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Abstract we report the results of a two-dimensional tomographic inversion of marine seismic refraction
data from an array of ocean-bottom seismographs (OBSs), which produced an image of the crustal structure
along the axial valley of the ultraslow spreading Mid-Cayman Spreading Center (MCSC). The seismic velocity
model shows variations in the thickness and properties of the young oceanic crust that are consistent with
the existence of two magmatic-tectonic segments along the 110 km long spreading center. Seismic wave
speeds are consistent with exhumed mantle at the boundary between these two segments, but changes in
the vertical gradient of seismic velocity suggest that volcanic crust occupies most of the axial valley seafloor
along the seismic transect. The two spreading segments both have a low-velocity zone (LVZ) several
kilometers beneath the seafloor, which may indicate the presence of shallow melt. However, the northern
segment also has low seismic velocities (3 km/s) in a thick upper crustal layer (1.5-2.0 km), which we
interpret as an extrusive volcanic section with high porosity and permeability. This segment hosts the Beebe
vent field, the deepest known high-temperature black smoker hydrothermal vent system. In contrast, the
southern spreading segment has seismic velocities as high as 4.0 km/s near the seafloor. We suggest that
the porosity and permeability of the volcanic crust in the southern segment are much lower, thus limiting
deep seawater penetration and hydrothermal recharge. This may explain why no hydrothermal vent system
has been found in the southern half of the MCSC.

1. Introduction

Geochemical and geophysical data from the world’s mid-ocean ridges show evidence of reduced magmatism
at slower spreading rates, which can be explained by lower rates of mantle upwelling and decompression
melting, as well as more effective surface cooling [Klein and Langmuir, 1987; White et al., 2001; Behn and Grove,
2015]. Nonetheless, large volcanic edifices and hydrothermal vents are found along spreading centers even at
the slowest spreading rates [Baker and German, 2004]. Some of these vents may extract heat from mantle-
derived melts in ridge segments that are much more magmatic than neighboring sections of the spreading
center [Cannat et al., 2003; Dick et al., 2003; Michael et al., 2003]. At ultraslow spreading centers (<20 mm/yr
full rate), variations in lithospheric thickness may facilitate along-strike melt migration [Sparks and Parmentier,
1991], and they may also lead to differences in the efficiency of melt extraction [Montési and Behn, 2007]. Both
processes will contribute to variations in magma output along the plate boundary.

Slow and ultraslow spreading centers also show variations in the degree to which extension is accommo-
dated by faulting and magmatism on a 30-80 km segment length scale [Schouten et al., 1985; Tolstoy et al.,
1993; Muller et al., 1999]. At the Mid-Atlantic Ridge and Southwest Indian Ridge, such spreading segments
are regularly offset by transform and nontransform discontinuities [Lin et al., 1990; Sauter et al., 2004]. Seis-
micity shows evidence for melt migration to the segment centers, and extensional faulting of thicker litho-
sphere at segment ends [Wolfe et al., 1995]. Seismic refraction studies show systematically thinner oceanic
crust near segment ends [Tolstoy et al., 1993], which are considered to be magma starved. Variations in
magma supply from the deeper mantle and along-axis melt focusing may thus explain why high-
temperature black smoker vents occur at slow and ultraslow spreading rates. However, our understanding
of the nature of the interaction between tectonic extension, fluid flow, and deep-seated magmatic systems
at ultraslow seafloor spreading rates is still limited by the availability of geophysical constraints on the deep
crustal structure.
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Figure 1. (a) Regional location map with Cayman Trough in blue. CAR = Caribbean; lower than at most other mid-ocean
MCSC = Mid-Cayman Spreading Center; NA = North America; OTF = Oriente trans- ridges [White et al, 2001]. Nonethe-
form fault; SITF = Swan Island transform fault; WTF = Walton transform fault. Plate
motion speed of the Caribbean plate (22 mm/yr) and Gonave microplate (15 mm/ . )
yr) are relative to North America. (b) Shaded bathymetry map with location of been discovered on the MCSC in
CAYSEIS lines P01 (in red). White numbers indicate the OBS stations on line P01 in recent years [German et al, 2010;
the MCSC axial valley. BV = Beebe vent; MD = Mt Dent; ME = Mt Emms; MH = Mt Connelly et al, 2012]. The Von Damm
Hudson; VDV = Von Damm vent. . .

vent field lies on the Mt Dent oceanic

core complex (OCC), west of the cen-
tral axial valley. To the north, the Beebe vent field, which has also been named the Piccard vent field, is a
black smoker vent system that discharges 400°C fluids at the seafloor of the axial valley [Kinsey and German,
2013; Webber et al., 2015]. Gravity and vintage seismic refraction data show that the MCSC crust may be as
thin as 3 km [Ewing et al., 1960; ten Brink et al., 2002]. Unfortunately, the lack of resolution in these data does
not help the investigation of the interaction between hydrothermal circulation and magmatic processes.

less, two hydrothermal systems have

In April 2015, scientists from GEOMAR, Durham University, and the University of Texas Institute for Geophys-
ics (UTIG) collaborated on a marine geophysical expedition on board the R/V Meteor to study the deep
crustal structure of the MCSC (Figure 1b). In this paper we report the seismic velocity structure along marine
seismic refraction line P01, along the axial valley of the MCSC. The seismic velocity structure imaged in this
profile shows the existence of two distinct spreading segments where melts are delivered to shallow levels
in the young oceanic crust.

2. Seismic Refraction Data

During the 2015 CAYSEIS cruise (M115) we gathered transect P01, a seismic line along the axial valley of the
MCSC, and southward onto the continental lithosphere of the northern Nicaragua Rise (Figure 1). We
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Figure 2. (a) The bottom figure shows a wide-angle record from OBS 116 on CAYSEIS line PO1. The vertical axis is reduced with a reduction velocity of 7 km/s. (top) Interpretation of the
first-arriving seismic refractions (red line), and the first water multiple at the station (blue line). (b) Wide-angle seismic record of OBS 113. (c) Wide-angle seismic record of OBS 110. (d)
Wide-angle seismic record of OBS 106. (e) Wide-angle seismic record of OBS 103.

present data from the northern portion of transect P01 in the Cayman Trough. The British and U.S. instru-
ments of the CAYSEIS recording array were equipped with three-component geophones and hydrophones.
The GEOMAR instruments along line PO1 were equipped with hydrophones. The R/V Meteor towed an 84 L
acoustic source at a depth of 7.5 m, delivering shots at 60 s intervals. The cruise speed of the research vessel
along line P01 averaged 9.3 km/h, resulting in a shot spacing of 155 m.

In Figure 2 we show wide-angle seismic records from five instruments deployed along transect PO1. We
used the direct water wave from the surface shots to relocate the instruments on the seafloor. The OBS
records from line P01 show seismic refractions from waves that turn in the basement of the MCSC axial val-
ley to a maximum source-receiver offset of 60 km. The apparent velocity of these seismic refractions is
approximately 7 km/s, but the arrival times vary locally due to the relief on the underlying seafloor. The sea-
floor multiple reflection at the ocean-bottom station can also be observed very clearly in these records, as
the amplitude may be twice as high as those of the primary arrivals [Melendez et al., 2014]. At source-
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receiver offsets that are much greater than the water depth, these multiple arrivals travel along a path
through the crust that is approximately the same as that of the primary arrival. We therefore used some
multiple arrival times from larger offsets in our analysis (Figure 2).

We manually picked the first break of basement refractions on 17 seismic stations along line PO1. We con-
sidered source-receiver reciprocity in the evaluation of noisy picks at large offsets. We also assigned uncer-
tainties that varied from 40 ms for high-quality waveforms at short ranges, to 200 ms for arrivals with a
lower signal-to-noise ratio at large source-receiver offsets. The deep travel paths beneath the seafloor of
long-range seismic refractions provide essential constraints on the crustal structure of the axial valley (Fig-
ure 2). While we obtained 1563 travel times from picking just the first-arriving phases, we were able to pick
an additional 578 travel times from water multiples at long source-receiver offsets, which should provide
better coverage of the deep structure. We therefore have a total 2141 arrival times to constrain the seismic
velocity structure along the 96 km long section of line PO1 that covers the MCSC axial valley.

3. Results

3.1. Tomography

To image the compressional seismic velocity structure along line PO1 using our travel-time data set, we
applied both a ray tracing approach [Van Avendonk et al., 2001] and linear inversions of travel-time residuals
[Van Avendonk et al., 2004]. By iterating the ray tracing and inversion steps, this method can produce a
robust seismic velocity model that fits the data [Hole, 1992]. As we derived the final seismic velocity model
for line P01, we also investigated the influence of the starting model in the tomographic inversion [Zhang
and Toksoz, 1998]. We generated 16 unique starting models that are defined by a 1-D seismic velocity-
depth model hung beneath the seafloor along line PO1 (Figure 3). These 16 starting models, which are con-
sistent with a crustal layer of 1-6 km in thickness, achieved a y* data misfit after the first ray-tracing step
varying from 4.9 to 40.4. However, in each case we needed just eight iterations of the linearized inversion
scheme [Van Avendonk et al., 2004] to converge to a solution and reach a normalized y* misfit tolerance
level of 1.0 or less.

We stacked the 16 converged seismic velocity

Seismic velocity (km/s) models for line I.°O1 énd calculated new ray-
4 6 8 paths and travel times in the final model to find
a y* misfit of 0.8 and a root-mean-square data
misfit of 111 ms. These travel-time residuals
increase with source-receiver offset due to the
differences in noise level, but the average misfit
does not exhibit a noticeable trend (Figure 4).
Individual OBS stations show varying discrepan-
cies between picked and calculated travel times
for most instruments (Figure 5), but these mis-
fits are comparable to the assigned data uncer-
tainties. The corresponding raypaths show that
the seismic velocity structure along line PO1
(Figure 6) is constrained to a depth of ~10 km
below sea level, or ~4 km beneath the seafloor.

o
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n
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Figure 3. Sixteen starting models used for a tomographic inversion of southern portion of our seismic velocity model,
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Figure 4. (a) Histogram of travel time picks for all source-receiver offsets. Travel time picks of primary refracted arrivals (light gray) are
augmented with picks from water-wave multiple arrivals (dark gray). (b) Travel-time residuals for all picks after the tomographic inversion.

model uncertainty because the trade-off between data misfit and model roughness was handled in the
same manner in each of these regularized inversions. The good correspondence between the 16 tomo-
graphic inversion results confirms that the choice of starting model plays only a minor role in the inversion

outcome.

3.2. Resolution

To further examine the quality of the tomographic image, we performed a resolution analysis on the seismic
velocity model of line PO1 (Figure 6), based on the ray coverage from all 17 OBSs (Figure 5). We first con-
structed a resolution matrix from the generalized inverse matrix [Van Avendonk et al., 2004]. We then used
the resolution matrix to project synthetic seismic velocities into image space, in order to test how well we
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Figure 5. (a) Diagram with raypaths from five OBSs shown in the seismic velocity-depth model, where raypaths from different instruments
are shown in different colors. The five instrument locations are indicated by white circles, whereas other OBSs along line PO1 are shown in
gray. (b) Travel-time branches of picked (solid) and calculated refractions are shown for the same five OBSs on line P01, plotted with a

reduction velocity of 7 km/s.
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Figure 6. Seismic velocity model for CAYSEIS line PO1. The seismic velocities are contoured at 1.0 km/s with solid lines, and at 0.5 km/s
with dashed lines. The two low-velocity zones (LVZ) are discussed in the text. BV = Beebe vent field; MD = Mt Dent. Labeled white circles
represent the OBSs used in this study.

can recover heterogeneities with the ray coverage obtained along line PO1. A resolution value of 1.0 is
achieved when the test structure is fully resolved. We define that a resolution value above 0.5 is an accept-
able fit [Van Avendonk et al., 2004], since it implies that a significant portion of the Earth structure is recov-
ered in the tomographic image. We test for the fidelity of large-scale model features by sliding an ellipse-
shaped averaging window of 8 km width and 3 km height across the model space, while a 4 km by 1.5 km
averaging window was used as the resolution test for the finer detail structure.

The averaging window of 8 km by 3 km is nearly fully reproduced in the upper 4 km along line P01,
although resolution is decreased to 0.8 at the north end of the MCSC (Figure 8a). There is a gap here
between OBS 102 and OBS 25 of almost 20 km, because two other instruments here did not record usable
data. As a result, the ray coverage and resolution are locally reduced. Resolution decreases rapidly with
depth, since most raypaths do not turn deeper than 6 km beneath the seafloor. Overall, large-scale features
(8 km by 3 km) are very well resolved. The smaller averaging window of 4 km by 1.5 km is also better
resolved in the upper few km of the MCSC axial valley than at larger depth (Figure 8b), though resolution
values are altogether lower than in the test with the 8 km by 3 km window (Figure 8a). The second test
shows that more caution is required when interpreting lateral seismic velocity anomalies on the scale of
~4 km at depths greater than 3 km beneath the seafloor.

3.3. Seismic Velocity Structure

The best fit tomographic image for CAYSEIS line P01 shows that the seismic velocity increases with depth
from approximately 3-4 km/s near the seafloor to 5-8 km/s at the maximum depth of ray coverage (Figure
5). From south-to-north there are lateral variations of 1 km/s in the seismic velocity structure of the MCSC
axial valley, both at shallow and large depths beneath the seafloor. Our resolution tests indicate that most

South . . . North
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Figure 7. Standard deviation in the collection of 16 seismic velocity-depth models derived for line PO1. Solid (at 1.0 km/s) and dashed (at
0.5 km/s) black lines are the seismic velocity contours of the average seismic velocity structure (Figure 6).
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Figure 8. Resolution tests for line PO1. (a) We apply the resolution matrix to an ellipse-shaped test structure, 8 km wide and 3 km high,
and examine how much of the ellipse is projected onto itself. A resolution value of 1.0 represents full recovery, and 0.0 indicates that there
is no correlation between the test structure and its image. We consider a resolution value of 0.5 or higher adequate for our interpretations
[Van Avendonk et al., 2004]. Dashed black lines represent 1.0 km/s seismic velocity contours. Green circles show the OBS locations. (b)
Same as Figure 8a, but for a test structure that is 4.0 km wide and 1.5 km high.

of these seismic velocity anomalies are resolved with confidence. The primary features of our seismic veloc-
ity model are:

1.

The upper crustal seismic velocities lie between 3.5 and 4.0 km/s along much of line P01, but between
60 and 70 km offset, near the Beebe vent, the seismic wave speed at the surface is nearer to 3.0 km/s.
This area is also characterized by a relatively low seismic velocity gradient in the upper 1.5 km of crust.
Our ability to resolve fine details of the seismic velocity structure beneath the seafloor with a travel-time
inversion is limited (Figure 8a), so these lateral variations in upper crust of our model represent averages
over at least 1 km depth.

. There are two prominent low-velocity zones (LVZ) near the base of the known crust of the axial valley.

Unfortunately, our tomographic inversion of first-arriving travel times does not constrain the crustal thick-
ness beneath these two LVZs. Raypaths constrain seismic velocities as low as 5.5 km/s at 5 km beneath
the seafloor near the Beebe vent (60-70 km model distance). Another deep-crustal LVZ with a seismic
velocity of ~6.0 km/s is found in the south, between 15 and 25 km offset. According to our tests (Figure
7), this second low-velocity anomaly is near the limit of the resolution of the tomographic inversion.

. In the middle of the profile (25-55 km offset), where the axial valley adjacent to Mt Dent is relatively shal-

low, the 4, 5, and 6 km/s seismic velocity contours lie closer to the seafloor than in the bathymetric
depressions to the north and south. On the other hand, at depths of 3-5 km beneath the seafloor, seis-
mic velocity increases more gradually with depth from 7.0 to 7.5 km/s with depth occurs more gradually.

. At the south end of our seismic velocity image (0-10 km distance) we find that the 7.5 km/s seismic

velocity contour is shallow. The modeled crustal thickness here is a maximum of 1.5 km (Figure 6). At the
north end of the profile, where the MCSC terminates against the Oriente transform fault, the seismic
crustal thickness is ~2.5 km.

4. Discussion

4.1. Segmentation of MCSC
The large-scale variations in seismic velocity structure along line POT may be the geophysical expression of
the tectonic segmentation of the MCSC, for which we already have good evidence. The axial valley consists
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Figure 9. (a) Bathymetry of the MCSC axial valley. The axial volcanic ridge (AVR) is drawn in red. CAYSEIS line PO1 is marked with a white
line. Normal faults bounding the axial valley are in orange. BV = Beebe vent; MD = Mt Dent; MH = Mt Hudson; VDV = Von Damm vent. (b)
Shallow seismic velocity gradient along Line PO1. The gradient is contoured (black dashes) at 1/s. Labeled seismic velocity contours (at

1 km/s) are shown in red. The three vertical arrows mark the location of three 1-D seismic velocity profiles. (c) Graphs of seismic velocity
variation with depth below seafloor at southern AVR (blue), Mt Dent (green), and northern AVR (red).

of several basins with depths as great as 6000 m, which are bordered to the east and west by high-standing
massifs [Macdonald and Holcombe, 1978; Hayman et al., 2011] (Figure 1). Dredges and remotely operated
vehicle (ROV) expeditions mostly recovered basaltic rocks in these basins, whereas gabbros and peridotites
were retrieved more often near the bathymetric highs [Perfit, 1977; Hayman et al., 2011]. In the center of the
MCSC, the axial valley is slightly offset in a right-lateral sense at Mt Dent, which may be interpreted as a seg-
ment boundary [Macdonald and Holcombe, 1978; Leroy et al., 2000]. Our seismic velocity model of line P01
covers the full length of two axial basins, bounded by higher seabed topography near Mt Hudson in the
south [Van Dover et al., 2014], Mt Dent in the center, and the 7 km deep Oriente transform fault in the north
(Figure 9). The seismic velocity structure along line P01 is consistent with thin (1.5-2.5 km) crust in the two
axial basins, and perhaps also exhumed and altered mantle rock toward the tips of the spreading segments
north and south of Mt Dent. Both axial basins lie above a LVZ, which may represent crystal-melt mush zones
deep beneath the basaltic seafloor.

The tomographic image of line P01 shows seismic velocities gradually increasing to 7.5 km/s at a depth of
5 km depth beneath the axial valley seafloor adjacent to Mt Dent (40-55 km offset in Figure 6). We interpret
the basement in this central portion of line PO1 to be unroofed and partially hydrated mantle rather than
new igneous crust, because serpentinites were recovered from the seafloor in the vicinity [Hayman et al.,
2011]. Seismic velocities approaching 7.5 km/s, as observed in the central portion of our model, are also
generally too high for gabbro or other crustal rocks [Minshull et al., 1998]. The ~2 Ma basement of Mt Dent
likely consists of mantle rock intruded by gabbros, with an inward dipping detachment fault marking the
western rift valley wall, exhuming plutonic and upper mantle rocks in an oceanic core complex (OCC) [Hay-
man et al, 2011]. This detachment fault may have facilitated the penetration of seawater and deep
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dence for AMC from multichannel seismic (MCS) data. Dashed blue lines: Evidence
from wide-angle seismic data for AMCs or LVZs in the oceanic crust. CRR = Costa
Rica Rift [Mutter et al., 1995]; EGSC and WGSC = East and West Galapagos Spread-
ing Center [Blacic et al., 2004]; JdF = Juan de Fuca Ridge [Canales et al., 2005; Van
Ark et al., 2007; Arnulf et al., 2014a]; LB = Lau Basin [Turner et al., 1999; Jacobs et al.,
2007]; LS = Lucky Strike volcano [Singh et al., 2006]; MCSC = Mid-Cayman Spread-
ing Center (this study); RR = Reykjanes Ridge [Navin et al., 1998]; SWIR = Robust
spreading segment at 50°E on the Southwest Indian Ridge [Li et al., 2015; Jian

et al,, 2017]; NEPR = Northern East Pacific Rise [Harding et al., 1989; Carbotte et al.,
1998, 2013]; SEPR = Southern East Pacific Rise [Hussenoeder et al., 1996; Hooft et al.,
1997; Tolstoy et al., 1997]; 35°N = Mid-Atlantic Ridge 35°N [Magde et al., 2000].
Dashed black line: Predicted depth of a stable AMC [Phipps Morgan and Chen,
1993].

hydration of the lithosphere of the
axial valley adjacent to the OCC.
Present-day extension across the cen-
tral MCSC may be accommodated by
fault slip on this detachment, or on
new normal faults dissecting the OCC.

Plate divergence in the MCSC is
accommodated by the accretion of
volcanic crust in segment centers and
by brittle deformation near the ridge
discontinuities, just as has been docu-
mented at other slow and ultraslow
spreading systems [Tolstoy et al., 1993;
Tucholke and Lin, 1994; Wolfe et al.,
1995; Muller et al., 1999; Sauter et al.,
2004]. The ~40-50 km length scale of
the two MCSC segments is consistent
with the outcome of 3-D geodynamic
modeling of slow seafloor spreading
with a temperature-dependent man-
tle viscosity [Choblet and Parmentier,
2001]. Unlike at fast spreading cen-
ters, magmatism may be more inter-

mittent on slow and ultraslow
spreading centers [Phipps Morgan and Chen, 1993]. Nonetheless, wide-angle seismic data have previously
shown LVZs in the crust of the slow spreading Mid-Atlantic Ridge [Navin et al., 1998; Seher et al., 2010] and
the ultraslow spreading Southwest Indian Ridge [Li et al., 2015; Jian et al., 2017]. In their study of Lucky Strike
volcano, Singh et al. [2006] created a seismic reflection image of an axial magma chamber (AMC) near the
top of the LVZ [Seher et al., 2010; Arnulf et al, 2014b], showing that the seismic velocity anomalies are
indeed associated with melts. The LVZ depth of 2.5-3.5 km beneath the MCSC seafloor is comparable to the
mentioned results from other slow and ultraslow spreading centers, though the LVZ lies deeper (3.5-
4.5 km) on the ultraslow spreading robust spreading segment at 50°E on the Southwest Indian Ridge [Jian
et al, 2017]. The 0.8-1.6 km AMC depth of the fast spreading East Pacific Rise is much smaller in comparison
(Figure 10).

We interpret the two LVZs along the MCSC as deep-lying crystal-melt mush zones at the MCSC, likely the
result of efficient along-axis melt migration, which is consistent with abundant volcanic rock outcrops in
the axial basins [Hayman et al., 2011]. If magmas erupt here along narrow axial volcanic ridges (AVRs) to create
new basaltic crust, the mode of seafloor spreading resembles that of faster spreading centers. It is nonetheless
uncertain that the MCSC can be considered a relatively magma-rich ultraslow spreading center, because the
major element geochemistry of basalts and gabbros retrieved from the deep seafloor indicates that the
mantle melt fraction beneath this spreading center is low [Klein and Langmuir, 1987; Elthon et al., 1995]. Petro-
logical data, gravity, and magnetic data from the high plateaus and axis-parallel ridges on the rugged flanks
of the MCSC (Figure 1) show that they may be interpreted as a series of OCCs [Hayman et al.,, 2011]. Like Mt
Dent, such OCCs may have formed by low-angle faulting of the young oceanic lithosphere during a transition
between magmatic and brittle extension [Buck et al, 2005]. The style of seafloor spreading at the MCSC
appears to have been controlled by intermittent magmatism since at least 20 Ma, and crystal-melt mush
zones beneath the neovolcanic zone probably do not persist over several million years.

4.2. Volcanic Crust

The degree to which there is focused melt migration at the MCSC has implications for the style of accretion
of volcanic crust. If the eruption of basaltic lavas at the AVRs above the LVZs keeps pace with the plate
spreading rate, oceanic crust in these axial basins may comprise extrusive basalts, above sheeted dikes and
gabbroic lower crust [e.g., Cannat, 1995]. Alternatively, if the magma supply is intermittent we do not expect
that a sheeted dike complex will form beneath the AVRs [Robinson et al., 2008; Lagabrielle et al., 2015]. In that
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case, basaltic melts may reach the seafloor along several normal faults that run parallel to the spreading
center [Standish and Sims, 2010], and basaltic lavas may be emplaced directly on mantle peridotite [Dick
et al.,, 2003].

The tomographic image of line PO1 shows seismic velocities as low as 3.0-3.5 km/s in the uppermost crust
of the volcanic field north of Mt Dent (60-70 km offset in Figure 9), which may be explained by 20-25%
porosity of extrusive basalts, depending on the aspect ratio of cracks and voids in the basement rock
[Wilkens et al., 1991; Berge et al., 1992], and the degree to which asperities make contact across cracks
[Carlson, 2014]. In contrast to the northern MCSC spreading segment, the southern axial basin (20-35 km
offset) has a seismic velocity of almost 4.0 km/s at the seabed of the AVR. Such high velocities are not
unusual for the shallow ocean crust, or layer 2A [Carlson, 1998], but do require the rock porosity of the
southern AVR to be significantly lower (5-10%) than that to the north of Mt Dent.

From our seismic velocity model, we estimate the thickness of the extrusive volcanic layer from the steep-
ness of the vertical seismic velocity gradient (Figure 9b). Our regularized travel-time inversion shows vertical
velocity gradients as high as 2/s. Due to the effects of model smoothing this must be considered a mini-
mum value. In the two axial basins, the largest gradients are found at a depth of 1.5-2.0 km beneath the
seafloor. In contrast, at the segment boundary adjacent to Mt Dent we observe the largest velocity gradient
within the first 0.5 km beneath the seafloor. Peridotites have been dredged at this east slope of Mt Dent
[Hayman et al., 2011]. It therefore appears that layer 2A, which is often interpreted as the extrusive volcanic
layer [e.g., Houtz and Ewing, 1976; Harding et al., 1993], may be as thick as 2.0 km beneath the northern axial
basin of the MCSC. This observation is consistent with a trend in the global mid-ocean ridge system, where
the thickness of layer 2A is inversely correlated with spreading rate [Van Ark et al., 2007].

Along line PO1 (Figure 6) we do not observe a typical seismic layer 3, where seismic velocities gradually
increase with depth from 6.0 to 7.0 km/s over several kilometers [Spudich and Orcutt, 1980; Karson, 1998].
The MCSC axial valley, therefore, does not appear to have a thick gabbro layer in the lower crust, and volca-
nic rocks must account for a large portion of its igneous crust in the axial valley. However, the inferred
crystal-mush zones along line P01 are probably forming new gabbroic crust, and at least some of these
intrusive rocks are exhumed off-axis by low-angle detachment faults [Hayman et al., 2011].

4.3. The Beebe Vent Field

The discovery of the Beebe vent on the eastern flank of the northern segment of the MCSC was unexpected
[Connelly et al., 2012], because high-temperature, basalt-hosted vents are more often associated with faster
spreading ridges [Baker et al., 1996; Baker and German, 2004]. The high temperature (400°C) of fluids emit-
ted at the seafloor [Kinsey and German, 2013] requires a robust hydrothermal circulation system above a
melt-rich zone hosted in young oceanic crust [Nehlig, 1993]. Our wide-angle seismic refraction data provide
evidence for a lava pile as thick as 2.0 km underneath the Beebe vent field, and a melt-rich zone at approxi-
mately 2.5-3.5 km beneath the seafloor. It is, therefore, likely that seawater penetrates deep in the volcanic
crust, where the temperature remains high due to the focused supply of melt to the northern MCSC spread-
ing segment.

Webber et al. [2015] used the concentration of Si (24 mmol/kg) in the Beebe vent fluids to estimate that the
reaction zone of the hydrothermal fluids is at 1.8 km depth beneath the seafloor, where the temperature
may be as high as 550°C. They assumed that the basaltic crustal layer would be significantly thinner than
the depth of hydrothermal circulation, such that the vent fluid chemistry would be influenced by exposure
to both mafic crustal and ultramafic mantle rocks. Due to the complexity of fault zones along the spreading
center (Figure 9a), it is possible that these hydrothermal fluids pass through a section of the uppermost
mantle. However, our seismic velocity model suggests that the young crust may locally be up to 2.0 km
thick. If the vent fluids are confined to the volcanic crust above a melt-rich zone that we infer from the LVZ,
the Beebe vent may be quite similar to black smokers from other mid-ocean ridges. The large depth of
hydrothermal circulation requires that the fluids are anomalously hotter by as much as 100°C when com-
pared to similar vents of the Mid-Atlantic Ridge [Fontaine et al., 2009; Webber et al., 2015].

The presence of a LVZ and thick layer 2A beneath the northern spreading segment of the MCSC helps
explain the heat source for the Beebe vent field, but the tomographic image also shows an LVZ beneath
the southern spreading segment of the MCSC, where no vent system has, so far, been identified. The AVR in
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the southern axial basin appears to be inflated near 18°06’N (Figure 9a), so it is quite possible that melt is
accumulating here. A key difference in the crustal structure of the two axial basins is the seismic velocity of
the uppermost crust, which we consider to be, primarily, an indication of porosity. As we noted in section
4.2, the 3.0 km/s seismic velocity observed in the basement near the Beebe vent field suggests that the
upper crust may be much more porous (20-25%) than that of the southern axial basin, where the seismic
velocity is 4.0 km/s. If much of the permeability in the volcanic rocks of the northern MCSC is provided by
linear cracks [e.g., Fisher, 1998], we would expect the permeability to also be relatively high. Permeable
faults and fractures are essential to maintain deep hydrothermal circulation at a mid-ocean ridge [Fontaine
and Wilcock, 2007; Coogan, 2008], so perhaps the lack of permeability is one reason that a long-lived vent
system did not develop in the southern MCSC.

5. Conclusions

In this paper we present a detailed crustal-scale seismic velocity model of the axial valley of the MCSC, using
recently gathered marine seismic refraction data. We draw the following interpretations and conclusions
regarding the crustal structure of the neovolcanic zone:

1. Seismic velocities in the MCSC axial valley increase from 3 to 4 km/s at the seafloor to 7-7.5 km/s at 3-
4 km depth. The young oceanic crust therefore appears to be thin. In the central MCSC, adjacent to the
Mt Dent OCC, mantle rock is exposed at the seafloor. Here seismic velocities increase rapidly with depth
near the seafloor, but the change becomes more gradual as the seismic velocity approaches 8 km/s. This
suggests that hydration of the mantle rock at larger depth becomes less pervasive.

2. In the seismic velocity image we see LVZs beneath the axial basins both north and south of Mt Dent.
This observation is consistent with the idea that seafloor spreading along the MCSC is occurring in two
segments that are slightly offset from each other. The spreading segment centers produce thin volcanic
crust, while extension is mostly accommodated by faulting toward the segment ends.

3. The seismic velocity structure near the Beebe vent field suggests that the hydrothermal system devel-
oped above an LVZ and that the volcanic crust here is thicker than to the north and south. The unusually
large depth of the seafloor and the greater thickness of fractured basaltic crust (~2 km) observed,
implies that the hydrothermal fluids reach a recharge zone that lies at a greater depth than black smoker
vents observed at faster spreading ridge systems. This may also explain the high discharge temperatures
observed at the Beebe vent field.

4. Though we also observed an LVZ in the crust of the southern spreading segment of the MCSC, no hydro-
thermal system has been found here to date. The seismic velocities reach 4.0 km/s at the seafloor above
this LVZ, which suggests that the porosity in the basaltic crust here may be low. The discharge of hydro-
thermal fluids on an ultraslow spreading segment may therefore require the presence of large tectonic
faults and/or pervasively cracked upper oceanic crust.
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