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Abstract  

Multi-layered laminated glass panels are those with at least three monolithic glass layers 

and two viscoelastic interlayers. Multi-layered laminated glass panels are commonly used 

in floors, roofs and other horizontal glazing accessible to the public where a high level of 

security is required. Although the glass can be consider a linear-elastic material, the 

viscoelastic interlayers determine a non-linear behavior of the laminated structure that 

must be taken into consideration. In this paper, a dynamic effective thickness is proposed 

to predict the natural frequencies and damping ratios of multi-layered laminated glass 
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beam-like structures with different boundary conditions and at different temperatures. 

Furthermore, the presented dynamic effective thickness can be also used to any frequency 

domain calculations such as displacements and stresses. 

To validate the proposed model, operational modal analysis was carried out on a multi-

layered laminated glass beam to obtain the experimental natural frequencies and damping 

ratios at 20, 25, 30 and 35 𝑜𝐶. Moreover, a finite element model of the beam was also 

assembly for the sake of comparison. The proposed model predicts the natural frequencies 

with errors less than 5% whereas the discrepancies in damping ratios are less than 50%.   
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Multi-layered; laminated glass; viscoelastic behaviour; modal analysis; modal 

parameters; effective thickness concept 

Abbreviations 

𝐸𝑒𝑓𝑓  Effective Young modulus 

𝐸  Young’s modulus of glass    

𝐺𝑡(𝑡)  Viscoelastic relaxation shear modulus for the polymeric interlayer 

𝐻𝑖  Thickness of the i-th glass layer in laminated glass 

𝑡𝑖  Thickness of the i-th polymeric layer in laminated glass 



 

𝐾𝑡(𝑡)  Viscoelastic bulk modulus of the interlayer 

L  Length of a glass beam 

T   Temperature 

𝑇0  Reference temperature 

Lowercase letters 

𝑎𝑇  Shift factor  

𝑏  Width of a glass beam 

𝑔(𝑥)  Shape function (Galuppi and Royer Carfagni model) 

𝑡  Time 

𝑤  Deflection  

Greek letters  

𝜌𝑡  Density of the polymeric interlayers 

𝜌𝐺   Density of the glass layers 

Introduction 

Laminated glass beams are sandwich elements which show a viscoelastic behavior [1, 2, 

3 and 4]. A typical laminated glass panel consist of two outer monolithic glass layers and 



 

one interlayer of a polymer (figure 1) such as polyvinyl butyral (PVB). The polymer 

interlayers work in a wide range of temperatures due, i.e. to the seasonally changing 

weather conditions. 

Multi-layered laminated glass panels (figure 1) are those with at least three monolithic 

glass layers and two viscoelastic interlayers [5, 6]. Multi-layered laminated glass panels 

can be used for many different applications due to the added thickness and strength as 

well as the high damping exhibited by these elements and they are also subject to different 

types of loading (permanent, variable, impact, etc.). The glass may be annealed, heat or 

chemically strengthened or fully tempered [7, 8]. 

Multi-layered laminated glass panels are commonly used in accessible glazing, i.e. floors, 

roofs and other horizontal glazing accessible to the public or, at least, for cleaning and 

maintenance [8]. In these applications must be examined, among others, resistance 

against impact caused by a hard or soft body, the post-breakage behavior as well as the 

slip resistance [8]. Multi-layered laminated glass panels are mandatory in some codes and 

standards. According to DIN 18008-5 [9], glass floor panels must consist of at least three 

glass layers with PVB interlayers and the uppermost glass layer must be neglected for 

structural analysis. With respect to code ÖNORM B3716 [10] the load carrying layer 

must be of laminated glass with and additional abrasion layer and thermally toughened 

glass is only allowed in combination with float or strengthened glass and the minimal 

thickness of the PVB layers is 0.76 mm [7].  



 

 

Figure 1. Section of a sandwich (a) and a multi-layered (b) glass beam. 

Glass walkways are another application of multi-layered laminated glass. The standard 

ASTM 2751-11 [11] (Practice for the Design and Performance of Supported Glass 

Walkways) contains calculation and testing methods applicable to the design of glass 

walkways constructed with laminated glass including interior and exterior walking 

surfaces constructed and intended for pedestrian use (floors, ramps, sidewalks, and stair 

treads).  The Grand Canyon glass walkway was built with a 40 mm thick quadruple 

laminate consisting of heat strengthened glass and one fully tempered glass (lower 

supported ply). The additional upper 8 mm tempered ply was ignored in the analysis and 

provides additional safety and redundancy [6].  

Glass mechanical behavior is usually modeled as linear-elastic whereas the PVB shows 

linear-viscoelastic behavior. A fundamental characteristic of viscoelastic materials is that 

the mechanical properties are frequency (or time) and temperature dependent [12, 13, 14, 

15]. The mechanical behavior of laminated glass is not elastic and the sections do not 



 

behave according to the Euler-Bernoulli Beam theory assumptions (plane sections remain 

plane) due to the shear effect of the interlayers [1, 2]. 

Some analytical models proposed for laminated glass elements [16] simplify the 

calculation considering the polymeric interlayer as a linear elastic material where the 

shear modulus is chosen according to the temperature and load duration, i.e., neglecting 

the “memory effect” of viscoelasticity. Galuppi and Royer-Carfagni [1] concluded that a 

full viscoelastic analysis is only recommended when one is interested in a precise design 

of a laminated glass structures. Bennisson et al. [3, 4] proposed the concept of effective 

thickness for simplifying calculations of laminated glass elements under static loading, 

based on a previous work developed by Wölfel [17].  The method consists of calculating 

the thickness of a monolithic beam with equivalent bending properties to a laminated 

beam. The effective thickness can then be used in analytical equations and simplified 

finite element models in place of the actual thickness of the laminated glass beam [1, 2, 

3, 4, 18 and 19]. This methodology has also been extended to the two-dimensional case 

(laminated plates) under various loads and boundary conditions [20] and to the case of 

multi-layered laminated glass beams [5].  

With regard to the dynamic behavior, Ross, Kerwin and Ungar were the first to study the 

flexural vibration of a sandwich configuration [21, 22] and they proposed an effective 

complex flexural stiffness which can be used to determine the modal parameters of a 

sandwich beam using the equations and the wavenumbers corresponding to an Euler-



 

Bernoulli beam. They assumed that the wave motion in a constrained layer configuration 

can be described by a fourth-order differential equation. Ditaranto [23, 24] and Mead and 

Markus [25, 26] demonstrated that the flexural motion of a sandwich beam is governed 

by a sixth-order linear homogeneous differential equation.  

Aenlle and Pelayo [18] proposed a dynamic effective thickness for calculating modal 

parameters in laminated glass beams using simple monolithic elastic models. This method 

was extended by the same authors to laminated glass plates in [19]. 

With respect to numerical simulations, many papers and books have been published about 

the modelling of sandwich and laminated elements [19, 20, 27, 28, 29, 30, 31, 32] subject 

to static and dynamic loadings.  Galuppi and Royer Carfagni [20] proposed an analytical 

model to calculate the static response of laminated glass elements and the predictions are 

validated by numerical simulations. In [27, 28] the iso-geometric analysis, the level set 

and a simple-first order shear deformation theory are combined to simulate more 

effectively the free vibration of laminated composite plates. In [29, 30, 31] meshfree 

methods are developed for free and forced vibration analysis of 2D elements. The basis 

functions for the CQ4 (4-node quadrilateral element) element are used to analyze the free 

and forced 2D vibrations of linear elastic and piezoelectric structures [32]. 

 



 

In this paper, the effective thickness developed by Galuppi and Royer Carfagni  [5] to 

calculate deflections in multi-layered laminated glass beams under static loadings is here 

extended to the frequency domain using the correspondence principle [13, 14, 33, 34]. 

Furthermore, a dynamic effective thickness is also derived solving the differential 

equation of flexural wave motion. In order to validate the model, the modal parameters 

of a multi-layered laminated glass beam consisting of three annealed glass layers and two 

PVB interlayers were estimated by operational modal analysis at different temperatures 

in the range 20-35ºC. The experimental results are compared with the predictions 

provided by the proposed analytical model and with the results obtained with a finite 

element model assembled in ABAQUS [35]. 

State of the art 

Static deflection effective thickness in laminated glass beams  

Galuppi and Royer-Carfagni [2] derived an analytical expression for the deflection 

effective thickness of a laminated glass beam composed of two glass layers and one 

polymeric interlayer using a variational approach. In their work, the following 

assumptions were considered: the face plates are purely elastic, the core is linearly 

viscoelastic with shear modulus 𝐺𝑡 
 (t, T), the shear strains in the face plates are negligible, 

the longitudinal stresses in the core are negligible, there is no slipping between the elastic 

and viscoelastic layers at their interfaces and the three layers have the same transversal 



 

displacement 𝑤(𝑥, 𝑡, 𝑇). Moreover, the authors also assume that the deflection shape of 

the laminated glass beam coincide with that of a monolithic beam with the same loading 

and boundary conditions, i.e., the deflection of the beam is expressed as: 

𝑤(𝑥, 𝑡, 𝑇) = −
𝑔(𝑥)

𝐸𝐼(𝑡, 𝑇)𝑆2
 (1) 

where g(x) is a shape function that takes the form of the elastic deflection of a monolithic 

beam with constant cross section under the same loading and boundary conditions as the 

laminated glass beam and 𝐸𝐼(𝑡, 𝑇)𝑆2 is the bending stiffness of the laminated glass beam 

given by: 

EI(t, T)𝑠2 =
1

ηS2(t, T)
EITOT2

+
1 − ηS2(t, T)

EIT2

 
(2) 

Where:  

 subindex “s” indicates static 

 subindex “2” indicates beam with two glass layers and one interlayer 

 𝐼𝑇2 = 𝐼1 + 𝐼2 = 𝑏
𝐻1
3+𝐻2

3

12
 

 𝐼𝑇𝑂𝑇2 = 𝐼𝑇2 + 𝐴1𝑑1
2 + 𝐴2𝑑2

2  

 𝑑1 =
𝐻2𝐻12

𝐻1+𝐻2
  

 𝑑2 = −
𝐻1𝐻12

𝐻1+𝐻2
  



 

 𝐻12 = 𝑡1 + (
𝐻1+𝐻2

2
) 

 The parameter ηS2(t, T) is given by : 


𝑆2
(𝑡, 𝑇) =

1

1 +
𝐸𝐼𝑇2 (𝐴1𝑑1

2 + 𝐴2𝑑2
2)𝜓𝐵

𝑏Gt(𝑡, 𝑇)𝐼𝑇𝑂𝑇2 (
𝐻12
2

𝑡1
)

 

 

(3) 

 𝜓𝐵 is a constant parameter which depends on the boundary and loading 

conditions [2] and it is given by: 

𝜓𝐵 =
∫ (𝑔′′(𝑥))
𝐿

0

2
𝑑𝑥

∫ (𝑔′(𝑥))
𝐿

0

2
𝑑𝑥

 (4) 

Using the dimensionless standard geometric parameter 𝑌𝐵2: 

𝑌𝐵2 =
𝐸𝐼𝑇𝑂𝑇2
EIT2

− 1 =
(𝐴1𝑑1

2 + 𝐴2𝑑2
2)

𝐼𝑇2
=
𝑏𝐻12

2 𝐻1𝐻2
𝐼𝑇2(𝐻1+𝐻2)

 (5) 

 and the dimensionless shear parameter 𝑔2(𝑡, 𝑇) commonly used in sandwich beams [25, 

26 and 36] which defines the shear coupling between the core and outer layers:   

𝑔𝑆2(𝑡, 𝑇) =
𝐺𝑡(𝑡, 𝑇)𝐿

2(𝐻1+𝐻2)

𝐸𝑡𝐻1𝐻2
=
𝐺𝑡(𝑡, 𝑇)

𝐸

𝐻12
2

𝑡

𝑏𝐿2

𝐼𝑇2𝑌𝐵2
 (6) 

Eq. (2) can be expressed as: 



 

𝐸𝐼(𝑡, 𝑇)𝑆2 = 𝐸𝐼𝑇2  (1 +
𝑌𝐵2

1 +
𝜓𝐵 𝐿2

𝑔𝑆2(𝑡, 𝑇)

) (7) 

If the shear modulus is constant 𝐺𝑡(𝑡, 𝑇) = 𝐺𝑡, the shear parameter is also constant and it 

is given by: 

𝑔𝐸2 =
𝐺𝑡𝐿

2(𝐻1+𝐻2)

𝐸𝑡𝐻1𝐻2
=
𝐺𝑡
𝐸

𝐻12
2

𝑡

𝑏𝐿2

𝐼𝑇2𝑌𝐵2
 (8) 

If Eq. (8) is substituted in Eq. (7), the later becomes: 

𝐸𝐼𝐸2 = 𝐸𝐼𝑇2  (1 +
𝑌𝐵2

1 +
𝜓𝐵  𝐿2

𝑔𝐸2(𝑡, 𝑇)

) (9) 

Which is also constant and it represents the stiffness of the sandwich beam when both the 

core and the glass layers show a linear-elastic behavior. 

In the case of three glass layers of equal thickness H and two polymeric interlayers with 

thickness t, the static flexural stiffness can be derived from [5] and it is given: 



 

𝐸𝐼(𝑡, 𝑇)𝑆3 = 𝐸𝐼𝑇3  (1 +
𝑌𝐵3

1 +
𝜓𝐵𝐿2 
𝑔𝑆3(𝑡, 𝑇)

) (10) 

Where: 

 subindex “3” indicates beam with 3 glass layers 

 𝐼𝑇3 = 3𝐼 = 3
𝑏𝐻3

12
 

 𝑌𝐵3 =
8(𝑡+𝐻)2

𝐻2
 

 𝑔𝑆3(𝑡, 𝑇) =
𝐺𝑡(𝑡,𝑇) 

𝐸 𝐻𝑡
 (11) 

 𝜓𝐵 is a constant parameter which takes the same values as those derived for the 

beam with 2 glass layers [2]. 

If the case that the shear modulus is constant 𝐺𝑡(𝑡, 𝑇) = 𝐺𝑡, the elastic shear parameter is 

given by: 

𝑔𝐸3 =
𝐺𝑡 

𝐸 𝐻𝑡
 (12) 

Whereas the elastic flexural stiffness is expressed as: 



 

𝐸𝐼𝐸3 = 𝑏
𝐻3

4
 (1 +

𝑌𝐵3

1 +
𝜓𝐵𝐿2 
𝑔𝐸3

) (13) 

 

Dynamic effective thickness in sandwich glass beams 

Mead and Markus (M&M) [25, 26] derived a sixth-order differential equation that 

governs the flexural wave motion of a three layered constrained-layer damping beam 

when it vibrates freely at frequency 𝜔 . The differential equation is given by: 

𝐸𝐼𝑇2 (𝑤
𝑉𝐼(𝑥, 𝑡, 𝑇) − 𝑔𝑑2

∗ (𝜔, 𝑇)  (1 + 𝑌𝐵2) 𝑤
𝐼𝑉(𝑥, 𝑡, 𝑇)) − 

−𝜔2 𝑚̅2 (𝑤
𝐼𝐼(𝑥, 𝑡, 𝑇) − 𝑔𝑑2

∗ (𝜔, 𝑇)  𝑤(𝑥, 𝑡, 𝑇)) = 0 (14) 

Where the roman numerals superscripts denote differentiation with respect to x, the 

superscript “*” indicates complex, the subscript “d” indicates dynamic,  𝑚̅2 is the mass 

per unit length of the beam, i.e.: 

𝑚̅2 = 𝑏𝜌𝐺(𝐻1 +𝐻2) + 𝑏𝜌𝑡𝑡1 (15) 

and 𝑔𝑑2
∗ (𝜔, 𝑇) is the shear parameter given by: 



 

𝑔𝑑2
∗ (𝜔, 𝑇) =

𝐺𝑡
∗(𝜔, 𝑇) 𝐿2

𝐸𝑡
 (
𝐻1 + 𝐻2
𝐻1𝐻2

) =
𝐺𝑡(𝜔,𝑇)
∗

𝐸
 
𝐻12
2

𝑡

𝑏𝐿2

𝐼𝑇2𝑌𝐵2
 (16) 

Eq. (10) yields the following polynomial equation for  𝑘∗𝐿: 

(𝑘∗𝐿)6 − 𝑔𝑑2
∗ (𝜔, 𝑇) (1 + 𝑌𝐵2)(𝑘

∗𝐿)4 − 𝛺∗2(𝑘∗𝐿)2 + 𝛺∗2𝑔𝑑2
∗ (𝜔, 𝑇) = 0 (17) 

where 𝑘∗ is a complex wavenumber: 

𝑘∗ = 𝑘𝑅 + 𝑖 ⋅ 𝑘𝐼  (18) 

 and Ω∗ is a non-dimensional frequency defined by [25, 26]: 

𝛺∗2 =
𝜔∗2 𝑚2̅̅ ̅̅  𝐿

4

𝐸𝐼𝑇2
 (19) 

Eq. (19) after rearrangement yields to: 

𝛺∗2 = (𝑘∗𝐿)4 (
(𝑘∗𝐿)2 − 𝑔𝑑2

∗ (𝜔, 𝑇)(1 + 𝑌𝐵2)

(𝑘∗𝐿)2 − 𝑔𝑑2
∗ (𝜔, 𝑇)

) (20) 

or: 

 𝜔∗2 = 𝜔
2
(1 + 𝑖 ⋅ 𝜂) =

𝑘 ∗4

𝑚̅2
𝐸𝐼𝑇2  

(

 
 
1 +

𝑌𝐵2

1 −
𝑘∗2 𝐿2

𝑔𝑑2
∗ (𝜔,𝑇))

 
 

 (21) 



 

If the real part of 𝑘∗ is neglected, i.e., 𝑘𝑅 = 0, 𝑘 
∗
 is given by 𝑘∗ = 𝑖 ⋅ 𝑘𝐼 and  Eq. (21) 

results in: 

 𝜔2(1 + 𝑖 ⋅ 𝜂) =
𝑘𝐼
4

𝑚̅2
𝐸𝐼𝑇2  

(

 1 +
𝑌𝐵2

1 +
𝑘𝐼
2𝐿2 

𝑔𝑑2
∗ (𝜔, 𝑇))

  (22) 

From Eq. (22) the following equation for the effective complex flexural stiffness can be 

defined: 

𝐸𝐼∗(𝜔, 𝑇)2 = 𝐸𝐼𝑇2  

(

 
 
1 +

𝑌𝐵2

1 +
𝑘𝐼
2

𝑔𝑑2
∗ (𝜔,𝑇))

 
 

 (23) 

Which can be used to estimate modal parameters, displacements and stresses in laminated 

glass beams [19, 37]. In the case of a simply supported beam, the wavenumber is given 

by: 

𝑘𝐼
 = 𝑛

𝜋

𝐿
 (24) 



 

With 'n' being the order of the mode and the  stiffness given by Eq. (23) coincides with 

that derived  by Ross, Kerwin, and Ungar [21, 22] considering the beam simply supported 

and vibrating at a natural frequency, which  means that the flexural deformation of the 

beam during vibration is spatially sinusoidal in shape.  Later, the effective complex 

flexural stiffness was extended to other boundary conditions using the appropriate 

wavenumbers [12, 22]. 

From Eqs. (7) and (23) it is inferred that the square of the wavenumber 𝑘𝐼
2 and the shear 

parameter 𝑔𝑑2
∗ (𝜔, 𝑇) play in dynamics the same role as the parameters 𝜓𝐵 and 𝑔𝑆2(𝑡, 𝑇), 

respectively, in statics.  

Moreover, the effective complex flexural stiffness EI∗(ω, T)2 can be easily derived from 

the elastic stiffness EIE2  (Eq. (9)) applying the correspondence principle. With respect to 

the shear parameter gd2
∗ (ω, T)  it can also be derived from the elastic shear parameter gE2 

(Eq. (8)) applying the correspondence principle but with the special feature that the 

wavenumber 𝑘𝐼
2 must be used instead of parameter 𝜓𝐵 [38]. 

Dynamic effective thickness of a symmetric three glass 

multi-layered beam 

In this section an expression for the effective complex flexural stiffness of a laminated 

glass beam composed of three glass layers of equal thickness and two polymeric 



 

interlayers is derived. This expression can be formulated solving the differential equation 

that governs the flexural wave motion of a multi-layered glass beam or alternatively 

applying the correspondence principle to the stiffness of a laminated glass beam with both 

the core and the glass layers showing a linear-elastic behavior. 

Dynamic effective thickness by the correspondence principle 

The correspondence principle [13, 14, 33, 34] states that if a solution to a linear elasticity 

problem is known, the solution to the corresponding problem for a linearly viscoelastic 

material can be obtained by replacing each quantity which can depend on time by its 

Fourier Transform.  In order that the elastic and viscoelastic solutions correspond, the 

interface between boundary regions under specified displacement and under specified 

stress must not change with time. 

In order to apply the correspondence principle, an elasticity solution must be known [34]. 

Wherever an elastic constant appears, it is replaced with the corresponding complex 

dynamic viscoelastic function. Some examples of application are shown in Table 1. 

Table 1. Examples of application of the correspondence principle (superscript '*' 

indicates complex). 

 Constitutive equation Bending Natural frequencies 



 

Linear-Elastic 𝜎 = 𝐸 ∙ 𝜖 𝜎 =
𝑀

𝐸𝐼
 𝜔2 = 𝑘4

𝐸𝐼

𝜌𝐴
 

Linear-Viscoelastic 

𝜎(𝜔) = 𝐸∗(𝜔)

∙ 𝜖(𝜔) 
𝜎(𝜔) =

𝑀(𝜔)

𝐸∗(𝜔)𝐼
 𝜔∗2 = 𝑘∗4

𝐸∗(𝜔)𝐼

𝜌𝐴
 

 

For a laminated glass beam with three glass layers of equal thickness H and two polymeric 

interlayers of equal thickness t, the effective complex flexural stiffness can be derived 

applying the correspondence principle to Eq. (13), i.e.: 

𝐸𝐼∗(𝜔, 𝑇)3 = 𝑏
𝐻3

4
 

(

 1 +
𝑌𝐵3

1 +
𝑘𝐼
2 

𝑔𝑑3
∗ (𝜔, 𝑇))

  (25) 

With respect to parameter𝑔𝑑3
∗ (𝜔, 𝑇), it is given by: 

𝑔𝑑3
∗ (𝜔, 𝑇) =

𝐺𝑡
∗ (𝜔,𝑇) 

𝐸 𝐻𝑡
 (26) 

which can also be derived from Eq. (12) applying the correspondence principle.  

The natural frequencies and damping ratios can be now obtained by: 

𝜔2(1 + 𝑖 ⋅ 𝜂) =
𝑘𝐼
4

𝑚3̅̅ ̅̅
𝐸𝐼∗(𝜔,𝑇)3 (27) 



 

Where: 

𝑚̅3 = 3𝑏𝜌𝐺𝐻 + 2𝜌𝑡𝑏𝑡 (28) 

is the mass per unit length of the beam. 

Dynamic effective thickness by solving the flexural wave motion 

differential equation 

The effective complex flexural stiffness (Eq. (25)) can also be formulated from the 

equation of motion corresponding to the beam vibrating freely at frequency 𝜔 which is 

given by [39]:  

𝐸𝐼𝑇3 (𝑤
𝑉𝐼(𝑥, 𝑡, 𝑇) − 𝑔𝑑3

∗ (𝜔, 𝑇)  (1 + 𝑌𝐵3) 𝑤
𝐼𝑉(𝑥, 𝑡, 𝑇)) − 

−𝜔2 𝑚̅3 (𝑤
𝐼𝐼(𝑥, 𝑡, 𝑇) − 𝑔𝑑3

∗ (𝜔, 𝑇)  𝑤(𝑥, 𝑡, 𝑇)) = 0 (29) 

Eq. (29) yields the following polynomial equation for  𝑘∗𝐿: 

(𝑘∗𝐿)6 − 𝑔𝑑3
∗ (𝜔, 𝑇) (1 + 𝑌𝐵3)(𝑘

∗𝐿)4 −
𝜔∗2 𝑚3̅̅ ̅̅  𝐿

4

𝐸𝐼𝑇3
(𝑘∗𝐿)2 − 𝑔𝑑3

∗ (𝜔, 𝑇) = 0 (30) 

From which: 

𝜔∗2 = (𝑘∗𝐿)4
𝐸𝐼𝑇3
𝑚3̅̅ ̅̅  𝐿4

(
(𝑘∗𝐿)2 − 𝑔𝑑3

∗ (𝜔, 𝑇)(1 + 𝑌𝐵3)

(𝑘∗𝐿)2 − 𝑔𝑑3
∗ (𝜔, 𝑇)

) (31) 



 

Neglecting the real part of the wavenumber, i.e. 𝑘∗ = 𝑖 ⋅ 𝑘𝐼, the following equation for 

the complex flexural effective stiffness corresponding to a symmetric laminated glass 

beams with 3 glass layers of equal thickness H and 2 polymeric interlayers of equal 

thickness t  is inferred: 

𝐸𝐼∗(𝜔, 𝑇)3 = 𝑏
𝐻3

4
 

(

 1 +
𝑌𝐵3

1 +
𝑘𝐼
2 

𝑔𝑑3
∗ (𝜔, 𝑇))

  (32) 

Which coincides with Eq. (25) derived applying the correspondence principle. 

Finally, expressions for the dynamic effective thickness and the dynamic effective Young 

modulus [18, 19, 37 and 38] can be derived from the complex flexural effective stiffness 

(Eqs. (25) or (32)). If a monolithic model with constant thickness 𝐻𝑇 :  

𝐻𝑇 = 3𝐻 + 2𝑡 (33) 

 is going to be used to calculate modal parameters, displacements or stresses in the 

frequency domain, a dynamic effective Young modulus (Young modulus of a monolithic 

beam which provides the same modal parameters as the laminated one) can derived from: 

𝐸𝑒𝑓𝑓(𝜔, 𝑇)3
𝑏𝐻𝑇

3

12
= 𝐸𝐼∗(𝜔, 𝑇)3 (34) 

Which leads to: 



 

𝐸𝑒𝑓𝑓
∗ (𝜔, 𝑇)3 =

3𝐻3

𝐻𝑇
3

(

 1 +
𝑌𝐵3

1 +
𝑘𝐼
2𝐿2 

𝑔𝑑3
∗ (𝜔, 𝑇))

  (35) 

On the other hand, a dynamic effective thickness can be formulated from: 

𝐸𝐻𝑒𝑓𝑓
∗3 (𝜔, 𝑇)

12
= 𝐸𝐼∗(𝜔, 𝑇)3 

 

(36) 

Which results in: 

𝐻𝑒𝑓𝑓3(𝜔, 𝑇) = √3𝐻3

(

 1 +
𝑌𝐵3

1 +
𝑘𝐼
2𝐿2 

𝑔𝑑3
∗ (𝜔, 𝑇))

 
3

 (37) 

Any of the three dynamic effective parameters proposed: complex flexural stiffness, 

thickness and Young modulus, can be used for predicting the dynamic response of a 

multi-layered beam as well as to calculate other variables in the frequency domain such 

as displacements or stresses.  

 



 

Numerical and experimental validation 

In this paper the modal parameters of a multi-layered glass beam composed of three 

annealed glass layers and two polymeric interlayers made of polyvinyl butyral (PVB) 

were predicted with Eq. (27) using the dynamic effective thickness given by Eq. (25).  

The analytical predictions were validated with experimental tests and numerical 

simulations. The multi-layered beam used in this work presents the following geometrical 

data (see figure 1): 𝐿 = 1.40 m, 𝐻1 = 𝐻2 = 𝐻3 = 4 mm, 𝑡1 = 𝑡2 = 0.76 mm and  𝑏 =

100 𝑚𝑚.  

The material properties presented in Table 2 were considered for the glass and PVB 

layers. With respect to PVB, its mechanical properties were obtained in a previous work 

[18] by a viscoelastic characterization carried out in a DMA RSA3 (T.A. Instruments). 

The Prony series for the shear relaxation modulus 𝐺𝑡(𝑡, 𝑇) is given by:  

𝐺𝑡(𝑡) = 𝐺0 ⋅ [1 −∑𝑔𝑖 ⋅ (1 − exp (
−𝑡

𝜏𝑖
))

𝑛

𝑖=1

]  
(38) 

 

where the parameters 𝑔𝑖 and 𝜏𝑖  are shown in Table 3. 

 Moreover, the effect of temperature was considered using the William, Landel and Ferry 

(WLF) model [40] where the TTS (Time Temperature Supersposition) shift factor, 𝑎𝑇, is 

given by: 



 

log(𝑎𝑇) = −𝐶1
(𝑇 − 𝑇0)

𝐶2 + (𝑇 − 𝑇0)
 (39) 

The coefficients 𝐶1 and 𝐶2 are shown in Table 2. Once the shift factor 𝑎𝑇 is determined 

for a specific temperature T, the shear relaxation modulus for this temperature 𝐺𝑡(𝑡, 𝑇) 

can be obtained from the relation: 

G(t, T) = 𝑎𝑇 𝐺(𝑡, 𝑇0) (40) 

where 𝐺(𝑡, 𝑇0) is known as the master curve of the viscoelastic material at reference 

temperature 𝑇0. 

Table 2. Material properties for glass and PVB. 
 

Glass PVB 

E 

(Young’s 

Modulus) 

ν 

(Poisson’s 

ratio) 

 ρ  

(Density) 

G0 

(Instantaneous 

shear modulus) 

K 

(Bulk 

Modulus) 

ν 

(Poisson’s 

ratio) 

𝜌 

(Density) 

𝐶1        𝐶2 

(WLF: Tref=20C) 

[GPa]  [kg/m3] [GPa] [GPa]  [kg/m3]   

70 0.22 2500 0.3696 2 0.40 1046 12.60 74.46 

 

Table 3. Prony series coefficients for PVB.  

Term gi τi [s] 

1 2.342151953E-01 2.36600000000000E-07 

2 2.137793134E-01 2.26430000000000E-06 

3 1.745500419E-01 2.16668000000000E-05 

4 1.195345045E-01 2.07327300000000E-04 

5 1.362133454E-01 1.98389580000000E-03 



 

6 6.840656310E-02 1.89837195000000E-02 

7 4.143944180E-02 1.81653498300000E-01 

8 7.251952800E-03 1.73822593210000E+00 

9 2.825459600E-03 1.66329270788000E+01 

10 2.712854000E-04 1.59158978189400E+02 

11 4.293523000E-04 1.52297789909670E+03 

12 9.804730000E-05 1.45732380763177E+04 

13 5.274937000E-04 1.39449999999999E+05 

 

Analytical predictions  

The natural frequencies and the damping ratios for the first four modes of the beam in the 

temperature range 10𝑜C to 40𝑜C were predicted using Eq. (27) and the dynamic complex 

effective stiffness given by Eq. (25). The wavenumbers needed in Eq. (27) were 

considered equal to those of a monolithic beam with the same boundary conditions. The 

analytical predictions for the simply supported and free-free boundary conditions are 

presented in figures from 6 to 13. The predicted values corresponding to temperatures: 

20𝑜𝐶, 25𝑜𝐶, 30𝑜 and 35𝑜𝐶 are shown in Tables 4 and 5, respectively. It can be observed 

that the natural frequencies decrease with increasing temperature. This tendency is 

expected because the shear modulus of the PVB also decreases with increasing 

temperature. With respect to damping, it increases with increasing temperature. In this 

paper it has been considered that the loss factor 𝜂 and the modal damping 𝜁 are related by 

[41, 42]: 



 

𝜂 ≅ 2 𝜁 (41) 

 

Numerical simulations 

A 3D finite element model was assembled in ABAQUS using the same geometrical data 

and material properties (see Table 2 and 3) as those considered in the analytical 

predictions. 3D linear shell continuum elements (SC8R) were used for the glass layers 

[35] whereas the PVB layers were meshed with 3D linear hexahedral elements (C3D8R). 

This meshing technique has been demonstrated to be adequate to reproduce the laminated 

glass behavior with a relatively low computational time [43]. A detail of the mesh is 

shown in figure 2.  

 



 

Figure 2. Detail of the beam mesh. 

The numerical frequency response function (FRF) was obtained from a sweep sine 

analysis (linear frequency analysis) [35] subjecting the specimen to a uniform loading 

with a magnitude of 1 N for all the frequency range considered in the simulations. Both 

free-free and simply-supported boundary conditions were simulated. Then, the natural 

frequencies were estimated by the peak picking method [41, 42] (figure 3) whereas the 

damping ratios were obtained by the logarithmic decrement technique [41, 42] (figure 3). 

The numerical natural frequencies and damping ratios are presented in tables 4 and 5, 

respectively. 

 

Figure 3. Zoom of the receptance (left) and its corresponding free decay (right) for the 

1st  mode with the beam simply-supported at 20 ºC. 

 



 

Experimental results 

The modal parameters of the beam were also experimentally determined by operational 

modal analysis. The responses of the beam were measured using 7 accelerometers with a 

sensitivity of 100 mV/g, uniformly distributed (figure 4) and recorded with a 16 channels 

TEAC LX-120 data acquisition system. The arrows in figure 4 show the location and the 

direction of the sensors. The beam was excited applying small hits randomly along its 

length with an impact hammer and the responses were recorded for approximately 4 

minutes using a sampling frequency of 1000 Hz. The modal tests were performed in a 

chamber-oven at 20, 25, 30 and 35 ºC, respectively. 

 

Figure 4. Test setup with the location of the accelerometers. 

Figure 5 shows the singular value decomposition of the responses at 20𝑜C and 30ºC for 

the free-free boundary conditions. As temperature increases the peaks become less clear 

for the higher modes and only the modal parameters of first mode were accurately 

identified over 35ºC. 



 

 

Figure 5. Singular value decomposition at 20 and 30ºC for the free-free conditions. 

Modal parameters were estimated using both Frequency Domain Decomposition (EFDD) 

[44] and Stochastic Subspace iteration method (SSI) [45]. The experimental natural 

frequencies and damping ratios estimated with the EFDD technique are shown in tables 

4 and 5, respectively. The SSI technique provides similar results and they are not 

presented in the paper. 

 

 

 

 

 



 

Table 4. Analytical, numerical and experimental results for the free-free boundary 

conditions. 

Results Errors 

Ta 
Mod

e 

Analytical Numerical Experimental Analy.-Numeric. Analy.-Exp. Numeric.-Exp. 

Freq. 
[Hz] 

𝜁 
[%] 

Freq. 
[Hz] 

𝜁 
[%] 

Freq. 
[Hz] 

𝜁 
[%] 

Freq. 
[%] 

𝜁 
[%] 

Freq. 
[%] 

𝜁 
[%] 

Freq. 
[%] 

𝜁 
[%] 

20oC 

1 37.25 0.84 36.58 0.63 36.14 0.59 1.81 24.92 2.98 30.30 1.19 7.16 

2 101.01 1.47 99.35 1.38 98.28 1.20 1.64 6.17 2.70 18.17 1.08 12.79 

3 193.55 1.95 191.18 1.86 188.94 1.62 1.22 4.53 2.38 16.74 1.17 12.78 

4 311.50 2.55 308.58 2.42 306.13 2.20 0.94 5.02 1.72 13.57 0.79 9.00 

              

25oC 

1 36.97 1.45 36.39 1.01 35.95 1.16 1.57 30.25 2.76 19.85 1.21 14.91 

2 99.20 2.43 97.87 2.15 96.56 2.11 1.34 11.50 2.67 13.54 1.35 2.30 

3 188.61 3.71 186.80 3.56 185.52 2.92 0.96 3.97 1.64 21.43 0.69 18.19 

4 302.52 4.76 300.61 4.41 297.53 4.37 0.63 7.22 1.65 8.24 1.03 1.10 

              

30oC 

1 36.26 3.34 35.95 2.22 35.40 3.14 0.86 33.56 2.39 6.14 1.54 41.28 

2 96.26 5.03 95.56 3.98 93.32 3.95 0.73 20.83 3.05 21.57 2.34 0.94 

3 180.67 6.36 180.02 5.73 175.72 5.41 0.36 9.89 2.74 15.01 2.39 5.69 

4 284.66 7.45 283.86 6.98 --- --- 0.28 6.19 --- --- --- --- 

              

35oC 

1 34.77 7.09 35.13 4.48 33.62 7.94 1.04 36.80 3.31 12.02 4.30 77.23 

2 90.11 9.95 90.86 8.21 83.07 --- 0.84 17.52 7.81 --- --- --- 

3 165.37 12.15 166.87 --- --- --- 0.91 --- --- --- --- --- 

4 256.48 13.78 258.63 --- --- --- 0.84 --- --- --- --- --- 

 

 

 

 

 

 

 



 

Table 5. Analytical, numerical and experimental results for the simply-supported 

boundary conditions. 

Results Errors 

Ta 
  

Mode 
Analytical Numeric Experimental Analy.-Numeric Analy.-Exp. Numeric-Exp. 

Freq. [Hz] 
𝜁 

[%] 
Freq. [Hz] 

𝜁 
[%] 

Freq. [Hz] 
𝜁 

[%] 
Freq. [%] 

𝜁 
[%] Freq. [%] 

𝜁 
[%] Freq. [%] 

𝜁 
[%] 

20oC 

1 16.56 0.49 16.58 0.66 16.59 0.69 0.10 36.63 0.18 42.42 0.08 4.23 

2 65.23 1.20 65.43 1.44 67.05 1.46 0.31 19.90 2.79 21.89 2.47 1.66 

3 143.97 1.70 144.37 1.96 150.53 2.04 0.28 15.14 4.56 19.82 4.27 4.07 

4 249.57 2.23 250.08 2.47 251.95 3.22 0.20 10.82 0.95 44.39 0.75 30.30 

                            

25oC 

1 16.48 1.02 16.49 1.26 16.50 1.31 0.05 23.97 0.14 29.31 0.09 4.31 

2 64.43 1.89 64.58 2.18 65.68 2.25 0.24 15.45 1.94 19.15 1.69 3.21 

3 141.34 2.84 140.63 3.42 146.20 3.26 0.50 20.24 3.44 14.72 3.96 4.59 

4 242.74 4.29 242.59 4.58 --- --- 0.06 6.82 --- --- --- --- 

                            

30oC 

1 16.27 2.39 16.23 2.72 16.30 2.84 0.25 13.37 0.17 18.75 0.43 4.75 

2 62.85 4.22 62.68 4.74 64.35 4.62 0.28 12.35 2.38 9.50 2.66 2.54 

3 135.77 5.74 135.19 6.70 140.03 6.99 0.42 16.70 3.14 21.65 3.58 4.25 

4 230.55 6.92 229.06 7.99 --- --- 0.65 15.51 --- --- --- --- 

                            

35oC 

1 15.79 5.19 15.72 5.56 15.83 5.88 0.44 7.07 0.28 13.31 0.72 5.83 

2 59.54 8.64 59.12 9.19 59.94 --- 0.70 6.42 0.66 --- 1.37628 --- 

3 125.60 11.12 124.31 11.79 --- --- 1.02 6.0633 --- --- --- --- 

4 209.17 13.04 205.95 13.69 --- --- 1.54 5.0201 --- --- --- --- 

 

 



 

 

Figure 6. Analytical, numerical and experimental results for the free-free boundary 

conditions: Mode 1. 

 

Figure 7. Analytical, numerical and experimental results for the free-free boundary 

conditions: Mode 2. 
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Figure 8. Analytical, numerical and experimental results for the free-free boundary 

conditions: Mode 3. 

 

Figure 9. Analytical, numerical and experimental results for the free-free boundary 

conditions: Mode 4. 
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Figure 10. Analytical, numerical and experimental results for the simply-supported 

boundary conditions: Mode 1. 

 

Figure 11. Analytical, numerical and experimental results for the simply-supported 

boundary conditions: Mode 2. 
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Figure 12. Analytical, numerical and experimental results for the simply-supported 

boundary conditions: Mode 3. 

 

Figure 13. Analytical, numerical and experimental results for the simply-supported 

boundary conditions: Mode 4. 
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The mechanical properties of PVB undergo a radical change at a point that is referred as 

the glass transition temperature [15]. Below this temperature PVB presents a solid elastic-

like behaviour (stiffer) and the mechanical behaviour of the laminated glass beam is close 

to that of a monolithic one, i.e. the beam exhibits high stiffness and low damping. At 

temperatures about the glass transition temperature, PVB stiffness decreases with 

increasing temperature [15] and a laminated glass beam exhibits lower stiffness and 

higher damping.  

The mechanical properties of PVB vary with the percentage of plasticizer used in the 

manufacturing [47] Pure PVB has a transition temperature of 70𝑜𝐶 but this temperature 

decreases with increasing percentage of plasticizer (percentage which depends on the 

manufacturer). This aforementioned behaviour can be observed from Figs. 6 to 13. Below 

20𝑜𝐶 the predicted natural frequencies are approximately constant and the predicted 

damping is low. Over the transition temperature the natural frequencies decrease with 

temperature and the damping increases. It can also be observed in the figures that the 

numerical and the experimental natural frequencies and damping ratios follow the same 

tendency as those predicted with the analytical model. 

It can be observed in tables 4 and 5 that the discrepancies between the analytical and the 

numerical natural frequencies are consistently less than 2% for both simply-supported 

and free-free boundary conditions in all the temperature range considered in the 

investigation. 



 

The discrepancies between the experimental natural frequencies and those predicted with 

the analytical and the numerical models are less than 5% (see tables 4 and 5), which 

confirm that Eq. (27) predicts with a good accuracy the natural frequencies of a multi-

layered glass beam. 

It can also be inferred from tables 4 and 5 that the experimental natural frequencies are 

always slightly lower than those predicted with the RKU model (Eq. (27)) for the free-

free boundary conditions. This is in agreement with previous results obtained by the 

authors [18] in free-free beams composed of two layers and one PVB interlayer. On the 

other hand, the experimental natural frequencies of the simply-supported beam are 

slightly higher than the analytical ones predicted with the RKU model. 

With respect to the damping ratios, it is known from statistical theory that the uncertainty 

bounds of damping ratios are much higher than those of the natural frequencies [41, 42 

and 40]. The discrepancies between the damping ratios provided by the analytical and the 

numerical models are less than 40% for both boundary conditions (see tables 4 and 5). In 

the simply-supported boundary condition the numerical damping ratios are consistently 

higher than those provided by the analytical model whereas they are always less than the 

analytical ones in the free-free boundary condition. 

With regard to the experimental damping ratios, the maximum discrepancies between the 

numerical and the analytical damping ratios are less than 50% (see tables 4 and 5). Again, 

the experimental damping ratios of the simply-supported beam are higher than the 



 

analytical ones whereas they (the experimental ones) are lower in the free-free 

configuration. These results are in agreement (similar level of error) with those obtained 

by the authors [18, 19] in free-free beams composed of two layers and one PVB interlayer. 

 

 

Conclusions 

In recent years the effective thickness concept has become a simple and useful technique 

to estimate stresses, displacements and modal parameters in laminated glass beams and 

plates. In this paper expressions for the dynamic effective thickness and the dynamic 

effective Young modulus  corresponding to  a multi-layered glass beam have been derived 

from the static effective thickness developed by Galuppi and Royer-Carfagni [5] using 

the correspondence principle [13, 14, 39, 40].  

These expressions can be used to determine modal parameters in multilayered laminated 

glass beams. The predicted modal parameters can be utilized in preliminary calculations, 

validation of numerical simulations and of experimental results as well as to calculate 

displacements and stresses [37]. The equations are easy to use and easy to implement in 

computer programs. 



 

The analytical expressions proposed in this paper have been used to predict the modal 

parameters of a multi-layered glass beam composed of three glass layers and two 

polymeric interlayers. In order to validate the analytical predictions, operational 

experimental modal tests were carried out on the beam simply-supported and with free-

free configuration in the temperature range 20-35ºC.  Moreover, a finite element model 

was assembled in ABAQUS [35] using 3D quadratic shell continuum elements for the 

glass layers and 3D quadratic solid hexahedral elements for the PVB layers.  

Below the PVB transition temperature, the beam exhibits a constant high stiffness and 

low damping and over this temperature the damping increases significantly and the 

natural frequencies decrease with increasing temperature. This effect can be observed in 

figures from 6 to 13, where both the analytical and numerical predictions follow the same 

tendency as the experimental results .  

The discrepancies in natural frequencies between the analytical predictions and those 

obtained with the numerical model are less than 2% for all the modes in the temperature 

range considered in the investigation. With respect to the discrepancies between the 

experimental natural frequencies, estimated with operational modal analysis, and those 

provided by the analytical equations and the numerical model are consistently less than 

5%. 

With regard to the damping ratios, the uncertainty bounds of damping ratios are much 

higher than those of the natural frequencies [46]. The discrepancies between the 



 

numerical and the analytical predicted damping ratios are consistently less than 40% 

whereas the maximum discrepancies between the experimental damping ratios and those 

predicted with the analytical and the numerical models are less than 50%. This level of 

discrepancy is similar to that obtained by the authors in previous works. [18, 19].  
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