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Reprogramming human B cells into induced pluripotent stem
cells and its enhancement by C/EBPα
C Bueno1,11, JL Sardina2,11, B Di Stefano2, D Romero-Moya1, A Muñoz-López1, L Ariza1, MC Chillón3, A Balanzategui3, J Castaño1,
A Herreros4, MF Fraga5, A Fernández5, I Granada1,6, O Quintana-Bustamante7, JC Segovia7, K Nishimura8, M Ohtaka9, M Nakanishi9,
T Graf2 and P Menendez1,10

B cells have been shown to be refractory to reprogramming and B-cell-derived induced pluripotent stem cells (iPSC) have only
been generated from murine B cells engineered to carry doxycycline-inducible Oct4, Sox2, Klf4 and Myc (OSKM) cassette in every
tissue and from EBV/SV40LT-immortalized lymphoblastoid cell lines. Here, we show for the first time that freshly isolated
non-cultured human cord blood (CB)- and peripheral blood (PB)-derived CD19+CD20+ B cells can be reprogrammed to iPSCs
carrying complete VDJH immunoglobulin (Ig) gene monoclonal rearrangements using non-integrative tetracistronic, but not
monocistronic, OSKM-expressing Sendai Virus. Co-expression of C/EBPα with OSKM facilitates iPSC generation from both CB-
and PB-derived B cells. We also demonstrate that myeloid cells are much easier to reprogram than B and T lymphocytes.
Differentiation potential back into the cell type of their origin of B-cell-, T-cell-, myeloid- and fibroblast-iPSCs is not skewed,
suggesting that their differentiation does not seem influenced by ‘epigenetic memory’. Our data reflect the actual cell-
autonomous reprogramming capacity of human primary B cells because biased reprogramming was avoided by using freshly
isolated primary cells, not exposed to cytokine cocktails favoring proliferation, differentiation or survival. The ability to reprogram
CB/PB-derived primary human B cells offers an unprecedented opportunity for studying developmental B lymphopoiesis and
modeling B-cell malignancies.
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INTRODUCTION
Induced pluripotent stem cells (iPSCs) provide a unique platform
to explore donor/patient-specific somatic cells for regenerative
medicine, drug screening and disease modeling.1 Although the
most common source for human iPSC derivation is skin dermal
fibroblasts, human iPSCs have been generated from a variety of
somatic tissues including keratinocytes,2 mesenchymal stem cells3

and hematopoietic stem/progenitor cells.4–7 Generation of iPSC
from human hematopoietic cells is an attractive option because
they can be generated from peripheral blood (PB) cells, which are
easily accessible through noninvasive methods, and from cord
blood (CB) cells, which are young cells carrying minimal somatic
mutations stored as large collections in public CB banks.8 To date,
human iPSCs have been generated from CD34+ hematopoietic
stem/progenitor cells4,6–8 and also from T cells and myeloid
cells.8–10 However, whether iPSCs may be induced from human
normal or leukemic B cells remains a mystery.6,11 Reprogramming
CB/PB-derived B cells to pluripotency (iPSCs) will offer a valuable
in vitro system to study cellular, molecular and epigenetic events
underlying the physiology of B-cell lymphopoiesis and the
pathogenesis of B-cell malignancies. B cells have been shown to

be refractory to reprogramming,9,10,12 and B-cell-derived iPSCs
have only been generated from B cells of mice engineered to carry
doxycycline-inducible Oct4, Sox2, Klf4 and Myc (OSKM) lenti-
viruses in every tissue,12 and from EBV/SV40LT-transformed
lymphoblastoid cell lines.11,13 Importantly, recent work has
revealed that mouse B cells can be reprogrammed into
iPSCs with high efficiency when the cells were pulsed with the
CCAAT/enhancer binding protein-α (C/EBPα) before of their
exposure to the reprogramming factors OSKM.14 This strongly
suggests that biological rather than technical barriers underlie the
inability to reprogram B cells to pluripotency. Here, we show for
the first time that freshly isolated non-cultured human B cells,
derived from both CB and PB, can be reprogrammed into iPSCs
carrying complete VDJH immunoglobulin (Ig) gene monoclonal
rearrangements, using non-integrative polycistronic Sendai Virus
(SeV).15,16 We also demonstrate that transient co-expression
of C/EBPα with OSKM increases B-cell iPSC generation. Differentia-
tion of B-cell-, T-cell-, myeloid- and fibroblast-iPSCs into B-cell,
T-cell and myeloid cell fate revealed that iPSC differentiation
potential does not seem influenced by the residual ‘epigenetic
memory’ of the cell type of origin.
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MATERIAS AND METHODS
CB and PB collection and isolation of CD19+ and CD19− cell
populations
Independent umbilical CB samples (n= 10) from healthy newborns and PB
samples (n= 5) from healthy donors (age 30–40 years old) were obtained
from the Barcelona Blood Bank upon approval by our local Ethics and
Biozahard Board Committee (ABR/JFJ/S-23). Mononuclear cells were
isolated using Ficoll-Hypaque (GE Healthcare, Stockholm, Sweden). After
lysing the red blood cells (Lysis solution, Cytognos, Salamanca, Spain),
mononuclear cells were stained with anti-human CD19-biotin (eBioscience,
San Diego, CA, USA) and magnetic-activated cell sorting (MACS)-enriched
(purity480%). MACS-enriched CD19+ cells were cultured overnight in
RPMI+20% fetal bovine serum (FBS) supplemented with hIL7 (10 ng/ml;
Preprotech, London, UK), and then further fluorescence-activated cell
sorting (FACS)-purified for CD20 (anti-CD20-APC, BD Biosiences, San Jose,
CA, USA) with the FACSAria Fusion flow sorter using ‘low-recovery high-
purity’ sorting settings.17 Post sorting B-cell purity was consistently higher
than 99.5% (Figure 1a).

OSKM and C/EBPα Sendai Vector transduction of CB- and
PB-derived CD19+ and CD19− cells
Immediately after sorting, between 1× 105 and 1× 106 fresh, non-
stimulated CB/PB-derived CD19+/CD20+ and CB CD19− cells were
infected with the tetracistronic defective and persistent SeV encoding
OCT3/4, KLF4, SOX2 and c-MYC factors with the miR-302 target sequence
(miROSKM-SeV) (Figure 1b) (multiplicity of infection = 3) alone or in
combination with the inducible C/EBPαER-SeV (multiplicity of infection= 20)
(custom-made from DNAVEC, Tsukuba, Japan) for 3 h at 37 ºC. Tetra-
cistronic SeV was developed, generated, reconstituted and tittered as
previously described in detail.15,18 B cells co-infected with miROSKM-SeV
and C/EBPαER-SeV were then half-split and plated onto irradiated mouse
embryonic fibroblasts in RPMI+20% FBS+hIL7, and 24 h later, β-estradiol
(or vehicle) was added to the medium at a final concentration of 100 nM to
trigger C/EBPα activity in the nucleus of the infected cells.14 Then, the cells
were changed to human embryonic stem cell (hESC) medium/MEF-
conditioned media supplemented with 8 ng/ml basic fibroblast growth
factor (Miltenyi, Bergisch Gladbach, Germany), generated as previously
described.19,20 β-Estradiol was maintained for two further days to ensure
proper nuclear expression of C/EBPα. This medium was changed every
other day and maintained until the iPSC colonies were picked. To avoid cell
loss during medium changes, floating cells were harvested, centrifuged
and plated back on top of the feeders. Identification of the first emerging
hiPSC colonies (~12 days after SeV infection) and passage onto fresh
feeders was performed mechanically as previously described.6,21 By day 21,
iPSC clones were Tra-1–60-stained to determine the reprogramming
efficiency. The generated iPSC clones were maintained on irradiated
mouse embryonic fibroblasts in hESC media6,21 supplemented with 8ng/ml
of basic fibroblast growth factor. The hESC media was changed every
other day, and the cells were passaged using 1mg/ml collagenase IV every
7–9 days.

iPSC characterization
Established iPSCs were fully characterized upon confirmation that they
were transgene-independent. SeV elimination was determined by qRT-PCR
as described.15,18 Expression of pluripotency markers was performed
by immunostaining (alkaline phosphatase, OCT4, NANOG, SOX2 and
TRA-1–60) and quantitative RT-PCR (OCT4, NANOG, SOX2, REX1) using the
antibodies and primers previously described (Supplementary Table S1).22,23

G-banding karyotype, in vivo teratoma formation and immunocytochem-
istry for α-smooth muscle actin, FOXA2 and β-III tubulin, was performed as
it has been extensively described by our group.21,24,25

Bisulfite pyrosequencing of OCT4 and NANOG promoters
Bisulfite modification of genomic DNA was performed with the EZ DNA
Methylation-Gold kit (Zymo Research, Irvine, CA, USA) following the
manufacturer's instructions. The set of primers for PCR amplification and
sequencing of NANOG and OCT4 were designed using the software
PyroMark Assay Design (version 2.0.01.15; Qiagen, Hilden, Germany):
Forward-NANOG (5′-TAT TGG GAT TAT AGG GGT GGG TTA-3′), Reverse-
NANOG (5′-[Btn]- CCC AAC AAC AAA TAC TTC TAA ATT CAC-3′), and
sequencing primer S-NANOG (5′-ATA GGG GTG GGT TAT-3′); Forward-
OCT4_prox (5′- GGG GTT AGA GGT TAA GGT TAG TG-3′), Reverse-

OCT4_prox (5′-[Btn]- ACC CCC CTA ACC CAT CAC-3′), and sequencing
primer S-OCT4_prox (5′-GGG GTT GAG TAG TTT-3′); Forward-OCT4_dist
(5′- TTT TTG TGG GGG ATT TGT ATT GA-3′), Reverse-OCT4_dist (5′-[Btn]-
AAA CTA CTC AAC CCC TCT CT-3′), and sequencing primer S-OCT4_dist
(5′-ATT TGT ATT GAG GTT TTG GA-3′).26 Primer sequences were designed
to hybridize with CpG-free sites to ensure methylation-independent
amplification. PCR was performed with primers biotinylated to convert
the PCR product to single-stranded DNA templates, using the VacuumPrep
Tool (Qiagen). After PCR amplification, pyrosequencing reactions and
methylation quantification were performed using PyroMark Q24 reagents,
equipment and software, according to manufacturer’s instructions.

TCR and Ig gene monoclonal rearrangements
To determine the myeloid, T-cell or B-cell origin of the established iPSCs,
TCR and Ig gene monoclonal rearrangements were analyzed. Genomic
DNA from iPSCs and normal PB (polyclonal control) was isolated using
standard methods. For Ig gene monoclonal rearrangements, complete
VDJH and incomplete DJH rearrangements were amplified and identified
using the BIOMED-2 framework 1-3 strategy.27 For amplification of
complete VDJH rearrangements, a set of family-specific primers of the
FR1 and FR2 regions and one JH consensus primer were used in two
multiplexed PCR reactions. Amplification of incomplete DJH rearrange-
ments was performed in two different reactions using family-specific
primers for DH1 to DH6 families, respectively, together with the
consensus JH primer. The monoclonal nature of the rearrangements
was analyzed by the identification of single amplification peaks by
GeneScanning analysis following described criteria.28,29 All products were
sequenced as previously described.28 Monoclonal PCR products were
purified with ExoSap (USB Co, Cleveland, OH, USA) and directly
sequenced in an 3500XL Genetic Analyzer (Applied Biosystems, Carlsbad,
CA, USA) using BigDye Terminators with the v1.1 Cycle Sequencing kit
(Applied Biosystems).28 TCR rearrangements were also amplified and
identified using also the BIOMED-2 strategy. TCR gamma (TCRγ) gene
rearrangements were analyzed using the TCRγ primer set that identifies
the majority of monoclonal T-cell populations.27

Myeloid, B-cell, T-cell re-differentiation and spontaneous
differentiation assays
Undifferentiated B-cell-, T-cell-, myeloid- and fibroblast-iPSCs were
re-differentiated into myeloid cells, T cells and B cells following protocols
extensively established. Briefly, for myeloid differentiation, confluent iPSCs
were transferred into low-attachment plates and allowed to form
embryoid bodies (hEBs) in differentiation media supplemented with
hematopoietic cytokines (300 ng/ml stem cell factor (SCF), 10 ng/ml
interleukin-3, 10 ng/ml interleukin-6 and 50 ng/ml granulocyte colony
stimulating factor, 25 ng/ml BMP-4). At day 15 of hEB development, a
single cell suspension was achieved using collagenase B followed by 10-
min treatment with cell dissociation buffer, and by gentle pipetting and
stained with anti-CD31-FITC, anti-CD45-APC, anti-CD34-PE and 7AAD (BD
Biosciences). Live cells (7AAD-) were analyzed using a FACS Canto-II flow
cytometer (BD Biosciences). Hematopoietic cells were identified as CD34
+CD31+CD45− (hemogenic progenitors) and CD45+ cells. The myeloid
clonogenic potential was determined by colony-forming unit assay by
plating 50 000 d15 hEB cells into methylcellulose H4435 (Stem Cell
Technologies, Vancouver, BC, Canada). Cells were incubated at 37 °C/5%
CO2 humidified atmosphere, and colonies counted after 14 days using
standard morphological criteria.17,19,30–34

For B- and T-cell differentiation, hiPSCs were harvested by 40min
collagenase IV/Dispase (Invitrogen, Carlsbad, CA, USA) pretreatment and
seeded onto over-confluent OP9 stroma on gelatinized 10-cm dishes.
Culture media consisted of αMEM supplemented with 10% FBS, 1%
PenStrep, 100 μM monothioglycerol and 50 μg/ml ascorbic acid. After
10 days of coculture onto OP9 stroma, cells were harvested by 30min
digestion with collagenase IV (200 U/ml) followed by 15min with TrypLE
(Invitrogen) and CD34+ cells were MACS-purified using CD34 microbeads
(Miltenyi) following the manufacturer's instructions. To induce B-cell
differentiation, MS5 stroma was used.35 Isolated iPSC-derived CD34+ cells
were cocultured onto confluent MS5 monolayers at a density of ~ 5 × 104

cells/10-cm dish in αMEM supplemented with 10% FBS, 1%PenStrep,
interleukin-7 (20ng/ml), SCF (50 ng/ml) and Flt3L (50 ng/ml) (all from R&D
Systems, Minneapolis, MN, USA). MS5/CD34+ cocultures were maintained
for 30 days and then harvested by collagenase IV/trypLE digestion and
stained with CD29-FITC, CD19-PE and CD45-APC (Miltenyi).35 To induce
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T-cell differentiation, purified iPSC-CD34+ cells were cocultured on
confluent monolayers of OP9-DLL4 in αMEM supplemented with 10%
FBS, 1%PenStrep, 100 μM monothioglycerol, 50 μg/ml ascorbic acid,
interleukin-7 (5 ng/ml), SCF (10 ng/ml) and Flt3L (5 ng/ml). OP9-DLL4/
CD34 cocultures were split every 6–8 days and maintained for 30 days.

Cocultures were then harvested by collagenases IV/trypLE digestion and
stained with CD5-APC and CD45-PerCP-Cy5.5 (BD Biosciences).36

For spontaneous differentiation, iPSCs/ESCs were harvested with
Collagenase IV (1 mg/ml) and cell clumps were transferred into
low-attachment plates for EB formation. EBs were maintained for 6 days
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in differentiation media (KO-DMEM plus 20% KO-serum replacement,
0.1 mM β-mercaptoethanol, 1 mML-glutamine, 1% PenStrep, 1 mM sodium
pyruvate and 1× non-essential amino acids). Medium was changed every
2 days and EBs were collected after 6 days for RNA extraction and qRT-PCR.
Primers used are shown in Supplementary Table S1.

RESULTS
Generation of iPSC from CB- and PB-derived human primary
B cells
In 10 independent experiments, between 1× 105 and 1× 106

highly purified (499.5%) CB-derived CD19+/CD20+ B cells and
CD19− non-B cells were infected with non-integrative tetracis-
tronic SeV encoding OSKM with the miR-302 target sequence
(Figures 1a and b).9,15 Infected cells were cultured on irradiated
mouse embryonic fibroblasts in MEF-conditioned media until the
emergence of iPSC-like colonies which were plucked and
expanded for further 15 days on irradiated mouse embryonic
fibroblasts in hESC media into stable iPSC with bona fide hESC
morphology (Figure 1c). From CB, a total of 154 (efficiency:
0.051%) and 33 (efficiency: 0.0013%) iPSC clones were generated
from the CD19− and CD19+ cell fractions, respectively (Table 1),
indicating that the CD19− fraction is reprogrammed into
pluripotency with ~ 40-fold higher efficiency than the CD19+ cell
fraction. Lymphocyte development involves sequential DNA
genetic rearrangements of the T-cell receptor or Ig loci.37,38 Thus,
to investigate whether the iPSCs were derived from B, T or
myeloid (non-B non-T) cells, we analyzed both TCR and Ig gene
rearrangements using the BIOMED-2 strategy.27 Three out of the
154 iPSCs generated from the CB-derived CD19− fraction tested
positive for TCR Vγ-Jγ rearrangement (Supplementary Figure S1a)
while the remaining 151 iPSCs were negative for both TCR and Ig
rearrangements (Supplementary Figure S1a and Figure 1d)
indicating that 151 iPSCs have originated from myeloid cells
(0.05% efficiency) and 3 iPSCs from T cells (0.001% efficiency)
(Table 1). Upon gradient centrifugation of mononuclear cells and
CD19 MACS-depletion, the ratio of T-cell to myeloid cell was 1:1
(data not shown), confirming that myeloid cells are much easier to
reprogram than T cells.
Within the CB-derived CD19+ fraction, 27 out of the 33 iPSCs

tested positive for complete VDJH Ig monoclonal rearrangement
(Figures 1d and e and Table 1) demonstrating that these iPSCs
have originated from terminally differentiated CD19+ B cells,
although at a low efficiency, 0.001%. B-cell iPSCs were consistently
generated from all the individual CB assayed. The remaining six
iPSCs tested negative for both Ig and TCR rearrangements.
Because FACS purity was 499% (Figure 1a), these six iPSC lines
seem the result of contaminating myeloid cells (Table 1).
We then characterized several CB-derived B-cell iPSCs (Figure 1),
T-cell iPSCs (Supplementary Figure S1) and myeloid iPSC
(Supplementary Figure S2). They displayed hESC-like morphology
(Figure 1f and Supplementary Figures S1b and S2a) and were
positive for alkaline phosphatase (Figure 1f and Supplementary

Figures S1b and S2a) and NANOG, OCT4, TRA-1-60 and SOX2
(Figure 1g and Supplementary Figures S1c and S2b). By qRT-PCR,
all iPSCs expressed the pluripotency factors NANOG, OCT4, SOX2
and REX1 (Figure 1h and Supplementary Figures S1d and S2c), and
by passage 10, they have completely eliminated SeV (Figure 1i and
Supplementary Figures S1e and S2d), indicating they are bona fide
transgene-free iPSCs. All iPSCs were karyotypically normal
(Figure 1j and Supplementary Figures S1f and S2e), and consistent
with the activation of endogenous pluripotency genes, repro-
gramming was accompanied by an extensive loss of CpG
methylation at the OCT4 and NANOG promoters (Figure 1k and
Supplementary Figures S1g and S2f).The most rigorous pluripo-
tency test of human iPSC is the formation of teratomas in
immunedeficient mice.25 On subcutaneous injection into NSG
mice, all iPSCs generated well-differentiated teratomas represent-
ing the three germ layers (Figure 1l and Supplementary Figures
S1h and S2g).
For PB-derived mature B cells (n = 5), highly purified (499.5%)

CD19+/CD20+ B cells were reprogrammed using the conditions
and miROSKM-SeV as described above for CB B cells
(Figures 1a and b). Under basal conditions, 10 iPSC clones
were generated resulting in a reprogramming efficiency of
0.001%, very similar to that of CB B cells (Table 2 and Figure 2b).
These PB B-cell iPSCs displayed hESC-like morphology
(Figure 2c), had complete VDJH Ig monoclonal rearrangement
(Figure 2d) and expressed (at both RNA and protein level) the
pluripotency factors NANOG, OCT4, SOX2, REX1 and Tra-1-60
(Figures 2e and f).

Transient expression of C/EBPα facilitates OSKM-mediated CB and
PB B-cell reprogramming
We recently demonstrated that mouse B cells can be repro-
grammed into iPSCs with high efficiency when the cells were
pulsed with the myeloid transcription factor C/EBPα before
exposure to the reprogramming factors OSKM.14 We thus
hypothesized that C/EBPα may function as a ‘path breaker’
facilitating human B-cell reprogramming. CB and PB mature B cells
were reprogrammed basically as described above but they were
now co-infected with miROSKM-SeV and C/EBPαER-SeV and then
maintained the first 72 h in the presence of β-estradiol (or vehicle)
to trigger C/EBPα activity in the nucleus of the infected cells14

(Figure 2a). C/EBPα pulse increased ~ twofold the efficiency of
OSKM-mediated PB B-cell reprogramming (Figure 2b and Table 2).
C/EBPα-mediated PB B-cell iPSCs (Bα-cell iPSCs) were character-
ized for morphology (Figure 2c), complete VDJH Ig monoclonal
rearrangement (Figure 2d), and RNA and protein expression of the
pluripotency factors NANOG, OCT4, SOX2, REX1 and Tra-1–60
(Figures 2e and f), resulting indistinguishable from those B-cell
iPSCs generated in the absence of C/EBPα. Similarly, co-
expression of C/EBPα and OSKM also enhanced ~ 2.5-fold the
reprogramming efficiency of B cells from CB (Figure 2g). CB-
derived B-cell iPSCs and Bα-cell iPSCs were also morphologically,

Figure 1. Generation and characterization of mature B-cell iPSCs. (a) Representative flow cytometry plots of CD19+ and CD19− populations
before and after FACS sorting (n= 15). Of the sorted B cells, 99.6% were CD19+CD20+ (not shown). (b) Genome structure of the OSKM-
miR-302-expressing SeV vector. (c) Schematic drawing of the strategy used to derive iPSCs from B cells. (d) Complete VDJH monoclonal
rearrangements were present in all CB-derived B-cell iPSCs. Top panel shows polyclonal complete VDJH rearrangements from normal CB.
Bottom panel shows a complete VDJH monoclonal rearrangement in a representative CB-derived B-cell iPSC. (e) Representative
electropherogram of a B-cell iPSC showing the junction region of the PCR product sequence shown in (d) confirming a complete VDJH
monoclonal rearrangement (IGHV1-69*01/IGHD3-9*01/IGHJ4*02). (f) Morphology and alkaline phosphatase staining of a representative B-cell
iPSC. (g) Immunostaining for the pluripotency markers OCT4, NANOG, SOX2 and TRA-1-60 in a representative B-cell iPSC. (h) qRT-PCR for the
pluripotency transcription factors OCT4, SOX2, NANOG and REX1. (i) Representative qRT-PCR demonstrating SeV elimination after 10 passages.
The inset is a representative anti-SeV immunostaining showing a high infection (~85%) with SeV of CD19+ B cells 2 days after infection.
(j) Diploid karyotype of a representative B-cell iPSC at p15. (k) Pyrosequencing revealing demethylation of OCT4 and NANOG promoters in
representative B-cell and fibroblast iPSCs. (l) Teratoma analysis revealing three germ layer differentiation of a representative B-cell iPSC. α-sm
actin, FoxA2 and β-III tubulin are mesoderm-, endoderm- and ectoderm-specific markers.
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molecularly and phenotypically indistinguible (Figures 2h and j).
Addition of sodium butyrate, an HDAC inhibitor previously
reported to facilitate iPSC generation,39 did not display an effect
on OSKM-mediated B-cell reprogramming when used either
alone or in combination with C/EBPα (Table 2).

The differentiation potential of B-cell-, T-cell- and myeloid-iPSCs is
not influenced by the cell type of origin
There is controversy on whether iPSCs retain residual 'epigenetic
memory' of the donor tissue/cell type from which they were
derived and display skewed differentiation potential.40 Here, we
next tested and quantified whether the differentiation potential of
B-cell-, T-cell-, myeloid- and fibroblast-iPSCs is determined by the
cell type of origin. Myeloid differentiation from the indicated
B-cell, T-cell, myeloid- and fibro-iPSCs (n = 3) was assessed
by FACS (CD45+CD33+) and colony-forming unit potential using
a hEB formation system17,19,30–34 (Figure 3a). As compared with
B-cell-, T-cell- and fibroblast-iPSCs, myeloid-iPSCs displayed a
slight trend towards the generation of more hematopoietic cells
(P-value40.1; Figure 2b) with higher colony-forming unit poten-
tial (P-value40.1; Figure 2c). Among all the different iPSCs tested,

the levels of B-cell (CD45+CD19+) differentiation on MS5-iPSC
coculture (Figures 2d and e) and T-cell (CD45+CD5+) differentia-
tion on OP9-DLL4-iPSC coculture (Figures 2d and f) ranged
between 0.2–1% and 20–60%, respectively, with no trend of
predisposed differentiation (‘epigenetic memory’) towards the cell
type from which they were derived. Next, we evaluated more
globally the developmental potential of the different B-cell-,
Bα-cell-, T-cell- and myeloid-iPSCs. Upon hEB spontaneous
differentiation, qRT-PCR was performed for mesoderm- (CXCR4,
PDGRFα, PDGFRβ), ectoderm- (MAP2, PAX6) and endoderm-
specific (SOX17, AFP, FOXA2) master factors (Supplementary
Figure S3a). All iPSCs readily differentiated into tissues represent-
ing the three germ layers with no evident difference depending
the cell type from which the iPSCs were derived (Supplementary
Figure S3b). Altogether, these data indicate that re-differentiation
back into the cell type of origin of B-cell-, T-cell-, myeloid- and
fibroblast-iPSCs is not skewed, suggesting that their differentiation
potential does not seem influenced by ‘epigenetic memory’.

DISCUSSION
To date, human primary B cells have been shown to be refractory
to reprogramming.9,10,12 Here, we show for the first time that
human CB/PB-derived B lymphocytes can be induced to
pluripotency using a non-integrative tetracistronic miROSKM-
SeV, and that the B-cell reprogramming process is enhanced by
co-expression of OSKM with the ‘path breaker’ C/EBPα. Our
systematic study using CB and PB demonstrates that miROSKM-
SeV allows the generation of iPSC from primary myeloid, T-cell and
B cells. Myeloid cells are the easiest to reprogram in contrast to a
previous report describing higher reprogramming efficiency of
pre-stimulated T lymphocytes as compared with myeloid cells.10

Our data reflect the actual intrinsic cell-autonomous reprogram-
ming capacity of myeloid, B cells and T cells because we have
avoided unbiased or skewed reprogramming by using freshly
isolated uncultured primary cells, not exposed to hematopoietic
cytokines favoring proliferation or differentiation. The efficiency of
SeV infection was similar (~85%) in CD19+ and CD19− cells,
indicating that SeV-mediated reprogramming efficiency is not
associated to viral infection efficiency. Importantly, however, the

Table 1. iPSC induction efficiency from cord blood-derived B cells,
T cells and myeloid cells

Cord blood (n= 10)

Cell subset reprogrammed CD19+ CD19−

B-cell iPSC lines 27/3 500 000
0.001%

0/300 000
0%

T-cell iPSC lines 0/2 000 000
0%

3/300 000
0.001%

Myeloid iPSC linesa 6/2 000 000
0.0003%

151/300 000
0.05%

Abbreviation: iPSC, induced pluripotent stem cell. Data shown as number
of iPSC clones/infected cells and reprogramming efficiency (in %). Identity
of B-cell iPSCs was always confirmed by VDJH rearrangements. aIndicates
non-T, non-B iPSC lacking both TCR and IGH rearrangements.

Table 2. iPSC induction efficiency from peripheral blood-derived B cells in the presence or absence of C/EBPα

Reprogramming conditions PB B-cell (n= 5)

— NaB C/EBPα C/EBPα+NaB

Efficiency 10/1.000.000
0.001%

10/1.000.000
0.001%

19/1.000.000
0.0019%

22/1.000.000
0.0022%

Abbreviations: NaB, sodium butyrate; PB, peripheral blood. Data shown as number of iPSC clones/infected cells and reprogramming efficiency (in %). Identity
of B-cell iPSCs was always confirmed by complete VDJH rearrangements.

Figure 2. C/EBPα expression facilitates OSKM-mediated CB and PB B-cell reprogramming. (a) Schematic overview of the strategy used to
derive iPSCs from CB and PB B cells in the presence of C/EBPα. (b) C/EBPα expression induces a 2.5-fold increase in iPSC generation (measured
as Tra-1–16+ colonies) from PB B cells. Data are shown relative to colony number in the absence of C/EBPα. Error bars indicate s.d. (n = 3).
(c) Representative morphology of PB B-cell iPSCs and PB Bα-cell iPSCs. (d) Complete VDJH monoclonal rearrangements were present in both
PB B-cell and PB Bα-cell derived iPSCs. (e) Representative immunostaining for the pluripotency markers OCT4-SOX2 and TRA-1-60-NANOG in
PB B-cell iPSC and PB Bα-cell iPSC. (f) qRT-PCR for the pluripotency transcription factors OCT4, SOX2, NANOG and REX1 in PB B-cell iPSC and PB
Bα-cell iPSC. PB-mononuclear cells were used as negative controls. Error bars indicate s.d. (n= 3). (g) C/EBPα expression induces a 2.5-fold
increase in iPSC generation (measured as Tra-1-60+ colonies) from CB B cells. Data are shown relative to colony number in the absence of
C/EBPα. Error bars indicate s.d. (n= 3). (h) qRT-PCR showing the exogenous expression of C/EBPα in B cells upon infection with the C/EBPαER-SeV.
(i) qRT-PCR for the pluripotency transcription factors OCT4, SOX2, NANOG and REX1 in CB Bα-cell iPSC. CB-mononuclear cells were used as
negative controls. Error bars indicate s.d. (n= 3). (j) Representative morphology and immunostaining for the pluripotency markers OCT4,
NANOG, SOX2 and TRA-1-60 in a CB Bα-cell iPSCs.
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tetracistronic miROSKM-SeV system was compared side-by-side
with the monocistronic SeV system (four genes in four different
plasmids). Only B-cell iPSCs were obtained when the tetracistronic

miROSKM-SeV was used. In contrast, reprogramming efficiency of
myeloid cells was similar upon delivering the OSKM factors in one
or several vectors (data not shown), confirming that the delivery of
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all the reprogramming factors in one genome may be a
requirement for B-cell reprogramming, likely by increasing the
likelihood of simultaneous expression of the four factors within
the same cell.
We found efficiencies of iPSC induction for myeloid and T cells

similar to previous reports.7,9,10 Chou et al.41 found that by using
an episomal reprogramming plasmid, the efficiency of iPSC
generation is higher in CB than in PB. However, using
miROSKM-SeV, we here report that CB- and PB-derived B cells

are reprogrammed at a very similar efficiency, likely reflecting
that potential reprogramming barriers such as more mature
phenotype and lower proliferation index of activated circulating
B lymphocytes may be circumvented with the use of a
robust tetracistronic miROSKM-SeV. Despite successful reprogram-
ming of CB/PB-derived B cells, the efficiency remains very low.
Reprogramming involves a concomitant silencing of the transcrip-
tional program specific of the somatic cell and activation of a
pluripotent transcriptome, whereas mature B cells depend upon
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Figure 3. Myeloid, B-cell and T-cell differentiation of B-cell, T-cell, myeloid- and fibroblast-iPSCs. (a) Schema of hiPSC hematopoietic
differentiation system based on hEB formation and time points for FACS and colony-forming unit (CFU) analysis. (b) Hematopoietic potential
of the different iPSCs indicated. Inset is a representative FACS analysis of hematopoietic cells (black dots). HEP stands for hemato-endothelial
progenitors. Error bars indicate s.d. (n= 3). (c) Myeloid potential measured as clonogenic capacity of the different iPSCs indicated. Error bars
indicate s.d. (n = 3). Right panels show representative CFU colonies (top) and flow cytometry (bottom) of the CFUs confirming the myeloid
phenotype (CD33+). (d) Schema of hiPSC B-cell (OP9+MS5 cocultures) and T-cell (OP9+OP9-DLL4 cocultures) differentiation systems and time
points for FACS analysis. (e) B-cell potential measured by FACS (CD45+CD19+) of the different iPSCs indicated. Error bars indicate s.d. (n = 3).
(f) T-cell potential measured by FACS (CD45+CD5+) of the different iPSCs indicated. Error bars indicate s.d. (n = 3).
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survival signals delivered to the cells by their antigen receptor
(BCR).42 Thus, if the Ig/BCR locus rapidly switches off upon ectopic
OSKM expression, then the B cells will probably not survive long
enough to allow for the functional phenotypic conversion to
pluripotency to occur, probably representing a major barrier in
B-cell reprogramming.
C/EBPα is a master myeloid transcription factor that induces

transdifferentiation of B cells into macrophages.43 Earlier work in
mouse showed that co-expression of C/EBPα with OSKM increases
between 15- and 100-fold the reprogramming efficiency of murine
B cells.12,14 We reasoned that C/EBPα may also function as a ‘path
breaker’ in human B cells, thus facilitating the reprogramming of
human primary B cells. We demonstrated that C/EBPα increased
2.5-fold the reprogramming efficiency of both CB and PB B cells.
The C/EBPα-mediated enhancement of B-cell iPSC generation is
not as strong as that observed with mouse B cells,12,14 likely
reflecting species-specific differences in B-cell developmental
stages. However, technical differences cannot be ruled out
because the SeV biology target cells have to be simultaneously
infected with both miROSKM-SeV and C/EBPαER-SeV, and the
miROSKM-SeV used here was not inducible thus preventing us to
perform an initial C/EBPα priming followed by OKSM induction.
CB/PB B-cell iPSCs obtained upon C/EBPα exposure were
characterized and resulted indistinguishable from those B-cell
iPSCs generated in the absence of C/EBPα. Whether C/EBPα poises
human B cells for rapid reprogramming by inducing the
expression of the dioxygenase TET2 which, in turn, makes the
chromatin of pluripotency genes more accessible by promoting
demethylation of such genes by conversion of 5mC to 5hmC
requires further investigation.
It has been suggested that iPSCs may retain a residual

'epigenetic memory' of the donor tissue/cell type from which
they are derived, and therefore the donor cell type can influence
the epigenome and differentiation potential of hiPSCs.40,44

However, almost all of these studies have compared the
differentiation potential of iPSCs developed from tissues/cell
types with different developmental origin. Here, we analyzed
whether the differentiation potential of iPSCs derived from distinct
blood cell types (B cells, T cells and myeloid cells) from the same
tissue (CB) and same donors is determined by the cell type
of origin. Using robust direct differentiation protocols,30,32,35,36

B-cell-, T-cell- and myeloid-iPSCs were re-differentiation into
myeloid cells, B cells and T cells. In addition, more global
developmental potential into mesoderm, ectoderm and endo-
derm was also assessed upon spontaneous hEB differentiation.
Overall, no 'epigenetic memory'/predisposed differentiation
towards the cell type of their origin was found, indicating that
the developmental differences between CB-derived myeloid,
B cells and T cells are not instructive enough as to influence the
differentiation potential of the resulting hiPSCs. Residual ‘epigenetic
memory’ is thought to be progressively lost upon cell passaging. In
this study, all the iPSCs used for differentiation assays were at
passage 20–30, when no traces of miROSKM-SeV were detected,
and thus some degree of predisposed differentiation/’epigenetic
memory’ at early passage cannot be ruled out. In addition, it should
be taken into consideration that a limited number of iPSC lines
from distinct healthy individuals were used in this study and
therefore these data must be validated in a larger cohort of blood
cell type-derived iPSCs from a larger variety of donors.
In sum, generation of iPSC from human hematopoietic cells

from PB and CB is an attractive option because they are
easily accessible through non-invasive methods, and in the
case of CB, cells are young and harbor minimal somatic
mutations. Reprogramming healthy donor and/or patient-
specific PB-derived B cells to pluripotency will offer a valuable
in vitro system to study cellular, molecular and epigenetic
events underlying the physiology of B-cell lymphopoiesis and
the pathogenesis of B-cell malignancies. This study should

encourage further strategies to increase the reprogramming
efficiency of normal and leukemic B cells for downstream
applications such as disease modeling, drug screening and
developmental immunology.
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