.q a b mn
a ny

2
1

=
+ + -

+ -
(11)

Our approximation to the exact premium is then

( ) ( ) ,qp y p m a b mn
a ny

2
1

L I= =
+ + -

+ -

which is close to pE(Ú) for sufficiently large values of n. As an example, we choose
a = b = m = 2 and y = 1. It then follows that pE(Ú) = 1 and that pL(Ú) = 1, so that
the relative error is zero.
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Example 4. Beta-negative binomial conjugate class, quadratic loss

Suppose that the prior distribution of Q is Beta (a,b) and that the likelihood
is negative binomial with parameters r and q, having probability function (r +
x – 1)! [x ! (r – 1)! ] –1q r(1 – q)x, x = 0,1,…. It follows that the posterior distribu-
tion of Q | ⁄ = Ú is Beta(a + nr,b + ny). Consider also that the quadratic loss
function L1(x,v) = (x – v)2. Then,

( ) ,p X rEq q q
qQ 1

I = = = -
6 @

and to

( ) ( ) .p y p X y r a nr
b n

E Q
y

1E I= = =
+ -

+
7 A

The conditions Theorem 1 are satisfied whenever b + ny > 1, and the PME of
Q is

.q a nr b n
a nr

y 2
1=

+ + + -
+ -

Our approximation is 

( ) ( ) ,qp y p r a nr
b ny

1
1

L I= =
+ -
+ -

which is close to the exact solution pE(Ú) for a sufficiently large value of n.
As a numerical example, let us choose a = b = 2 and y = 1. It then follows that
pE(Ú) = (n + 2) / (n + 1) and pL(Ú) = 1, and that the relative error of our approxi-
mation is REn = | –1/(n + 2)|. For example, RE8 = 10% and RE18 = 5%.

A consequence of both the exponentially scaled and exponentially tilted loss
functions is to penalize a too low premium more than a too high premium,
whereas the quadratic loss function attributes the same loss to premiums which
are too high or too low. This is shown in Figure 1: with the choices � = 1/2
and v = 2, L2(x,v) and L3(x,v) increase much faster than L1(x,v) on the right
part of the graphic, but behave similarly on the left part.

Example 5. Gamma-Poisson conjugate class, exponentially scaled loss

Suppose that the prior distribution of Q is Gamma(a,b) and that the likelihood
is Poisson(q). It follows that the posterior distribution of Q | ⁄ = Ú is Gamma
(a + ny,b + n). Consider now the exponentially scaled loss function L2(x,v) =
(e�x – e�v)2. Simple algebra leads to

( ) ,log� �p e eEq q qQ1 1� �
I

X= = = -_ i7 A

and to

( ) .log�p y a n b n e
b ny1

1�E = +
+ - +

+
^ h
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The conditions of Theorem 1 are fulfilled if a + ny > 1, and the PME of Q is
given by (10) in Example 2. Our approximation leads to

( ) ( ) .�qp y p b n
a n

e
y1 1

1�
L I= =

+
+ -

-_ i

It is easy to show that

,log b n e
b n

b n
e nO

1
1

�

�
2

+ - +
+ =

+
- + -

_ i as n → ∞,

which confirms the asymptotic equivalence between the exact experience rated
premium pE(Ú) and our approximation pL(Ú). In the numerical illustration, let us
choose a = b = 1, y = 1, and � = 1/2; this latter choice corresponds to the
loss function L2(x, v) of Figure 1. It follows that pE(Ú) = 2 (n + 1) log {(n + 1) /
(n + 2 – e1/2)} and pL(Ú) = 2n / (n + 1) (e1/2 – 1). Two values of the relative errors
are RE12 = 10% and RE25 = 5%. Note that the latter asymptotic equivalence
holds also as � → 0, with n fixed, or with both � → 0 and n → ∞. The accuracy
of pL(Ú) improves with smaller �, because L3(x,v) becomes a slowly varying
function; refer to Remark 2 in Section 2. In practice, small values of � are suf-
ficient to generate asymmetric loss functions, as shown by Figure 1.

Example 6. Beta-binomial conjugate class, exponentially tilted loss

Suppose that the prior distribution of Q is Beta(a,b), and that the likelihood
is Binomial(m,q). It follows that the posterior distribution of Q | ⁄ = Ú is Beta
(a + ny,b + mn – ny). Consider here the exponentially tilted loss function L3(x,v)
= e�x (x – v)2, � > 0. With this choice, we easily find the individual premium

( ) .p
e

Xe
e

m e
E

E
q

q
q

q
q

Q

Q

1 1�

�

�

�

I X

X

=
=

=
=

+ -_ i7

7

A

A

The exact experience rated premium is

( )
( )

,p y
e X y

p e X y
E

E Q
( )

( )

�

�

E p
I

p

Q

Q

I

I

=
=

=

7

7

A

A

but the integrals of both expectations above cannot be analytically evaluated.
The PME of Q was already given by (11) in Example 3, and the conditions of
Theorem 1 are satisfied. With this, our approximation to the exact premium
leads to

( ) ( ) .qp y p
a b mn e a n

me a n
y

y
2 1 1

1
�

�

L I= =
+ + - + - + -

+ -

_ ^

^

i h

h

In this example, we cannot provide an analytical comparison because the exact
experience rated premium cannot be computed, whereas our approximation gives
the above formula.
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