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Novel chemoenzymatic oxidation of amines into oximes based on 
hydrolase-catalysed peracid formation 

Daniel Méndez-Sánchez,a Iván Lavandera,a Vicente Gotora and Vicente Gotor-Fernándeza, 

The efficient transformation of benzylamines into the corresponding oximes has been described by means of a 

chemoenzymatic process. This strategy is based on a two-step sequence developed in one-pot at 30 C and atmospheric 

pressure. First, the formation of a reactive peracid intermediate occurs by means of a lipase-catalysed perhydrolysis 

reaction, then this peracid acts as chemical oxidising agent of the amines. A total of nine ketoximes were isolated in high 

purity after a simple extraction protocol (90-98% isolated yield), while for the eleven synthesised aldoximes a further 

column chromatography purification was required (71-82% isolated yield). In all cases excellent selectivities were attained, 

offering a practical method for amine oxidation in short reaction times (1 hour). The environmental impact of the process 

was analysed and compared with a recently published alternative chemical synthesis, finding for this metric a good E-

factor value. 

Introduction 

Oximes are valuable organic compounds since they serve as 

building blocks for the synthesis of amines, nitriles oxides and 

lactams by means of oxidative, reductive and acidic hydrolytic 

protocols, respectively. In recent years oxime applications in 

organic chemistry have attracted considerable attention due to 

their use as directing groups1 and metal ligands.2,3 In addition, they 

are present or allow the introduction of key functionalities in a wide 

range of products with application in medicinal and fine chemistry 

industries.4-8 

Oxidation of primary amines is limited to the amine sensitivity. 

Nowadays aerobic conditions are considered the most recurrent 

strategy for their conversion into oximes.9 In this context multiple 

catalysts and reaction conditions have been described, including the 

use of organocatalysts,10,11
 transition metals,12 both at the same 

time13,14 or inclusively the application of enzymes.15 Very recently, 

Shankarling and coworkers have reported a metal-free oxidation of 

primary amines using m-chloroperbenzoic acid (m-CPBA) as oxidant 

and ethyl acetate as solvent. A wide range of oximes might be 

obtained with complete conversion in short reaction times (20 

minutes), and in general with high selectivity (>90%). The 

corresponding nitriles, aldehydes and imines were observed in 

some cases as by-products, requiring a column chromatographic 

purification for the isolation of the oximes in 78-94% isolated 

yield.16 

Biocatalysis provides an efficient access to multiple classes of 

organic compounds.17 Hydrolases and mainly lipases catalyse 

hydrolytic but also reverse reactions such as esterification, 

transesterification, aminolysis and ammonolysis, among others.18 

Interestingly, lipases have expanded their versatility in synthetic 

chemistry taking advantage of their key role in global redox 

transformations.19 These transformations are possible based on a 

hydrolase-catalysed perhydrolysis reaction over a carboxylic acid or 

ester, resulting in the formation of a reactive peracid intermediate 

able to oxidise alkenes20-26 or ketones27-32 into epoxides or esters, 

respectively (Scheme 1). From all the tested enzymes, Candida 

antarctica lipase type B (CAL-B) has usually displayed the best 

activities under different reaction conditions. The proper selection 

of the oxidising agent, peracid precursor and solvent type represent 

the key items for the development of an efficient chemoenzymatic 

oxidative protocol. The urea-hydrogen peroxide complex (UHP) 

provides a good solution in these oxidative processes since it allows 

the progressive liberation of H2O2 in the reaction medium, avoiding 

the presence of an excess of free hydrogen peroxide that can 

produce the fast inactivation of the enzyme. 

 

 

Scheme 1. Chemoenzymatic oxidation of alkenes, ketones (previous 

work) and amines (this work) mediated by CAL-B. 

As mentioned before, the chemoenzymatic oxidation of alkenes and 

esters is well documented,20-32 while other hydrolase-mediated 

oxidative transformations are less explored, especially with 

nitrogenated compounds as starting materials. In fact, just the 

oxidation of N-alkylimines and anilines into N-alkyloxaziridines33 

and azoxybenzenes,34 respectively, have been reported. In these 

cases the best conditions were also found with CAL-B and UHP as 

reactants. Herein, we wish to report for the first time a novel one-

pot two-step chemoenzymatic protocol for the conversion of 

primary amines into oximes (Scheme 1), searching for adequate and 

mild reaction conditions for the enzymatic production of a peracid 

intermediate, which will be later responsible of the oxidation of the 

studied amines. 
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Table 1. Chemoenzymatic oxidation of benzylamine (1a, 500 mM) 

using 2 equiv. of UHP, a lipase (25 mg enzyme/mmol amine) and 

ethyl acetate as solvent and peracid precursor after 1 h at 30 C and 

250 rpm. 

 

Entry Lipase Yield 2a (%)a 

1 ---- ---- 

2 Candida antarctica type A 2 

3 Candida antarctica type B 88 

4 Candida rugosa 9 

5 Rhizomucor miehei 4 

6 Pseudomonas cepacia 7 

7 Pseudomonas fluorescens 3 

8 Pseudomonas stutzeri 10 

a Percentage of (E)-benzaldehyde oxime (2a) in the reaction 
medium. 

Initially, a set of hydrolases were tested in the oxidation of 

benzylamine (1a) using 2 equivalents of the UHP complex, and ethyl 

acetate (EtOAc) as both solvent and peracid precursor. In these 

conditions ethanol and water are released as innocuous by-

products. The selected lipases were the ones from Candida 

antarctica types A and B, Candida rugosa, Rhizomucor miehei, 

Pseudomonas fluorescens, Pseudomonas cepacia, and 

Pseudomonas stutzeri (Table 1). Except for CAL-B, conversions up to 

10% were found after 1 h at 30 C, while CAL-B led to a 88% 

conversion into the (E)-benzaldehyde oxime (2a, entry 3). 

Once selected CAL-B for further optimisation, two different 

oxidative conditions were employed. These are the use of ethyl 

acetate (EtOAc) as both solvent and peracid precursor,30 and 

alternatively the combination of lauric acid as peracid precursor and 

acetonitrile (MeCN) as solvent.21 For simplicity, benzylamine (1a) 

was again selected as model substrate, finding in all cases the oxime 

2a as the main product (Scheme 2). Concomitant formation of 

benzaldehyde (3a), benzonitrile (4a) and N-benzylidenebenzylamine 

(5a) was also detected. Oxidation side products 3a and 4a were 

observed in almost negligible proportion (<1%) by GC analyses, 

while significant amounts of 5a were attained (5-9%). This imine 

product comes from the chemical reaction of the formed 

benzaldehyde (3a) with the remaining benzylamine (1a). In 

addition, we performed the reaction at different temperatures. On 

the one hand, the reaction at 20 °C also led to a highly favoured 

formation of the oxime 2a. On the other hand, the reaction was 

carried out at higher temperatures (37 and 45 C), but in these 

conditions the formation of 5a was highly favoured. For simplicity, 

we continued our study selecting 30 C as an appropriate 

temperature. Data from an exhaustive enzymatic study can be 

found in the Supplementary material (Tables S2 and S3). In the best 

conditions, the aldoxime 2a was obtained in 88% conversion 

starting with a 500 mM amine concentration using EtOAc as peracid 

precursor. The formation of the desired aldoxime increased within 

the time, finding a conversion of 40% and 76% of 2a at 20 and 40 

minutes, respectively. Finally, the development of a column 

chromatography purification was required for the isolation of the 

pure product (80%).  

At this point, the methodology was extended to other benzylamines 

1b-k bearing different pattern substitutions in the aromatic ring 

(Table 2). The (E)-aldoximes 2b-k were selectively obtained in a 

range between 80 and 93% after only 1 h at 30 C, recovering the 

final products in excellent purity and good isolated yields (71-82%) 

after column chromatography (Table 2). 

Table 2. Chemoenzymatic oxidation of benzylamines 1a-k (500 mM) 

using 2 equiv. of UHP and CAL-B (25 mg enzyme/mmol amine) in 

ethyl acetate after 1 h at 30 C and 250 rpm. 

 

Entry Benzylamine 1 R1 Yield 2a-k (%)a 

1 1a H 88 (80) 

2 1b 4-Me 86 (78) 

3 1c 4-Cl 90 (82) 

4 1d 4-F 90 (80) 

5 1e 4-tBu 93 (74) 

6 1f 4-CF3 92 (78) 

7 1g 3-CF3 91 (79) 

8 1h C3-OCH2O-C4 80 (73) 

9 1i 4-OMe 83 (71) 

10 1j 3-OMe 93 (82) 

11 1k 2-OMe 93 (80) 

a Yields of aldoximes 2a-k after liquid-liquid extraction, while in 

brackets appear the isolated yields after column chromatography. 

Searching for the application of this strategy to the production of 

ketoximes, -methylbenzylamines (1l-t, 500 mM) were assayed in 

the chemoenzymatic system composed by CAL-B as enzyme, UHP as 

chemical oxidant and EtOAc as both peracid precursor and solvent 

(Table 3). Similarly, an excellent reactivity was found under the 

same experimental conditions (30 C, 1 h and 250 rpm). The target 

ketoximes 2l-t, bearing different substitutions such halogen atoms, 

alkyl or ether moieties, were selectively obtained in excellent purity 

after a simple extraction protocol, then the purification by column 

chromatography was not required. 
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Scheme 2. CAL-B mediated oxidation of benzylamine (1a) using ethyl acetate or lauric acid and the urea-hydrogen complex. 

Table 3. Chemoenzymatic oxidation of -methylbenzylamines 1l-t 

(500 mM) using 2 equiv. of UHP and CAL-B (25 mg enzyme/mmol 

amine) in ethyl acetate after 1 h at 30 C and 250 rpm. 

 

 

Entry -Methylbenzylamine 1 R1 Isolated yield 

2l-t (%)a 

1 1l H 96 

2 1m 4-Me 90 

3 1n 4-Cl 95 

4 1o 4-F 98 

5 1p 4-CF3 96 

6 1q 3-CF3 91 

7 1r 4-OMe 93 

8 1s 3-OMe 96 

9 1t 2-OMe 91 

a Isolated yields of pure ketoximes 2l-t after liquid-liquid extraction. 

Finally, we compared this methodology with the previously 

described using m-CPBA16 in terms of environmental impact since 

both protocols are similar and allow synthesising the oximes in a 

simple manner. To achieve this, we performed a quantification of 

the E-factor35 for both processes. The EATOS tool36 was used 

focusing on the impact of the reaction conditions regarding the 

reagents, catalysts and solvents employed, and taking into account 

the waste generated. As can be seen in the Supplementary 

material, using the oxidation of benzylamine as model substrate, 

both systems are highly appealing as very low E-factor values were 

attained (2.0 for this system and 4.7 for the m-CPBA-mediated 

method, excluding solvents). Obviously, when solvents are taking 

into account, the values increased (88 for our chemoenzymatic 

reaction and 304 for the chemical system), but it must be kept in 

mind that at big scale the recycling of organic solvents is a common 

applied technique. Therefore these numbers could be further 

optimised. 

Conclusions 

A practical and straightforward chemoenzymatic method has 

been described for the oxidation of a panel of twenty primary 

amines into oximes under very mild conditions. The strategy is 

based on a two-step process that occurs in one-pot. Candida 

antarctica lipase type B was found as the most active 

biocatalyst in the perhydrolysis of ethyl acetate for the 

formation of active peracetic acid. This peracid reacted with 

benzyl- and -methylbenzylamines bearing different pattern 

substitutions in the aromatic ring for the selective production 

of the corresponding oximes in good to excellent yields (71-

98%). The final ketoxime products were isolated after an 

extraction purification, the use of column chromatography 

purification being necessary for the synthesised aldoximes. 

Calculations using the EATOS tool demonstrated the favorable 

ecological impact of the lipase/UHP oxidation protocol as just 

urea and water are released as main by-products. 

Experimental section 

Materials and methods 

Candida antarctica lipase type B (CAL-B, Novozym-435, 7300 

PLU/g) was kindly donated by Novo-Nordisk. All the chemicals 

and solvents were used as received from commercial sources: 

acetonitrile from VWR Chemicals, ethyl acetate and hexane 

from Merck and the urea-hydrogen complex from Aldrich. 

NMR spectra were recorded on a Bruker AV-300 or a Bruker DPX-

300 spectrometer (300.13 MHz for 1H, 75.5 MHz for 13C and 282 

MHz for 19F). All chemical shifts (δ) are given in parts per million 

(ppm) and referenced to the residual solvent signal as internal 

standard. All coupling constants (J) are reported in Hz. Melting 

points were taken on samples in open capillary tubes and are 

uncorrected. Gas chromatography (GC) analyses were performed 

on a Hewlett Packard 6890 Series chromatograph equipped with 

FID. Conditions and retention times are given in the ESI. Thin-layer 

chromatographies (TLC) were conducted with Merck Silica Gel 60 

F254 precoated plates and visualised using a UV lamp and/or 

potassium permanganate stain. Column chromatographies were 

performed using Merck Silica Gel 60 (230-400 mesh). 

General procedure for chemoenzymatic oxidation of amines 2a-t. 

The urea-hydrogen peroxide complex (UHP, 94.1 mg, 1.0 mmol) and 
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CAL-B (12.5 mg) were added over a solution of the corresponding 

amine 1a-t (0.5 mmol) in EtOAc (1 mL). The suspension was shaken 

for 1 h at 30 C and 250 rpm. After this time the reaction was 

stopped by addition of water (1 mL) and the enzyme filtered off. 

The solution was extracted with EtOAc (3 × 1 mL). An aliquot of the 

organic phase was taken for GC analyses. The resulting organic 

phase was dried over Na2SO4, filtered and the solvent was 

evaporated under reduced pressure to obtain the corresponding 

(E)-oximes 2a-t. For aldoximes 2a-k a column chromatography on 

silica gel (20% EtOAc/hexane) was necessary to achieve the final 

products in high purity. 

(E)-Benzaldehyde oxime (2a). Yield (80%, 48.5 mg). Rf (20% EtOAc/ 

Hexane) 0.61. White solid. mp: 32-33 °C. 1H NMR (300 MHz, CDCl3): 

δ (ppm) 8.24 (s, 1H), 7.65-7.62 (m, 2H), 7.44-7.42 (m, 3H). 13C NMR 

(75 MHz, CDCl3): δ (ppm) 150.5 (CH), 131.8 (C), 130.1 (CH), 128.8 

(CH), 127.1 (CH). 

(E)-4-Methylbenzaldehyde oxime (2b). Yield (78%, 52.7 mg). Rf (20% 

EtOAc/ Hexane) 0.60. White solid. 1H NMR (300 MHz, CDCl3): δ 

(ppm) 8.15 (s, 1H), 7.50 (d, J = 8.0 Hz, 2H), 7.21 (d, J = 8.0 Hz, 2H), 

2.39 (s, 3H). 13C NMR (75 MHz, CDCl3): δ (ppm) 150.2 (CH), 140.3 

(C), 129.5 (CH), 129.2 (C), 126.9 (CH), 21.5 (CH3). 

(E)-4-Chlorobenzaldehyde oxime (2c). Yield (82%, 63.8 mg). Rf (20% 

EtOAc/ Hexane) 0.52. White solid. 1H NMR (300 MHz, CDCl3): δ 

(ppm) 8.53 (s, 1H), 8.13 (s, 1H), 7.52 (d, J = 5.0, 2H), 7.36 (d, J = 5.0, 

2H). 13C NMR (75 MHz, CDCl3): δ (ppm) 149.2 (CH), 135.9 (C), 130.5 

(C), 129.0 (CH), 128.1 (CH). 

(E)-4-Fluorobenzaldehyde oxime (2d). Yield (80%, 55.7 mg). Rf (20% 

EtOAc/ Hexane) 0.54. White solid. 1H NMR (300 MHz, CDCl3): δ 

(ppm) 8.25 (s, 1H), 8.15 (s, 1H), 7.59 (dd, J =8.5, 5.5 Hz, 2H), 7.10 (t, 

J = 8.5 Hz, 2H). 13C NMR (75 MHz, CDCl3): δ (ppm) 163.5 (d, J = 250 

Hz, C), 149.2 (CH), 128.8 (d, J = 8.5 Hz, CH), 128.2 (C), 116.1 (d, J = 

22.0 Hz, CH). 

(E)-4-(tert-Butyl)benzaldehyde oxime (2e). Yield (74%, 65.6 mg). Rf 

(20% EtOAc/ Hexane) 0.50. White solid. 1H NMR (300 MHz, CDCl3): 

δ (ppm) 8.16 (s, 1H), 7.53 (d, J = 8.5 Hz, 2H), 7.43 (d, J = 8.5 Hz, 2H), 

1.35 (s, 9H). 13C NMR (75 MHz, CDCl3): δ (ppm) 153.4 (C), 150.1 

(CH), 129.1 (C), 126.8 (CH), 125.7 (CH), 34.8 (C), 31.2 (CH3). 

(E)-4-(Trifluoromethyl)benzaldehyde oxime (2f). Yield (78%, 73.8 

mg). Rf (20% EtOAc/ Hexane) 0.62. White solid. 1H NMR (300 MHz, 

CDCl3): δ (ppm) 8.77 (br s, 1H), 8.21 (s, 1H), 7.75-7.63 (m, 4H). 13C 

NMR (75 MHz, CDCl3): δ (ppm) 149.2 (CH), 135.2 (C), 131.8 (q, J = 

32.8 Hz, C), 127.2 (CH), 125.7 (q, J = 3.7 Hz, C), 123.8 (q, J = 272 Hz, 

C). 19F NMR (282 MHz, CDCl3): δ (ppm) 63.2. 

(E)-3-(Trifluoromethyl)benzaldehyde oxime (2g). Yield (79%, 74.7 

mg). Rf (20% EtOAc/ Hexane) 0.61. Yellow solid. 1H NMR (300 MHz, 

CDCl3): δ (ppm) 8.94 (s, 1H), 8.24 (s, 1H), 7.87 (s, 1H), 7.78 (d, J = 7.8 

Hz, 1H), 7.67 (d, J = 7.8 Hz, 1H), 7.53 (t, J = 7.8 Hz, 1H). 13C NMR (75 

MHz, CDCl3): δ (ppm) 149.0 (CH), 132.7 (C), 131.3 (q, J = 32.7 Hz, C), 

130.0 (CH), 129.3 (CH), 126.6 (q, J = 3.8 Hz, CH) , 123.8 (q, J = 3.8 Hz, 

CH), 123.7 (q, J = 272 Hz, C). 19F NMR (282 MHz, CDCl3): δ (ppm) 

62.5. 

(E)-Benzo[d][1,3]dioxole-5-carbaldehyde oxime (2h). Yield (73%, 

60.6 mg Rf (20% EtOAc/ Hexane) 0.40. Yellow solid.). 1H NMR (300 

MHz, CDCl3): δ (ppm) δ 8.06 (s, 1H), 7.19 (d, J = 1.6 Hz, 1H), 6.98 

(dd, J = 8.0, 1.6 Hz, 1H), 6.83 (d, J = 8.0 Hz, 1H), 6.00 (s, 2H). 13C 

NMR (75 MHz, CDCl3): δ (ppm) 149.9 (CH), 149.3 (C), 148.2 (C), 

126.2 (C), 108.3 (CH), 105.6 (CH), 101.4 (CH2). 

(E)-4-Methoxybenzaldehyde oxime (2i). Yield (71%, 53.7 mg Rf (20% 

EtOAc/ Hexane) 0.56. Brown solid.). 1H NMR (300 MHz, CDCl3): δ 

(ppm) 8.12 (s, 1H), 7.54-7.51 (d, J = 8.8 Hz, 2H), 6.93-6.90 (d, J = 8.8 

Hz, 2H), 3.84 (s, 3H). 13C NMR (75 MHz, CDCl3): δ (ppm) 161.0 (C), 

149.7 (CH), 128.5 (CH), 124.6 (C), 114.1 (CH), 55.3 (CH3). 

(E)-3-Methoxybenzaldehyde oxime (2j). Yield (82%, 62.0 mg). Rf 

(20% EtOAc/ Hexane) 0.54. Brown solid. 1H NMR (300 MHz, CDCl3): 

δ (ppm) 8.15 (s, 1H), 7.35-7.30 (m, 1H), 7.19-7.13 (m, 2H), 6.98-6.96 

(m, 1H), 3.85 (s, 3H). 13C NMR (75 MHz, CDCl3): δ (ppm) 157.6 (C), 

146.6 (CH), 131.1 (CH), 127.3 (CH), 120.7 (CH), 120.6 (C), 111.1 (CH), 

55.5 (CH3). 

(E)-2-Methoxybenzaldehyde oxime (2k). Yield (80%, 60.5 mg). Rf 

(20% EtOAc/ Hexane) 0.58. Brown solid. 1H NMR (300 MHz, CDCl3): 

δ (ppm) 8.15 (s, 1H), 7.35-7.30 (m, 1H), 7.16-7.12 (m, 2H), 6.98-6.95 

(m, 1H), 3.85 (s, 3H).13C NMR (75 MHz, CDCl3): δ (ppm) 159.8 (C), 

150.1 (CH), 133.2 (C), 129.8 (CH), 120.0 (CH), 116.4 (CH), 111.2 (CH), 

55.3 (CH3). 

(E)-Acetophenone oxime (2l). Yield (96%, 64.9 mg). Rf (20% EtOAc/ 

Hexane) 0.61. White solid. 1H NMR (300 MHz, CDCl3): δ (ppm) 7.67-

7.64 (m, 2H), 7.42-7.40 (m, 3H), 2.33 (s, 3H). 13C NMR (75 MHz, 

CDCl3): δ (ppm) 156.0 (C), 136.5 (C), 129.2 (CH), 128.5 (CH), 126.0 

(CH), 12.2 (CH3). 

(E)-1-(p-Tolyl)ethanone oxime (2m) Yield (90%, 67.1 mg). Rf (20% 

EtOAc/ Hexane) 0.59. White solid. 1H NMR (300 MHz, CDCl3): δ 

(ppm) 7.55 (d, J = 8.0 Hz, 2H), 7.22 (d, J = 8.0 Hz, 2H), 2.40 (s, 3H), 

2.32 (s, 3H). 13C NMR (75 MHz, CDCl3): δ (ppm) 155.9 (C), 139.3 (C), 

133.6 (C), 129.2 (CH), 125.9 (CH), 21.3 (CH3), 12.3 (CH3). 

(E)-1-(4-Chlorophenyl)ethanone oxime (2n). Yield (95%, 80.6 mg). Rf 

(20% EtOAc/ Hexane) 0.55. White solid. 1H NMR (300 MHz, CDCl3): 

δ (ppm) 7.58 (d, J = 8.8 Hz, 2H), 7.37 (d, J = 8.8 Hz, 2H), 2.30 (s, 3H). 
13C NMR (75 MHz, CDCl3): δ (ppm) 155.1 (C), 135.3 (C), 134.9 (C), 

128.7 (CH), 127.3 (CH), 12.1 (CH3). 

(E)-1-(4-Fluorophenyl)ethanone oxime (2o). Yield (98%, 75.0 mg). Rf 

(20% EtOAc/ Hexane) 0.57. White solid. 1H NMR (300 MHz, CDCl3): 

δ (ppm) 7.63 (dd, J = 9.0, 5.3 Hz, 2H), 7.09 (t, J = 9.0, 2H), 2.31 (s, 

3H). 13C NMR (75 MHz, CDCl3): δ (ppm) 163.4 (d, J = 250 Hz, C), 

155.1 (C), 132.6 (C), 127.9 (d, J = 8.7 Hz, CH), 115.5 (d, J = 21.7 Hz, 

CH), 12.3 (CH3). 

(E)-1-4-(Trifluoromethyl)phenylethanone oxime (2p). Yield (96%, 

97.5 mg). Rf (20% EtOAc/ Hexane) 0.60. White solid. 1H NMR (300 

MHz, CDCl3): δ (ppm) 7.76 (d, J = 8.2 Hz, 2H), 7.66 (d, J = 8.2 Hz, 2H), 

2.34 (s, 3H). 13C NMR (75 MHz, CDCl3): δ (ppm) 155.1 (C), 139.8 (C), 

131.1 (q, J = 32.7 Hz, C), 126.3 (CH), 125.5 (q, J = 3.7 Hz, CH), 123.9 

(q, J = 272.3 Hz, C), 12.2 (CH3). 

(E)-1-3-(Trifluoromethyl)phenylethanone oxime (2q). Yield (91%, 

92.4 mg). Rf (20% EtOAc/ Hexane) 0.62. White solid. 1H NMR (300 

MHz, CDCl3): δ (ppm) 7.91 (s, 1H), 7.83 (d, J = 7.8 Hz, 1H), 7.66 (d, J 

= 7.8 Hz, 1H), 7.54 (t, J = 7.8 Hz, 1H), 2.34 (s, 3H). 13C NMR (75 MHz, 

CDCl3): δ (ppm) 154.9 (C), 137.3 (C), 130.9 (q, J = 32.4 Hz), 129.2 

(CH), 129.0 (CH), 125.8 (q, J = 3.8 Hz, CH), 124.3 (q, J = 273 Hz, C), 

122.9 (C), 12.0 (CH3). 
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(E)-1-(4-Methoxyphenyl)ethanone oxime (2r). Yield (93%, 76.8 mg). 

Rf (20% EtOAc/ Hexane) 0.59. Brown solid. 1H NMR (300 MHz, 

CDCl3): δ (ppm) 7.59 (d, J = 9.0 Hz, 2H), 6.92 (d, J = 8.9 Hz, 2H), 3.85 

(s, 3H), 2.30 (s, 3H). 13C NMR (75 MHz, CDCl3): δ (ppm) 160.8 (C), 

155.9 (C), 129.4 (C), 127.7 (CH), 114.3 (CH), 55.7 (CH3), 12.6 (CH3). 

(E)-1-(3-Methoxyphenyl)ethanone oxime (2s). Yield (96%, 79.3 mg). 

Rf (20% EtOAc/ Hexane) 0.57. Brown solid. 1H NMR (300 MHz, 

CDCl3): δ (ppm) 7.35-7.33 (m, 1H), 7.30-7.21 (m, 2H), 6.98-6.94 (m, 

1H), 3.86 (s, 3H), 2.32 (s, 3H). 13C NMR (75 MHz, CDCl3): δ (ppm) 

159.6 (C), 155.9 (C), 137.9 (C), 129.5 (CH), 118.6 (CH), 115.1 (CH), 

111.3 (CH), 55.3 (CH3), 12.4 (CH3). 

(E)-1-(2-Methoxyphenyl)ethanone oxime (2t). Yield (91%, 75.2 mg). 

Rf (20% EtOAc/ Hexane) 0.61. Brown solid. 1H NMR (300 MHz, 

CDCl3): δ (ppm) 7.39-7.32 (m, 2H), 7.00-6.93 (m, 2H), 3.86 (s, 3H), 

2.27 (s, 3H). 13C NMR (75 MHz, CDCl3): δ (ppm) 157.4 (C), 157.0 (C), 

130.3 (CH), 129.4 (CH), 126.5 (C), 120.6 (CH), 111.1 (CH), 55.5 (CH3), 

15.2 (CH3). 
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