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Abstract.  

The mechanical behavior of laminated glass elements is governed by material properties of the 

interlayer, the Polyvinyl Butiral (PVB) being the most used interlayer material in these elements.   

PVB  is a viscoelastic material whose mechanical properties (Young’s modulus, shear modulus, etc.)  

depend mainly on the load application time and the temperature. Thus an adequate mechanical 

characterization of the PVB must be performed  in order to predict the response of laminated glass 

elements with a good accuracy  

In this work, PVB specimens were subjected to static relaxation tests and to  dynamic experimental 

tests (frequency domain) at different temperatures from −15𝑜𝐶 to 50𝑜𝐶 using a DMTA equipment. 

Then the curves at different temperatures were related using the William-Landel-Ferry (WLF) Time-

Temperature Superposition (TTS) model to obtain the mastercurve of both the time and frequency 

domain Young’s moduli of the PVB. Finally, a viscoelastic Prony based model was fitted to the 

experimental data and used, afterwards, to simulate numerically the static and dynamic behaviour of 

different laminated glass elements at different temperatures. The numerical simulations were 

compared with the static and dynamic experimental results achieving a good accuracy in both the 

static deflections and the natural frequencies. With respect to the damping, the discrepancies are less 

than 22%.  
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1. Introduction 

Laminated glass elements are nowadays of great interest in mechanical and structural applications 

due to their advantages with respect to standard monolithic glass [1, 2], such as vibration and noise 

isolation as well as the safety improvement. This composite material consists of two or more layers 

of monolithic glass with one or more polymer interlayers. Although the monolithic glass presents a 
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brittle non-linear behaviour [3], in the pre glass-breakage is usually considered as a linear-elastic 

material [4, 5]. On the other hand, the polymer interlayers present, in general, a viscoelastic 

behaviour, Polyvinyl Butiral (PVB) being the most used interlayer material which is usually 

characterized as linear-viscoelastic [4]. The viscoelastic behaviour of the PVB governs  the entire 

behaviour of the laminated glass so that an adequate characterization of the interlayer material must 

be undertaken  for a proper design of laminated glass elements [6, 7, 8, 9]. 

A full viscoelastic analysis is recommended when a precise design of a laminated glass element is 

needed but it is time consuming and requires to make the calculations in finite element program [9]. 

In order to simplify the calculations, the mechanical behaviour of the interlayer can be considered as 

a linear elastic material, taking at each time its equivalent elastic modulus 𝐸(𝑡) [10, 11, 12, 13, 14], 

i.e. neglecting the memory effect of the viscoelasticity. This simplification is assumed when the 

calculations are carried out with the effective thickness concept proposed recently by [4] and extended 

an applied by different authors [5, 9, 13, 14]. Several analytical models proposed for the calculation 

of laminated glass elements also consider this assumption [10, 11, 12]. 

As a viscoelastic material, the mechanical properties of PVB are mainly dependent of the load 

application time [7] and the temperature working conditions [15, 16]. Hereafter, we will simply refer 

to the properties of the PVB as time and temperature dependent.  

This time and temperature dependence implies that a large number of assays should be carried out in 

order to cover all the material working conditions. However, in those so-called simply thermo-

rheological materials [16], both variables (time and temperature) can be related through the Time–

Temperature Superposition (TTS) principle [17, 18] so, a series of stretch time experiments at 

different temperatures can be shifted to a reference temperature in order to obtain a broad-band time 

master curve at the corresponding reference temperature (see Figure 1).  

Although this principle is a valuable tool for obtaining the mechanical properties of viscoelastic 

materials that obey the TTS, an automatic method to shift all the curves does not exist. The shifting 

can be done manually, using overlapping guess algorithms or, i.e. a minimization interpolation 

process but, in any case, a good knowledge of the master curve construction process is required [19, 

20]. A schematic description of the steps to develop a TTS fit is presented in Figure 1. 
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Figure 1. General steps of the time-temperature superposition method. 

Several methods to determine the horizontal shift factor, 𝑎𝑇, that relates temperature and time, have 

been proposed in the literature [21, 22]. However, within the glass transition zone, the WLF [23]  

model is widely used in the last 6 decades since a good agreement has been observed for a large 

number of materials. 

In the case of PVB, the WLF model has been  used by different authors [4, 24]. to obtain the master 

curve of the material . If the master curve is obtained by a simple overlapping of the curves 

corresponding to different temperatures, omitting the recommendations indicated by William, Landel 

and Ferry [23] to fit properly the model, as well as its limitations,  the fitted master curve can only 

represent adequately the material behaviour at one specific reference temperature. Thus if the master 

curve obtained by a simple overlapping is used to predict the static and/or the dynamic response of 

laminated glass elements at temperatures different to the reference temperature, significant large 

errors are expected.. Therefore, an in-depth study concerning the applicability of the WLF for 

constructing the master curves of PVB is needed.      

In this work, the WLF model is applied to determine the master curve of PVB for the relaxation 

modulus, 𝐸(𝑡), as well as for the complex modulus, 𝐸∗(𝜔) of the material. The WLF constants of 

both master curves were compared being the results in good agreement. On the other hand, the 
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relaxation 𝐸(𝑡) master curve of the PVB was fitted to a Generalized Maxwell model, using Prony 

series, which was used to obtain successfully the complex modulus 𝐸(𝜔) by analytical 

interconversion. 

Finally, the PVB material model is applied to the analysis of laminated glass elements. Static and 

dynamic experiments were carried out on a laminated glass plate and a multi-layered laminated glass 

beam at different temperatures. The experimental results were compared with those provided by a 

finite element model (FEM) using the viscoelastic mechanical properties of PVB obtained in this 

work. A good accuracy was encountered between the numerical simulations and the experimental 

results. 

  

2. Time-Temperature Superposition Principle: The WLF Equation 

The main idea of the time-temperature superposition is to construct broadband time master curves 

(usually span several decades of time) from stretch time curves (2 or 3 decades) of the material 

obtained at different temperatures (see Figure 1). The principle can be applied indistinctly to the 

construction of any viscoelastic modulus, such as relaxation 𝐸(𝑡), creep 𝐷(𝑡) or complex 𝐸∗(𝜔). 

Hereafter, for the sake of simplicity the relaxation modulus 𝐸(𝑡) will be used but the methodology 

can be extended to the other viscoelastic functions in time or frequency domain, respectively.  

To start the process of fitting a TTS model, an overlay master curve is necessary. The overlay master 

curve is initially obtained by overlapping the individual curves corresponding to the different tested 

temperatures (see Figure 2). To obtain the initial overlay master curve (see Figure 2), each individual 

curve at temperature 𝑇𝑖 has to be horizontally time-shifted to the corresponding time interval in the 

overlay master curve at reference temperature 𝑇0 (see Figure 2), that is: 

𝐸(𝑡, 𝑇0)𝑖 = 𝑎𝑇𝑖
 𝐸(𝑡𝑖, 𝑇𝑖) (1) 

 

where 𝐸(𝑡, 𝑇0)𝑖 is the time-shifted curve, 𝐸(𝑡𝑖, 𝑇𝑖) is the original curve and 𝑎𝑇𝑖
 is the “time shift 

factor” (see Figure 2), hereafter, simply denoted as “shift factor”. 
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Figure 2. Schematic of the master curve creation process 

In the glass transition zone, the WLF equation is widely used to obtain the horizontal shift factor, 𝑎𝑇, 

which relates the curves corresponding to two different temperatures, e.g. 𝑇 and 𝑇0 and which is given 

by [25]: 

𝑙𝑜𝑔𝑎𝑇 =
𝐵

2.303
(

1

𝑓
−

1

𝑓0
) + log (

𝑇0 𝜌0

𝑇 𝜌
) (2) 

 

where 𝑓0 is ratio of free to total volume of the molecules, 𝐵 is an empirical constant and 𝜌0 is the 

mass density. In practice, the last term of Eq. (2) can be neglected due to the slow temperature 

variation of term (𝑇 𝜌) [25]. If it is assumed that 𝑓 increases linearly with temperature [25] by means 

of equation:  

𝑓 = 𝑓0 + 𝛼𝑓(𝑇 − 𝑇0) (3) 

 

where 𝛼𝑓 is the thermal expansion of free volume relative to total volume and if Eq. (3) is substituted 

in Eq. (2), the classical expression of the WLF equation is derived [25]: 

𝑙𝑜𝑔𝑎𝑇 = −
𝐶1

0(𝑇 − 𝑇0)

(𝐶2
𝑜 + 𝑇 − 𝑇0)

 (4) 

 

T1<T0

T2>T0

T0

Time [s]

E
 (

t)

t0

Overlay mastercurve

 aT1

Individual

curves

 aT2



6 

 

where 𝐶1
0 = 𝐵/(2.303𝑓0) and 𝐶2

0 = 𝑓0/𝛼𝑓 are empirical constants to be determined in the WLF 

equation fitting process for the reference temperature 𝑇0 [23, 25]. The WLF equation cannot be solved 

directly since the two constants 𝐶1
0and 𝐶2

0 must be known. Therefore, additional techniques have to 

be used to fit the WLF model [25]. Alternatively, the general values for constants 𝐶1
0and 𝐶2

0, proposed 

by Willian, Landel and Ferry, may be used [23, 25]. Once 𝐶1
0 and 𝐶2

0 are known for the initial 

reference temperature 𝑇0, the WLF model can be used to evaluate the corresponding constants 𝐶1
𝑖 and 

𝐶2
𝑖  at a different temperature, 𝑇𝑖, by means of the expressions: 

𝐶1
𝑖 =

𝐶1
0𝐶2

0

(𝐶2
0 + 𝑇𝑖 − 𝑇0)

 (5) 

and 

𝐶2
𝑖 = 𝐶2

0 + 𝑇𝑖 − 𝑇0 (6) 

 

Therefore, the shift factors for a new master curve at reference temperature 𝑇𝑖 can be obtained with 

Eq. (4) using the new constants 𝐶1
𝑖 and 𝐶2

𝑖 , calculated with Eqs. (5) and (6), respectively. Although 

any temperature 𝑇0 could be considered as reference in Eq. (4) during the fitting process, William, 

Landel and Ferry [23] recommend the use of the glass transition temperature (𝑇𝑔) or even better, an 

arbitrary temperature 𝑇𝑠, which can be approximated by the equation [23]:  

𝑇𝑠 ≈ 𝑇𝑔 + 50𝑜𝐶 (7) 

  

Once the master curve at temperature 𝑇0 is created and the WLF constants are known, the whole 

family of mastercuves, for the range of validity of the WLF model, could be obtained (see Figure 3), 

so that, the time and temperature material viscoelastic modulus would be completely defined.  
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Figure 3. Example of relaxation modulus master curves at different temperatures 

3. Experimental Program 

To characterize the viscoelastic properties of the PVB, tensile relaxation  tests were carried out in a 

DMA RSA3 by T.A. Instruments (see Figure 4). The DMA is equipped with a temperature-controlled 

chamber that conducts experiments over a wide range of temperatures, from −60𝑜𝐶 to 150𝑜𝐶. 

The material used in the experiments was standard PVB (Polyvinyl butyral) being the specimens 25 

mm long and 5 mm wide with a thickness of 0.38 mm.  

In order to obtain the relaxation master curve of the material, 𝐸(𝑡), 15 tensile test were conducted at 

different temperatures from −15𝑜𝐶  to 50𝑜𝐶. A constant strain value of 𝜀0 = 1% was considered in 

the experiments. Additionally, 10 tensile tests in the frequency range from 0.1 to 80 Hz were 

conducted at different temperatures in the range from 8 to 35 𝐶 
𝑜  to obtain the complex modulus of 

the material, 𝐸(𝜔) according to standard ASTM D5026 [26]. Finally, a temperature sweep from -

25ºC to 65ºC at a constant frequency of 1 Hz  and constant strain 𝜀0 = 1% was carried out to obtain 

the glass transition temperature of the material.  

The experimental curves are presented in Figs. 5 and 6 for the relaxation and complex moduli, 

respectively, whereas the temperature sweep curve is shown in Figure 7.  
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Figure 4. DMTA (RSA3. TA. Instruments) and tensile fixtures used in the experiments. 

 

Figure 5. Relaxation curves at different temperatures for the PVB. 
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Figure 6. Storage modulus curves at different temperatures for the PVB. 

 

 

Figure 7. Temperature sweep at 1 Hz from -25 𝑪 
𝒐  to 65 𝑪 

𝒐  for the PVB. 

4. Analysis of the Results 

4.1 Glass Transition Temperature 

Although there is not an unique procedure for determining the glass transition temperature [27], 

according to ASTM D3418-97 [28], 𝑇𝑔, can be inferred from the maximum peak of the loss modulus 

𝐸′′(𝜔) obtained with temperature sweep analysis. In this case, 𝑇𝑔, is approximately at +8𝑜𝐶 (see 

Figure 6). 

4.2 TTS Application for the Relaxation Master Curve of PVB  
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The initial overlay master curve of the material was obtained by overlapping the individual curves 

(see Figure 5), that is, each curve was horizontally shifted (only time-shifts were considered) to the 

reference one using a residual minimization algorithm based on cubic spline interpolation [29]. In 

Figure 8, it is shown the overlay master curve when 20𝑜𝐶 is used as reference temperature together 

with the experimental shift factors 𝑎𝑇
𝑒𝑥𝑝

. 

From Figure 8, it can be inferred that the material presents a thermorheological simple behaviour 

[16], therefore, the technique of time-temperature superposition can be applied for obtaining the 

master curve of PVB. Once the overlay master curve is obtained, the experimental shift factors, 𝑎𝑇
𝑒𝑥𝑝

, 

for each curve can be estimated (see Figure 8). It can be observed in Figure 8 the shift factors exhibits 

a change in the tendency when temperature falls from 10𝑜𝐶. This fact agrees with the breakdown of 

the WLF TTS model at temperatures lower than the glass transition temperature of the material [23]. 

The phenomenon can be understood as a reduction of the free volume and mobility in the molecules, 

so less variation of the material properties with temperature is expected and, consequently, a reduction 

in the corresponding shift factors should occur [25]. This breakdown of the 𝑎𝑇
𝑒𝑥𝑝

 is also in agreement 

with the glass transition temperature 𝑇𝑔 = 8𝑜𝐶, obtained from Figure 7, and must be taken into 

account to establish the range of validity of the WLF model. It must be emphasized that fitting all the 

temperature range (see Figure 8 left) with the WLF model will lead to erroneous constants 𝐶1 and 𝐶2 

and, consequently, uncertainties and errors when the WLF model is used to shift the master curve of 

the material. In this way, 10𝑜𝐶 should be considered as the lower limit of applicability of the WLF 

model for PVB.  

 

 

 
Figure 8. Overlay curve of PVB (left) and experimental 𝒂𝑻

𝒆𝒙𝒑
 (right) for a reference temperature 

of 𝟐𝟎𝒐𝑪. 
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Although the WLF fitting process can be carried out taken 𝑇𝑔 as reference temperature, William, 

Landel and Ferry recommend to use a temperature 𝑇𝑠 [23] (see Eq. (6)) in the fitting process. This 

temperature 𝑇𝑠 corresponds approximately to the end tail of the viscoelastic behaviour zone. 

The WLF model (Eq. (4)) was fitted to the experimental results in the range from 10𝑜𝐶 to 50𝑜𝐶 using 

the shift factors 𝑎𝑇
𝑒𝑥𝑝

 shown in Figure 8. These values were obtained considering 𝑇0 = 𝑇𝑠 = 50𝑜𝐶 as 

reference temperature. 

The parameters 𝐶1
𝑠 = 8.9932 and 𝐶2

𝑠 = 104.76 are close to the universal constants proposed by 

WLF: 𝐶1
𝑠𝑊𝐿𝐹 = 8.86 and 𝐶2

𝑠𝑊𝐿𝐹 = 101.6, the errors being 1.5% and 3% for 𝐶1 and 𝐶2, respectively. 

If the WLF is fitted using  (in this case 𝑇𝑔 = 10𝑜𝐶) the following constants 𝐶1
𝑔

= 11.208 and 𝐶2
𝑔

=

41.818 are obtained, that differ slightly from those proposed by WLF when  is used: 𝐶1
𝑔𝑊𝐿𝐹

=

17.44 and 𝐶2
𝑔𝑊𝐿𝐹

= 51.6. It has to be noticed that the universal constants proposed by WLF for 𝑇𝑔 

are obtained with an exact shift of 50𝑜𝐶 from 𝑇𝑠 using Eqs. (5) and (6).  

Whereas 𝑇𝑠 and 𝑇𝑔 are the reference temperatures recommended to fit the experimental data to the 

model (𝑇𝑠 being preferable according to [23]) , whatever temperature in the range 𝑇𝑔 < 𝑇 < 𝑇𝑠 could 

be used in the fitting process, but the results obtained will always present less accuracy than the other 

two cases (see Figure 9). This fact has to be considered in the analysis because, in general, the WFL 

model for PVB is fitted using a reference temperature of 20𝑜𝐶 (room temperature) [4, 24] so large 

errors are being introduced in the PVB mechanical characterization. 

 

 
Figure 9. Comparison of the WLF model when 𝑻𝒔, 𝑻𝒈 or a temperature within the range 𝑻𝒈 < 𝑻 <

𝑻𝒔 are used (left) and final master curve of the PVB for 𝑻𝒔 = 𝟓𝟎𝒐𝑪 (right). 

  

Once the WLF is fitted, the master curve of the PVB for reference temperature 𝑇𝑠 can be constructed 

using Eq. (4) (see Figure 9). The master curve at another temperature 𝑇1, within the WLF temperature 

range (𝑇𝑔 < 𝑇 < 𝑇𝑠), can be directly obtained shifting the master curve at 50𝑜𝐶 with the corresponding 
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𝑎𝑇 estimated with Eq. (4) and the constants 𝐶1
𝑠 and 𝐶2

𝑠. The new constants 𝐶1
1 and 𝐶2

1 corresponding 

to temperature 𝑇1 can be obtained with Eqs. (4) and (5), respectively. If temperatures lower than 

10𝑜𝐶 must be taken into account, a new TTS model should be used to fit properly the experimental 

shift factors below this temperature rather than use the 𝑎𝑇 obtained with the WLF for the glass 

transition zone. In the case of PVB, the mechanical behaviour or laminated glass below the glass 

transition temperature can be assimilated to a monolithic glass with a thickness equal to the total 

thicknesses of the laminated glass elements [5 14], Therefore, the TTS for PVB below 10𝑜𝐶 has less 

relevance from a practical point of view. The full viscoelastic model for the PVB will be presented 

in section 4.4. 

4.3 TTS Application for the Complex modulus master curve of PVB 

As a second step, the maste curve for the dynamic complex modulus (frequency domain) of the PVB 

is obtained. The higher experimental temperature is 35𝑜 so in the WLF fitting process, this 

temperature was considered as reference. Although this temperature is below the recommended one, 

𝑇𝑠 ≈ 𝑇𝑔 + 50𝑜𝐶, the lower storage values of the experimental curve at 35𝑜𝐶 (see Figure 6) are close 

to the minimum value of the material modulus, i.e. close to the low-frequency tail of the master curve 

and, therefore, it can be considered adequate. The overlay curve for the complex moduli at 35𝑜𝐶 is 

presented in Figure 9 where the storage modulus 𝐸′(𝜔) (real part of the complex modulus) and the 

ratio tanδ = 𝐸′′(𝜔)/𝐸′(𝜔), being 𝐸′′(𝜔) the loss modulus (imaginary part of the complex modulus), 

are shown. 

The constants obtained for the WLF model at the reference temperature are: 𝐶1
35 = 9.7240 and 𝐶2

35 =

97.0580. Using Eqs. (5) and (6) these constants can be shifted to 50𝑜𝐶, which corresponds with the 

value of 𝑇𝑠 used for the WLF model in the relaxation master curve, being 𝐶1
50 = 8.4128 and 𝐶2

50 =

112.0580. If these values (𝐶1
50 and 𝐶2

50) are compared with those previously fitted for the relaxation 

modulus master curve (𝐶1
𝑠 = 8.9932 and 𝐶2

𝑠 = 104.76), the errors are less than 6.5% for both 

constants. If they are compared with the universal constants proposed for WLF at 𝑇𝑠, the errors are 

approximately 5% and 10% for 𝐶1 and 𝐶2, respectively, which are slightly higher than those obtained 

in the relaxation master curve. However, large errors are expected because the reference temperature 

𝑇0 = 35𝑜𝐶 consider to fit the complex modulus is lower to the recommended 𝑇𝑠 [23]. 
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Figure 10. Overlay complex modulus curve for the PVB at 𝟑𝟓𝒐𝑪. 

4.4. PVB viscoelastic model 

After fitting the WLF model to the experimental data, the mastercuve of both relaxation and complex 

modulus can be constructed. Although the master curves can be obtained for the complete time 

window of the overlay curves (see Figure 8 and Figure 10), the WLF can be only used to shift both 

relaxation and complex moduli in the validity range i.e. from 10𝑜𝐶 to 50𝑜 𝐶. 

A generalized Maxwell model [15, 16] was used to model the viscoelastic behaviour of the PVB. The 

model consist of several individual Maxwell models combined in parallel (see Figure 11). 

 

Figure 11. Generalized Maxwell model. 

If the generalized Maxwell model is represented by a Prony’s series [26], the relaxation Young 
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10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
6

10
7

10
8

10
9

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

w [Hz]

  
E

' (
)

  
  

  
[P

a
]

  ta
n
(d

) (
)

          [ ]



14 

 

E(t) = E0 [1 − ∑ ei

nt

i=1
(1 − exp (−

t

 τi
))] (8) 

where 𝐸0 is the instantaneous modulus of the material, 𝑛𝑡 is the number of Maxwell terms used in the 

model and (𝑒𝑖, 𝜏𝑖) are the Prony coefficients. The experimental master curve for a reference 

temperature 𝑇 = 20𝑜𝐶 and the viscoelastic fitted model using 13 terms in the Prony series (R-square 

0.99943) are presented in Figure 10. The master curve at 20𝑜𝐶 was obtained by shifting the master 

curve at 𝑇𝑠 = 50𝑜𝐶 using the WLF model and the constants calculated with Eqs. (5) and (6), i.e. 

𝐶1𝑅
20 = 12.6010 and 𝐶2𝑅

20 = 74.7600. The Prony coefficients for the viscoelastic model of the PVB 

are presented in Table 1. 

Table 1. Prony series coefficients for PVB 

𝑒𝑖  𝜏𝑖  [s] 

2.342151953E-01 2.36600000000000E-07 

2.137793134E-01 2.26430000000000E-06 

1.745500419E-01 2.16668000000000E-05 

1.195345045E-01 2.07327300000000E-04 

1.362133454E-01 1.98389580000000E-03 

6.840656310E-02 1.89837195000000E-02 

4.143944180E-02 1.81653498300000E-01 

7.251952800E-03 1.73822593210000E+00 

2.825459600E-03 1.66329270788000E+01 

2.712854000E-04 1.59158978189400E+02 

4.293523000E-04 1.52297789909670E+03 

9.804730000E-05 1.45732380763177E+04 

5.274937000E-04 1.39449999999999E+05 

 

Once the relaxation modulus of the material is known in terms of Prony coefficients, (𝑒i, τi), it can 

be used to obtain the components of the complex modulus by interconversion techniques, i.e. the 

storage modulus 𝐸′(𝜔) and the loss modulus 𝐸′′(𝜔)  [31, 32] are given by: 

 

E′(ω) = E∞ + ∑
 τi

2ω2ei

 τi
2ω2 + 1

n

i=1
 (9) 

 

E′′(ω) = ∑
 τi

2ω2ei

 τi
2ω2 + 1

n

i=1
 (10) 

 

The complex modulus components of the PVB at 𝑇 = 20𝑜𝐶, obtained from the relaxation Prony 

coefficients using Eqs. (9) and (10), are presented in Figure 12 together with the experimental 

complex modulus master curve. The experimental complex modulus master curve has been shifted 
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from 35𝑜C to 20𝑜𝐶 using the same WLF constants as those obtained by fitting the relaxation 

modulus. The WLF constants obtained using Eqs. (5) and (6) for 20𝑜𝐶 were: 𝐶1𝐶
20 =11.4885 and 

𝐶2𝐶
20 = 82.0580, resulting in an error of 9% when compared with those obtained from the WLF of 

the relaxation master curve.  

From Figure 12, it is inferred than a good accuracy is also obtained using interconversion techniques 

(errors less than 10%), so that the WLF model proposed can be considered adequate to represent the 

PVB mechanical behaviour in both time (relaxation modulus) and frequency (complex modulus) 

domains. On the other hand, similar constants 𝐶1 and 𝐶2 of the WLF model were obtained for both 

relaxation and complex moduli master curves, confirming that the WLF can be applied successfully 

to shift the master curve of the PVB at different temperatures. This fact is shown in Figure 10 where 

both predicted and experimental curves are shifted from 50𝑜𝐶 and 35𝑜𝐶, respectively, to a reference 

temperature 𝑇0 = 20𝑜𝐶. 

  

 

Figure 12. Complex modulus of the PVB obtained by interconversion from the relaxation Prony 

coefficients at 𝟐𝟎𝒐𝑪. 

5. Practical application: prediction of laminated glass elements behaviour 

In this section, the mechanical properties of the PVB obtained in  section 4.4 were used  to predict  

the response of laminated glass elements under static and dynamic loadings. Both analytical models 

[5, 10, 14, 33, 34] as well as numerical models, i.e. by the finite element method [35], can be used 

for this purpose but in this paper a finite element model was assembled in ABAQUS considering the 

Prony series coefficients  presented in Table1 and the WLF model constants 𝐶1 and 𝐶2 indicated in 

section 4.4   
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5.1 Laminated glass plate under static loading 

A laminated glass plate pinned supported at the four corners with 4 wood balls (diameter of 50 mm) 

,  dimensions 𝑎 =  1.4 m,   𝑏 = 1 m and thicknesses  ℎ𝑔𝑙𝑎𝑠𝑠 = 8 mm for the glass layers and ℎ𝑃𝑉𝐵 =

0.76 mm for the PVB layer, respectively, was statically tested under an uniformly distributed loading 

of  920 𝑁/𝑚2. The experiment was conducted at 21.5𝑜𝐶 (room temperature). The displacement of 

the central point of the plate was measured using a laser sensor (AR700-12) for approximately 26 

hours with a NI-CDAQ system (NI9239). 

In order to validate the mechanical properties of the PVB, a 3D finite element model was assembled 

in ABAQUS. 3D linear shell continuum elements (SC8R) were used for the glass layers [36] whereas 

the PVB layers were meshed with 3D linear hexahedral elements (C3D8R). This meshing technique 

has been demonstrated to be adequate to reproduce the laminated glass behaviour with a relatively 

low computational time [35]. A detail of the mesh is shown in Figure 13. The elastic properties used 

for both glass and PVB are presented in Table 2. The mechanical behaviour of the PVB  interlayers 

was considered viscoelastic in terms of  Prony series whose coefficients are shown in Table 1, 

whereas the WLF constants were 𝐶1𝑅
20 = 12.6010 and 𝐶2𝑅

20 = 74.7600. 

 

Figure 13. Finite element models for the laminated glass plate and beam. 

 

Table 2. Mechanical properties of glass and PVB. 

𝐸𝑔𝑙𝑎𝑠𝑠 [GPa] 𝜈𝑔𝑙𝑎𝑠𝑠 𝜌𝑔𝑙𝑎𝑠𝑠 [kg/m3] 𝐸0𝑃𝑉𝐵
[GPa] 𝜈𝑃𝑉𝐵 𝜌𝑃𝑉𝐵 [kg/m3] 

72 0.22 2500 1.2403 0.40 1046 
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The experimental and numerical displacement at the central point of the plate are presented in Figure 

14. It can be observed in the figure that a good correlation exists between the experimental and the 

simulated displacement, the larger error being less than 1.75%. 

 

Figure 14. Displacement of central point of the laminated glass plate. 

5.2 Multilayered laminated glass beam: dynamic behaviour 

A multilayered laminated glass beam 1000 mm long and 100 mm wide thicknesses  ℎ𝑔𝑙𝑎𝑠𝑠 = 4 mm 

(3 layers) and ℎ𝑃𝑉𝐵 = 0.38 mm (2 layers) was used in the experiments. The beam was tested under 

free-free conditions using operational modal analysis [37]. Seven accelerometers (B&K: 100 mv/g) 

uniformly distributed along the beam were used to measure the responses and recorded with a NI-

CDAQ system (NI9234). The beam was excited applying small hits along the beam random in time 

and space with an impact hammer and the responses were recorded for approximately 4 minutes using 

a sampling frequency of 1000 Hz. The modal tests were performed in a climate chamber at 20, 25 

and 30 ºC, respectively. The modal parameters of the beam were estimate using the Frequency 

Domain Decomposition technique (EFDD) [37]. 

A 3D numerical model of the beam was also assembled in ABQUS meshing the glass layers with 3D 

linear shell continuum elements (SC8R) [35] whereas the PVB layers were meshed with 3D linear 

hexahedral elements (C3D8R). With respect to the mechanical behaviour, the same mechanical 

properties as those used in the plate were considered for the glass and the PVB interlayers (see Figure 

13). In order to obtain the numerical modal parameters of the beam, the frequency response function 

(FRF) was obtained from a sweep sine analysis (linear frequency analysis) [35] subjecting the 

specimen to a uniform loading with a magnitude of 1 N for all the frequency range considered in the 
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simulations. Then, the natural frequencies were estimated by the peak picking method [38, 39] 

whereas the damping ratios were obtained by the logarithmic decrement technique [38, 39]. 

The numerical natural frequencies and loss factors are presented in Table 3, together with those 

obtained experimentally. It is assumed that the damping ratios  and the loss factors are related by 𝜂 ≈

2𝜁 [40]. 

With respect to the natural frequencies, the error between the experimental and the numerical values 

was consistently less than 2.5%. On the other hand, large discrepancies were encountered in the loss 

factors, being the errors about 20% for the first mode at 𝑇 = 30𝑜𝐶. It has to be noticed that the 

uncertainty bounds of damping ratios (or loss factors) are usually much higher than those of the 

natural frequencies [41].  

Table 3. Frequencies and damping ratios for the multilayered laminated glass beam at different 

temperatures. 

Ta Mode 
Experimental Numerical Error 

Freq. [Hz] 𝜂  [%] Freq. [Hz] 𝜂  [%] Freq. [%] 𝜂  [%] 

20oC 

1 36.14 1.18 36.58 1.26 1.19 7.16 

2 98.28 2.40 99.35 2.76 1.08 12.79 

3 188.94 3.24 191.18 3.72 1.17 12.78 

4 306.13 4.40 308.58 4.84 0.79 9.00 

                

25oC 

1 35.95 2.32 36.39 2.02 1.21 14.91 

2 96.56 4.22 97.87 4.30 1.35 2.30 

3 185.52 5.84 186.80 7.12 0.69 18.19 

4 297.53 8.74 300.61 8.82 1.03 1.10 

                

30oC 

1 35.40 5.66 35.95 4.44 1.54 21.55 

2 93.32 7.88 95.56 7.96 2.34 0.94 

3 175.72 10.82 180.02 11.46 2.39 5.69 

4 --- --- 283.86 13.96 --- --- 

 

6. Conclusions 

In this paper, the viscoelastic behaviour of the PVB and the range of application of the WLF-TTS 

model have been analyzed. The most accurate results for the WLF model constants 𝐶1 and 𝐶2 were 

obtained when 𝑇𝑠 is considered as reference temperature, being the results for the PVB in good 

agreement with the general universal constants proposed by WLF [18].  

The WLF model was applied to determine both relaxation 𝐸(𝑡) and complex 𝐸∗(𝜔) moduli of the 

PVB from the experimental tests conducted at different temperatures. The WLF model for the 
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complex modulus leads to approximately the same constants 𝐶1 and 𝐶2  (error less than a 6.5%) than 

those obtained from the relaxation modulus 𝐸(𝑡). 

The breakdown of the proposed WLF model for the PVB is in good agreement with the beginning of 

the Glass transition zone for the material (𝑇𝑔
𝑃𝑉𝐵: 8 − 10𝑜 𝐶). Therefore, the change in the slope of the 

experimental shift factors 𝑎𝑇 is a good indicator to establish the temperature limits of the WLF model. 

For the standard PVB characterized in this work, the limitation of the proposed WLF model is in the 

range from 10 to 50𝑜 𝐶.  

The experimental viscoelastic relaxation 𝐸(𝑡) modulus of the PVB was fitted to a generalized 

Maxwell model, which was used together with the WLF constants 𝐶1 and 𝐶2 to predict numerically 

the static behaviour of a laminated glass plate and the dynamic behaviour of a multi-layered laminated 

glass beam. 

The errors between the numerical static deflection of the plate and that measured during the 

experiments  were less than  1.75%. With respect to modal parameters  predicted the errors were less 

than  2.5% for the natural frequencies whereas  the loss factors were predicted  with a maximum error 

of 22%, which are of the same order as those by the authors in laminated glass elements [5]. These 

results demonstrate that the mechanical properties of the PVB obtained in this paper represent 

adequately the l viscoelastic behaviour of the material. 
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Figure Captions: 

Figure 1. General steps of the time-temperature superposition method. 

Figure 2. Schematic of the master curve creation process 

Figure 3. Example of relaxation modulus master curves at different temperatures 

Figure 4. DMTA (RSA3. TA. Instruments) and tensile fixtures used in the experiments. 

Figure 5. Relaxation curves at different temperatures for the PVB. 

Figure 6. Storage modulus curves at different temperatures for the PVB. 

Figure 7. Temperature sweep at 1 Hz from −25𝑜𝐶 to  65𝑜𝐶 for the PVB. 

Figure 8. Overlay curve of PVB (left) and experimental 𝑎𝑇
𝑒𝑥𝑝  (right) for a reference temperature of 

20𝑜𝐶. 

Figure 9. Comparison of the WLF model when 𝑇𝑠, 𝑇𝑔 or a temperature within the range 𝑇𝑔 < 𝑇 <

𝑇𝑠 are used (left) and final master curve of the PVB for 𝑇𝑠 = 50𝑜𝐶 (right). 

Figure 10. Overlay complex modulus curve for the PVB at 35𝑜𝐶. 

Figure 11. Generalized Maxwell model. 

Figure 12. Complex modulus of the PVB obtained by interconversion from the relaxation Prony 

coefficients at 20𝑜𝐶. 

Figure 13. Finite element models for the laminated glass plate and beam. 

Figure 14. Displacement of central point of the laminated glass plate. 

 


