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Abstract

Multi-layered laminated glass panels are those with at least three monolithic glass layers
and two viscoelastic interlayers. Multi-layered laminated glass panels are commonly used
in floors, roofs and other horizontal glazing accessible to the public where a high level of
security is required. Although the glass can be consider a linear-elastic material, the
viscoelastic interlayers determine a non-linear behavior of the laminated structure that
must be taken into consideration. In this paper, a dynamic effective thickness is proposed

to predict the natural frequencies and damping ratios of multi-layered laminated glass
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beam-like structures with different boundary conditions and at different temperatures.
Furthermore, the presented dynamic effective thickness can be also used to any frequency

domain calculations such as displacements and stresses.

To validate the proposed model, operational modal analysis was carried out on a multi-
layered laminated glass beam to obtain the experimental natural frequencies and damping
ratios at 20, 25, 30 and 35 °C. Moreover, a finite element model of the beam was also
assembly for the sake of comparison. The proposed model predicts the natural frequencies

with errors less than 5% whereas the discrepancies in damping ratios are less than 50%.
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Abbreviations

Eofr Effective Young modulus

E Young’s modulus of glass

G:(t) Viscoelastic relaxation shear modulus for the polymeric interlayer
H; Thickness of the i-th glass layer in laminated glass

t; Thickness of the i-th polymeric layer in laminated glass



K. (t) Viscoelastic bulk modulus of the interlayer

L Length of a glass beam
T Temperature
To Reference temperature

Lowercase letters

ar Shift factor

b Width of a glass beam

gx) Shape function (Galuppi and Royer Carfagni model)
t Time

w Deflection

Greek letters

Pt Density of the polymeric interlayers
0c Density of the glass layers
Introduction

Laminated glass beams are sandwich elements which show a viscoelastic behavior [1, 2,

3 and 4]. A typical laminated glass panel consist of two outer monolithic glass layers and



one interlayer of a polymer (figure 1) such as polyvinyl butyral (PVB). The polymer
interlayers work in a wide range of temperatures due, i.e. to the seasonally changing

weather conditions.

Multi-layered laminated glass panels (figure 1) are those with at least three monolithic
glass layers and two viscoelastic interlayers [5, 6]. Multi-layered laminated glass panels
can be used for many different applications due to the added thickness and strength as
well as the high damping exhibited by these elements and they are also subject to different
types of loading (permanent, variable, impact, etc.). The glass may be annealed, heat or

chemically strengthened or fully tempered [7, 8].

Multi-layered laminated glass panels are commonly used in accessible glazing, i.e. floors,
roofs and other horizontal glazing accessible to the public or, at least, for cleaning and
maintenance [8]. In these applications must be examined, among others, resistance
against impact caused by a hard or soft body, the post-breakage behavior as well as the
slip resistance [8]. Multi-layered laminated glass panels are mandatory in some codes and
standards. According to DIN 18008-5 [9], glass floor panels must consist of at least three
glass layers with PVB interlayers and the uppermost glass layer must be neglected for
structural analysis. With respect to code ONORM B3716 [10] the load carrying layer
must be of laminated glass with and additional abrasion layer and thermally toughened
glass is only allowed in combination with float or strengthened glass and the minimal

thickness of the PVB layers is 0.76 mm [7].
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Figure 1. Section of a sandwich (a) and a multi-layered (b) glass beam.

Glass walkways are another application of multi-layered laminated glass. The standard
ASTM 2751-11 [11] (Practice for the Design and Performance of Supported Glass
Walkways) contains calculation and testing methods applicable to the design of glass
walkways constructed with laminated glass including interior and exterior walking
surfaces constructed and intended for pedestrian use (floors, ramps, sidewalks, and stair
treads). The Grand Canyon glass walkway was built with a 40 mm thick quadruple
laminate consisting of heat strengthened glass and one fully tempered glass (lower
supported ply). The additional upper 8 mm tempered ply was ignored in the analysis and

provides additional safety and redundancy [6].

Glass mechanical behavior is usually modeled as linear-elastic whereas the PVB shows
linear-viscoelastic behavior. A fundamental characteristic of viscoelastic materials is that
the mechanical properties are frequency (or time) and temperature dependent [12, 13, 14,

15]. The mechanical behavior of laminated glass is not elastic and the sections do not



behave according to the Euler-Bernoulli Beam theory assumptions (plane sections remain

plane) due to the shear effect of the interlayers [1, 2].

Some analytical models proposed for laminated glass elements [16] simplify the
calculation considering the polymeric interlayer as a linear elastic material where the
shear modulus is chosen according to the temperature and load duration, i.e., neglecting
the “memory effect” of viscoelasticity. Galuppi and Royer-Carfagni [1] concluded that a
full viscoelastic analysis is only recommended when one is interested in a precise design
of a laminated glass structures. Bennisson et al. [3, 4] proposed the concept of effective
thickness for simplifying calculations of laminated glass elements under static loading,
based on a previous work developed by Wélfel [17]. The method consists of calculating
the thickness of a monolithic beam with equivalent bending properties to a laminated
beam. The effective thickness can then be used in analytical equations and simplified
finite element models in place of the actual thickness of the laminated glass beam [1, 2,
3, 4, 18 and 19]. This methodology has also been extended to the two-dimensional case
(laminated plates) under various loads and boundary conditions [20] and to the case of

multi-layered laminated glass beams [5].

With regard to the dynamic behavior, Ross, Kerwin and Ungar were the first to study the
flexural vibration of a sandwich configuration [21, 22] and they proposed an effective
complex flexural stiffness which can be used to determine the modal parameters of a

sandwich beam using the equations and the wavenumbers corresponding to an Euler-



Bernoulli beam. They assumed that the wave motion in a constrained layer configuration
can be described by a fourth-order differential equation. Ditaranto [23, 24] and Mead and
Markus [25, 26] demonstrated that the flexural motion of a sandwich beam is governed

by a sixth-order linear homogeneous differential equation.

Aenlle and Pelayo [18] proposed a dynamic effective thickness for calculating modal
parameters in laminated glass beams using simple monolithic elastic models. This method

was extended by the same authors to laminated glass plates in [19].

With respect to numerical simulations, many papers and books have been published about
the modelling of sandwich and laminated elements [19, 20, 27, 28, 29, 30, 31, 32] subject
to static and dynamic loadings. Galuppi and Royer Carfagni [20] proposed an analytical
model to calculate the static response of laminated glass elements and the predictions are
validated by numerical simulations. In [27, 28] the iso-geometric analysis, the level set
and a simple-first order shear deformation theory are combined to simulate more
effectively the free vibration of laminated composite plates. In [29, 30, 31] meshfree
methods are developed for free and forced vibration analysis of 2D elements. The basis
functions for the CQ4 (4-node quadrilateral element) element are used to analyze the free

and forced 2D vibrations of linear elastic and piezoelectric structures [32].



In this paper, the effective thickness developed by Galuppi and Royer Carfagni [5] to
calculate deflections in multi-layered laminated glass beams under static loadings is here
extended to the frequency domain using the correspondence principle [13, 14, 33, 34].
Furthermore, a dynamic effective thickness is also derived solving the differential
equation of flexural wave motion. In order to validate the model, the modal parameters
of a multi-layered laminated glass beam consisting of three annealed glass layers and two
PVB interlayers were estimated by operational modal analysis at different temperatures
in the range 20-35°C. The experimental results are compared with the predictions
provided by the proposed analytical model and with the results obtained with a finite

element model assembled in ABAQUS [35].

State of the art

Static deflection effective thickness in laminated glass beams

Galuppi and Royer-Carfagni [2] derived an analytical expression for the deflection
effective thickness of a laminated glass beam composed of two glass layers and one
polymeric interlayer using a variational approach. In their work, the following
assumptions were considered: the face plates are purely elastic, the core is linearly
viscoelastic with shear modulus G, (t, T), the shear strains in the face plates are negligible,
the longitudinal stresses in the core are negligible, there is no slipping between the elastic

and viscoelastic layers at their interfaces and the three layers have the same transversal



displacement w(x, t, T). Moreover, the authors also assume that the deflection shape of
the laminated glass beam coincide with that of a monolithic beam with the same loading
and boundary conditions, i.e., the deflection of the beam is expressed as:

g(x)

Ty =——
wxt,T) EI(t, T)sy

1)

where g(x) is a shape function that takes the form of the elastic deflection of a monolithic
beam with constant cross section under the same loading and boundary conditions as the

laminated glass beam and EI(t, T)s, is the bending stiffness of the laminated glass beam

given by:
EI(t, T),, = !
T2 T st T) n 1—ns(tT) )
Eltot Elr,
Where:

e subindex “s” indicates static

e subindex “2” indicates beam with two glass layers and one interlayer
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e Yy is a constant parameter which depends on the boundary and loading

conditions [2] and it is given by:

_ INCREHRE:
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Using the dimensionless standard geometric parameter Yg,:
_Elror, _ _ (A1di +Apd3) _ bHBH\H, )

B2 Ely, It Iy (Hy+Hy)

and the dimensionless shear parameter g, (t, T) commonly used in sandwich beams [25,

26 and 36] which defines the shear coupling between the core and outer layers:

e 1) = G DEHH,) _ G (L T)HE; bL”
gs2lb 1) = EtH,H, E ot Yy

(6)

Eg. (2) can be expressed as:
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If the shear modulus is constant G.(t, T) = G;, the shear parameter is also constant and it

is given by:

_ GL*(Hy+H,) G HZ, bL?

= =—=— 8
9e2 = "piH H, E t IrpYp ®)
If Eq. (8) is substituted in Eq. (7), the later becomes:
YBZ
EIE2 =EIT2 1+—2 (9)
1+-2e L
9e2(t, T)

Which is also constant and it represents the stiffness of the sandwich beam when both the

core and the glass layers show a linear-elastic behavior.

In the case of three glass layers of equal thickness H and two polymeric interlayers with

thickness t, the static flexural stiffness can be derived from [5] and it is given:



. Yp3
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Where:

e subindex “3” indicates beam with 3 glass layers

3
L] IT3=3I=3b1i2

8(t+H)?
[ ] YB3 = H2
G¢(t,T)
e 9s3(t,T) = tET (12)

e P is a constant parameter which takes the same values as those derived for the

beam with 2 glass layers [2].
If the case that the shear modulus is constant G.(t, T) = G, the elastic shear parameter is
given by:

Gy

- = (12)

9E3

Whereas the elastic flexural stiffness is expressed as:
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Dynamic effective thickness in sandwich glass beams

Mead and Markus (M&M) [25, 26] derived a sixth-order differential equation that
governs the flexural wave motion of a three layered constrained-layer damping beam

when it vibrates freely at frequency w . The differential equation is given by:
EITZ (WVI(XJ t, T) - 922 (w; T) (1 + YBZ) WIV(x: ¢, T)) -
—w? M, (W' (x,t,T) = ga(0,T) w(x,t,T)) =0 (14)

Where the roman numerals superscripts denote differentiation with respect to X, the
superscript “*” indicates complex, the subscript “d” indicates dynamic, m, is the mass

per unit length of the beam, i.e.:
M, = bpg(Hy + Hy) + bpity (15)

and g, (w, T) is the shear parameter given by:
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Eq. (10) yields the following polynomial equation for k*L:
(k*L)® = gap (@, T) (1 + Vo) (k" L)* — 272 (k*L)? + 2% g3, (w, T) = 0
where k* is a complex wavenumber:
k* =kg+i-k
and Q" is a non-dimensional frequency defined by [25, 26]:

07 = w*2m, L*
~ Elp

Eq. (19) after rearrangement yields to:

02 = (k*L)* <(k*L)2 —9a2(@, T)(1 + Y32)>

(k*L)? = ggz(w,T)

or:

kx4 Y
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If the real part of k* is neglected, i.e., kg = 0, k* is given by k* =i - k; and EqQ. (21)

results in:
" v
WA +in)=—Elp | 1+—— (22)
e L L
oz (@, T)

From Eq. (22) the following equation for the effective complex flexural stiffness can be

defined:
. _ Ypo
EI"(w,T); = Elp; | 1+ ———— (23)
ek
95w, T)

Which can be used to estimate modal parameters, displacements and stresses in laminated

glass beams [19, 37]. In the case of a simply supported beam, the wavenumber is given

by:

kp=n (24)



With 'n' being the order of the mode and the stiffness given by Eq. (23) coincides with
that derived by Ross, Kerwin, and Ungar [21, 22] considering the beam simply supported
and vibrating at a natural frequency, which means that the flexural deformation of the
beam during vibration is spatially sinusoidal in shape. Later, the effective complex
flexural stiffness was extended to other boundary conditions using the appropriate

wavenumbers [12, 22].

From Egs. (7) and (23) it is inferred that the square of the wavenumber k? and the shear
parameter g, (w, T) play in dynamics the same role as the parameters ¢z and gs,(t, T),

respectively, in statics.

Moreover, the effective complex flexural stiffness EI*(w, T), can be easily derived from
the elastic stiffness Elg, (EQ. (9)) applying the correspondence principle. With respect to
the shear parameter g, (w, T) it can also be derived from the elastic shear parameter gg,
(Eq. (8)) applying the correspondence principle but with the special feature that the

wavenumber k2 must be used instead of parameter 1y [38].

Dynamic effective thickness of a symmetric three glass
multi-layered beam

In this section an expression for the effective complex flexural stiffness of a laminated

glass beam composed of three glass layers of equal thickness and two polymeric



interlayers is derived. This expression can be formulated solving the differential equation
that governs the flexural wave motion of a multi-layered glass beam or alternatively
applying the correspondence principle to the stiffness of a laminated glass beam with both

the core and the glass layers showing a linear-elastic behavior.

Dynamic effective thickness by the correspondence principle

The correspondence principle [13, 14, 33, 34] states that if a solution to a linear elasticity
problem is known, the solution to the corresponding problem for a linearly viscoelastic
material can be obtained by replacing each quantity which can depend on time by its
Fourier Transform. In order that the elastic and viscoelastic solutions correspond, the
interface between boundary regions under specified displacement and under specified

stress must not change with time.

In order to apply the correspondence principle, an elasticity solution must be known [34].
Wherever an elastic constant appears, it is replaced with the corresponding complex
dynamic viscoelastic function. Some examples of application are shown in Table 1.

Table 1. Examples of application of the correspondence principle (superscript "*'

indicates complex).

Constitutive equation Bending Natural frequencies




Linear-Elastic oc=FE-¢€ = — 2 _ 420
o £l w* =k oA
o(w) = E"(w) M .
Linear-Viscoelastic o(w) = % w*? = kmM
e(w) (w) pA

For a laminated glass beam with three glass layers of equal thickness H and two polymeric
interlayers of equal thickness t, the effective complex flexural stiffness can be derived

applying the correspondence principle to Eq. (13), i.e.:

H3 Yis \
EI'(0,T)3 =b—o | 1+——"5— (25)

ki
1+
gd3 (wi T)

With respect to parameterg;;(w, T), it is given by:

Gt (0,T)

* =—— " 7 26

which can also be derived from Eq. (12) applying the correspondence principle.
The natural frequencies and damping ratios can be now obtained by:

ki,
w*(1+i-n) =—EI'(w,T)3 (27)
mg



Where:
IS the mass per unit length of the beam.

Dynamic effective thickness by solving the flexural wave motion

differential equation

The effective complex flexural stiffness (Eg. (25)) can also be formulated from the
equation of motion corresponding to the beam vibrating freely at frequency w which is

given by [39]:

Elrs WY (%, t,T) — gz (0, T) (1 + Ya) w(x,t,T)) —

—w?m; (W (x,t,T) — giz(@, T) w(x,t,T)) =0 (29)

Eqg. (29) yields the following polynomial equation for k*L:

* 6 * * 4 w*z m_3 L4 * 2 *
('L = gis (@, T) (1 + Yp) (L)t = == (k'L)? = gin(@,T) =0 (30)
T3
From which:
El k*L)? — g ,T)Y(1+Y,
w*? = (k*L)4_T34 <( ) . gzd3((‘)>k )( BS)) 31)
ms L (k*L)? — gg3(w,T)



Neglecting the real part of the wavenumber, i.e. k* =i - k;, the following equation for
the complex flexural effective stiffness corresponding to a symmetric laminated glass
beams with 3 glass layers of equal thickness H and 2 polymeric interlayers of equal

thickness t is inferred:

H3 Y3 \
EI'(@,T)3 =b— | 14— (32)

ki
1+ ——~A—
gus(w,T)

Which coincides with Eq. (25) derived applying the correspondence principle.

Finally, expressions for the dynamic effective thickness and the dynamic effective Young
modulus [18, 19, 37 and 38] can be derived from the complex flexural effective stiffness

(Egs. (25) or (32)). If a monolithic model with constant thickness H :
Hy =3H + 2t (33)

IS going to be used to calculate modal parameters, displacements or stresses in the
frequency domain, a dynamic effective Young modulus (Young modulus of a monolithic

beam which provides the same modal parameters as the laminated one) can derived from:

bH? . 34
Eofr(w, T)3? =El*(w,T); (34)

Which leads to:



T 1+ kL

. 3H3 / Yps3
9as(@,T)

On the other hand, a dynamic effective thickness can be formulated from:

EH}r(w,T)

12 = EI*((U; T)3
(36)
Which results in:
_ ’ 3 / Vg3 \
Heff3(wr T) = |3H \1 +T (37)
1+ ——1—=
gd3(wl T)

Any of the three dynamic effective parameters proposed: complex flexural stiffness,
thickness and Young modulus, can be used for predicting the dynamic response of a
multi-layered beam as well as to calculate other variables in the frequency domain such

as displacements or stresses.



Numerical and experimental validation

In this paper the modal parameters of a multi-layered glass beam composed of three
annealed glass layers and two polymeric interlayers made of polyvinyl butyral (PVB)
were predicted with Eq. (27) using the dynamic effective thickness given by Eq. (25).
The analytical predictions were validated with experimental tests and numerical
simulations. The multi-layered beam used in this work presents the following geometrical
data (see figure 1): L =1.40m, H, =H, =H; =4mm, t; =t, =076 mmand b =

100 mm.

The material properties presented in Table 2 were considered for the glass and PVB
layers. With respect to PVB, its mechanical properties were obtained in a previous work
[18] by a viscoelastic characterization carried out in a DMA RSA3 (T.A. Instruments).

The Prony series for the shear relaxation modulus G.(¢t, T) is given by:

n

0= 1= 01 -e ()

i=1

(38)

where the parameters g; and t; are shown in Table 3.

Moreover, the effect of temperature was considered using the William, Landel and Ferry
(WLF) model [40] where the TTS (Time Temperature Supersposition) shift factor, a, is

given by:



(T —To)

G+ (T—Tp) (39)

log(ar) = —C4

The coefficients C; and C, are shown in Table 2. Once the shift factor a; is determined
for a specific temperature T, the shear relaxation modulus for this temperature G.(t,T)

can be obtained from the relation:
G(t, T) =dar G(t, To) (40)

where G(t,Ty) is known as the master curve of the viscoelastic material at reference

temperature T,.

Table 2. Material properties for glass and PVB.

Glass PVB
E Y Go K A%
p p ¢ G
(Young’s (Poisson’s ] (Instantaneous (Bulk (Poisson’s )
Modulus) ratio) (Density shear modulus) Modulus) ratio) (Density) (WLF: Tref=20C)
[GPa] [kg/m?] [GPa] [GPa] [kg/m?]
70 0.22 2500 0.3696 2 0.40 1046 12.60 74.46

Table 3. Prony series coefficients for PVB.

Term g; T; [S]
1 2.342151953E-01 2.36600000000000E-07
2 2.137793134E-01 2.26430000000000E-06
3 1.745500419E-01 2.16668000000000E-05
4 1.195345045E-01 2.07327300000000E-04
5 1.362133454E-01 1.98389580000000E-03



6 6.840656310E-02 1.89837195000000E-02
7 4.143944180E-02 1.81653498300000E-01
8 7.251952800E-03 1.73822593210000E+00
9 2.825459600E-03 1.66329270788000E+01
10 2.712854000E-04 1.59158978189400E+02
11 4.293523000E-04 1.52297789909670E+03
12 9.804730000E-05 1.45732380763177E+04
13 5.274937000E-04 1.39449999999999E+05

Analytical predictions

The natural frequencies and the damping ratios for the first four modes of the beam in the
temperature range 10°C to 40°C were predicted using Eq. (27) and the dynamic complex
effective stiffness given by Eq. (25). The wavenumbers needed in Eqg. (27) were
considered equal to those of a monolithic beam with the same boundary conditions. The
analytical predictions for the simply supported and free-free boundary conditions are
presented in figures from 6 to 13. The predicted values corresponding to temperatures:
20°C, 25°C,30° and 35°C are shown in Tables 4 and 5, respectively. It can be observed
that the natural frequencies decrease with increasing temperature. This tendency is
expected because the shear modulus of the PVB also decreases with increasing
temperature. With respect to damping, it increases with increasing temperature. In this
paper it has been considered that the loss factor  and the modal damping ¢ are related by

[41, 42]:



n=2(¢ (42)

Numerical simulations

A 3D finite element model was assembled in ABAQUS using the same geometrical data
and material properties (see Table 2 and 3) as those considered in the analytical
predictions. 3D linear shell continuum elements (SC8R) were used for the glass layers
[35] whereas the PVB layers were meshed with 3D linear hexahedral elements (C3D8R).
This meshing technique has been demonstrated to be adequate to reproduce the laminated
glass behavior with a relatively low computational time [43]. A detail of the mesh is

shown in figure 2.

Glass Layers (Continuum Shell)

PVB Layers (3D Solid)



Figure 2. Detail of the beam mesh.

The numerical frequency response function (FRF) was obtained from a sweep sine
analysis (linear frequency analysis) [35] subjecting the specimen to a uniform loading
with a magnitude of 1 N for all the frequency range considered in the simulations. Both
free-free and simply-supported boundary conditions were simulated. Then, the natural
frequencies were estimated by the peak picking method [41, 42] (figure 3) whereas the
damping ratios were obtained by the logarithmic decrement technique [41, 42] (figure 3).
The numerical natural frequencies and damping ratios are presented in tables 4 and 5,

respectively.
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Figure 3. Zoom of the receptance (left) and its corresponding free decay (right) for the

1%t mode with the beam simply-supported at 20 °C.



Experimental results

The modal parameters of the beam were also experimentally determined by operational
modal analysis. The responses of the beam were measured using 7 accelerometers with a
sensitivity of 100 mV/g, uniformly distributed (figure 4) and recorded with a 16 channels
TEAC LX-120 data acquisition system. The arrows in figure 4 show the location and the
direction of the sensors. The beam was excited applying small hits randomly along its
length with an impact hammer and the responses were recorded for approximately 4
minutes using a sampling frequency of 1000 Hz. The modal tests were performed in a

chamber-oven at 20, 25, 30 and 35 °C, respectively.

A
v

Figure 4. Test setup with the location of the accelerometers.

Figure 5 shows the singular value decomposition of the responses at 20°C and 30°C for
the free-free boundary conditions. As temperature increases the peaks become less clear
for the higher modes and only the modal parameters of first mode were accurately

identified over 35°C.
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Figure 5. Singular value decomposition at 20 and 30°C for the free-free conditions.

Modal parameters were estimated using both Frequency Domain Decomposition (EFDD)
[44] and Stochastic Subspace iteration method (SSI) [45]. The experimental natural
frequencies and damping ratios estimated with the EFDD technique are shown in tables
4 and 5, respectively. The SSI technique provides similar results and they are not

presented in the paper.



Table 4. Analytical, numerical and experimental results for the free-free boundary

conditions.
Results Errors
. Mod Analytical Numerical Experimental Analy.-Numeric. Analy.-Exp. Numeric.-Exp.
T e Freq. 4 Freq. { Freq. { Freq. 4 Freq. 4 Freq. 4
(S I 4 N 23 I e 2 B 3 RN ¢ WO 23 M ¢ N €3 M )
1 37.25 0.84 36.58 0.63 36.14 0.59 1.81 24.92 2.98 30.30 1.19 7.16
2 101.01 1.47 99.35 1.38 98.28 1.20 1.64 6.17 2.70 18.17 1.08 12.79
20°C
3 193.55 1.95 191.18 1.86 188.94 1.62 1.22 4.53 2.38 16.74 1.17 12.78
4 311.50 2.55 308.58 2.42 306.13 2.20 0.94 5.02 1.72 13.57 0.79 9.00
1 3697 145 3635 101 3595 116 9157 3025 276 19.85 1.21 14.91
2 99.20 2.43 97.87 2.15 96.56 2.11 1.34 11.50 2.67 13.54 1.35 2.30
25¢°C
3 188.61 3.71 186.80 3.56 185.52 2.92 0.96 3.97 1.64 21.43 0.69 18.19
4 302.52 4.76 300.61 4.41 297.53 4.37 0.63 7.22 1.65 8.24 1.03 1.10
1 36.26 3.34 35.95 2.22 35.40 3.14 0.86 33.56 2.39 6.14 1.54 41.28
2 96.26 5.03 95.56 3.98 93.32 3.95 0.73 20.83 3.05 21.57 2.34 0.94
30°C
3 180.67 6.36 180.02 5.73 175.72 5.41 0.36 9.89 2.74 15.01 2.39 5.69
4 284.66 7.45 283.86 6.98 - - 0.28 6.19 - - . —
1 34.77 7.09 35.13 4.48 33.62 7.94 1.04 36.80 3.31 12.02 4.30 77.23
2 90.11 9.95 90.86 8.21 83.07 - 0.84 17.52 7.81 — — -
35¢°C
3 165.37 12.15 166.87 - - --- 0.91 . . - . —
4 256.48 13.78 258.63 - - ---

0.84




Table 5. Analytical, numerical and experimental results for the simply-supported

boundary conditions.

Results Errors
g Analytical Numeric Experimental Analy.-Numeric Analy.-Exp. Numeric-Exp.
T2 Mode Freq. [Hz] [;] Freq. [Hz] [‘i] Freq. [Hz] [‘i] Freq. [%] [‘;] Freq. [%] [;’] Freq. [%] [;,]
1 16.56 0.49 16.58 0.66 1659 069 (.10 36.63 0.18 42.42 0.8 4.23
) 2 65.23 1.20 65.43 1.44 67.05 146 31 19.90 279 2189 2.47 1.66
20°¢ 3 14397 170 14437 196 15053 2.04 (g 15.14 4.56 19.82  4.27 4.07
4 24957 223 250.08 247 25195 322 o 10.82 095 4439 0.75 30.30
1 16.48 1.02 16.49 1.26 1650 131 g5 23.97 014 2931  0.09 431
. 2 64.43 1.89 64.58 2.18 65.68 225 (g4 15.45 1.94 19.15 1.69 3.21
2 3 14134 284 14063 342 14620 326 (5o 20.24 3.44 14.72  3.96 4.59
4 24274 429 24259  4.58 0.06 6.82
1 16.27 2.39 16.23 2.72 1630 284 5 13.37 0.17 18.75  0.43 4.75
) 2 62.85 4.22 62.68 4.74 6435 462 (g 12.35 2.38 9.50 2.66 254
30¢ 3 13577 574 13519 670 140.03 6.99 (42 16.70 314 2165 3.58 4.25
4 230.55 692  229.06 7.99 0.65 15.51 —
1 15.79 5.19 15.72 5.56 1583 588 a4 7.07 0.28 1331  0.72 583
. 2 59.54 8.64 59.12 9.19 59.94 0.70 6.42 0.66 — 137628 -
3¢ 3 125.60 1112 12431 11.79 102  6.0633 -
4 209.17 13.04 20595 13.69 154  5.0201 —
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Figure 9. Analytical, numerical and experimental results for the free-free boundary

conditions: Mode 4.
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boundary conditions: Mode 1.
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The mechanical properties of PVB undergo a radical change at a point that is referred as
the glass transition temperature [15]. Below this temperature PVB presents a solid elastic-
like behaviour (stiffer) and the mechanical behaviour of the laminated glass beam is close
to that of a monolithic one, i.e. the beam exhibits high stiffness and low damping. At
temperatures about the glass transition temperature, PVB stiffness decreases with
increasing temperature [15] and a laminated glass beam exhibits lower stiffness and

higher damping.

The mechanical properties of PVB vary with the percentage of plasticizer used in the
manufacturing [47] Pure PVB has a transition temperature of 70°C but this temperature
decreases with increasing percentage of plasticizer (percentage which depends on the
manufacturer). This aforementioned behaviour can be observed from Figs. 6 to 13. Below
20°C the predicted natural frequencies are approximately constant and the predicted
damping is low. Over the transition temperature the natural frequencies decrease with
temperature and the damping increases. It can also be observed in the figures that the
numerical and the experimental natural frequencies and damping ratios follow the same

tendency as those predicted with the analytical model.

It can be observed in tables 4 and 5 that the discrepancies between the analytical and the
numerical natural frequencies are consistently less than 2% for both simply-supported
and free-free boundary conditions in all the temperature range considered in the

investigation.



The discrepancies between the experimental natural frequencies and those predicted with
the analytical and the numerical models are less than 5% (see tables 4 and 5), which
confirm that Eq. (27) predicts with a good accuracy the natural frequencies of a multi-

layered glass beam.

It can also be inferred from tables 4 and 5 that the experimental natural frequencies are
always slightly lower than those predicted with the RKU model (Eq. (27)) for the free-
free boundary conditions. This is in agreement with previous results obtained by the
authors [18] in free-free beams composed of two layers and one PVB interlayer. On the
other hand, the experimental natural frequencies of the simply-supported beam are

slightly higher than the analytical ones predicted with the RKU model.

With respect to the damping ratios, it is known from statistical theory that the uncertainty
bounds of damping ratios are much higher than those of the natural frequencies [41, 42
and 40]. The discrepancies between the damping ratios provided by the analytical and the
numerical models are less than 40% for both boundary conditions (see tables 4 and 5). In
the simply-supported boundary condition the numerical damping ratios are consistently
higher than those provided by the analytical model whereas they are always less than the

analytical ones in the free-free boundary condition.

With regard to the experimental damping ratios, the maximum discrepancies between the
numerical and the analytical damping ratios are less than 50% (see tables 4 and 5). Again,

the experimental damping ratios of the simply-supported beam are higher than the



analytical ones whereas they (the experimental ones) are lower in the free-free
configuration. These results are in agreement (similar level of error) with those obtained

by the authors [18, 19] in free-free beams composed of two layers and one PVB interlayer.

Conclusions

In recent years the effective thickness concept has become a simple and useful technique
to estimate stresses, displacements and modal parameters in laminated glass beams and
plates. In this paper expressions for the dynamic effective thickness and the dynamic
effective Young modulus corresponding to a multi-layered glass beam have been derived
from the static effective thickness developed by Galuppi and Royer-Carfagni [5] using

the correspondence principle [13, 14, 39, 40].

These expressions can be used to determine modal parameters in multilayered laminated
glass beams. The predicted modal parameters can be utilized in preliminary calculations,
validation of numerical simulations and of experimental results as well as to calculate
displacements and stresses [37]. The equations are easy to use and easy to implement in

computer programs.



The analytical expressions proposed in this paper have been used to predict the modal
parameters of a multi-layered glass beam composed of three glass layers and two
polymeric interlayers. In order to validate the analytical predictions, operational
experimental modal tests were carried out on the beam simply-supported and with free-
free configuration in the temperature range 20-35°C. Moreover, a finite element model
was assembled in ABAQUS [35] using 3D quadratic shell continuum elements for the

glass layers and 3D quadratic solid hexahedral elements for the PVB layers.

Below the PVB transition temperature, the beam exhibits a constant high stiffness and
low damping and over this temperature the damping increases significantly and the
natural frequencies decrease with increasing temperature. This effect can be observed in
figures from 6 to 13, where both the analytical and numerical predictions follow the same

tendency as the experimental results .

The discrepancies in natural frequencies between the analytical predictions and those
obtained with the numerical model are less than 2% for all the modes in the temperature
range considered in the investigation. With respect to the discrepancies between the
experimental natural frequencies, estimated with operational modal analysis, and those
provided by the analytical equations and the numerical model are consistently less than

5%.

With regard to the damping ratios, the uncertainty bounds of damping ratios are much

higher than those of the natural frequencies [46]. The discrepancies between the



numerical and the analytical predicted damping ratios are consistently less than 40%
whereas the maximum discrepancies between the experimental damping ratios and those
predicted with the analytical and the numerical models are less than 50%. This level of

discrepancy is similar to that obtained by the authors in previous works. [18, 19].
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