Effect of Rotor bar Shape on the Performance of Three Phase Induction Motors with Broken Rotor Bars

Evelin Maloma, Mbika Muteba and Dan-Valentin Nicolae
University of Johannesburg, South Africa

Abstract-A slight change in time phase shift between currents in adjacent rotor end ring segments directly affects the characteristics of the airgap torque in a squirrel cage induction machine (SCIM). On the other hand the rotor slot geometrical permeance has a strong impact on the rotor bar leakage inductance. This paper deals with effect of different rotor bar types (geometrical shapes) when a SCIM operates under healthy and broken rotor bars condition. The three phase squirrel cage induction machine is designed and modelled using two dimension (2D) finite Element Model (FEM). Static and dynamic analysis are performed in order to determine the target performance indexes such as transient torque, steady state torque, torque ripple, air-gap flux density, power factor and efficiency. The Finite Element Analysis (FEA) results evidence that the rotor bar shape can be optimized, such that the SCIM is yet to produce good performance when the phase shift between neighbouring bars e.m.f is changed due to rotor bar breakage.

I. INTRODUCTION

SCIMs are the most popular induction machine types in industry today, the reasons behind their intensive use is their robust design, simple construction, low cost and ease maintenance [5, 10, 11, 28]. Despite the mentioned advantages, three phase SCIMs have this problem of rotor bar breakage [1, 2].

A better design of SCIMs in order to improve their performance taking into account the broken rotor bar fault which generally affects the performance of these machines will benefit industry. In literature [11, 12, 13] major focus has been working towards finding an optimal design of induction machine geometry with the aim of improving the performance. In [11, 12] a generic algorithm approach was used to achieve an optimal design of induction machine with the aim of reducing losses and therefore improving the power factor and efficiency of the machine.

Several literature studies have been published on improving induction machine performance through geometry re-design, with much focus on stator slot opening, stator and rotor bar shape and use of magnetic and non-magnetic wedges [3, 4, 6, 8, 9, 14]. No work was dedicated to re-designing the geometry of the induction machine (particularly the rotor bar shape) in view of enhancing the performance of SCIMs when rotor bars are broken.

The purpose of this paper is therefore to analyse the influence of different rotor bar shapes upon performance of the motor. Five available rotor bar shapes are used. The model will be used to study the behaviour of the machine for various shapes of the rotor bars under both healthy and faulty conditions. In the case of broken rotor bars, all broken bars are adjacent. The rotor bar skin effect will be considered whereas skewing will not be taken into account. During induction motor start-up, the current migrates to the top of the bar (lowest impedance region) as a result of skin effect. The current migration results in temperature gradient as the top part of the bar heats-up faster than the lower part (lower impedance region). As the rotor accelerates, the current will be evenly distributed throughout the entire bar, this phenomenon is called skin effect. Skin effect in rotor bars is intentionally used in design of SCIMs in order to develop a high starting current and a lower stator current [26, 27].

According to literature [26], the skin effect will vary as the shape of rotor and rotor bars change. Changes in rotor bar shapes will result in different resistances at different depths of the rotor bar and this will yield increased or decreased electromagnetic torque. With the five different rotor bar shapes, the area of the upper body of the bars will differ resulting in different effective resistance and different starting torque. Both magneto-static and transient analysis of the machine model will be performed while comparing different performance parameters of the machine.

II. MACHINES RATINGS AND SPECIFICATIONS

This study is based on 36 stator slots and 33 rotor slots three phase, low voltage SCIM whose specification and ratings are shown in Fig. 1. , Table I and Table II below.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated Output Power</td>
<td>5.5 kW</td>
</tr>
<tr>
<td>Number of Phases</td>
<td>3</td>
</tr>
<tr>
<td>Rated Voltage</td>
<td>400 V</td>
</tr>
<tr>
<td>Rated Current</td>
<td>11.59 A</td>
</tr>
<tr>
<td>Rated Speed</td>
<td>1360</td>
</tr>
<tr>
<td>Number of poles</td>
<td>4</td>
</tr>
<tr>
<td>Frequency</td>
<td>50Hz</td>
</tr>
</tbody>
</table>

In Table III, the dimensions of the rotor slot for the conventional machine (with rotor bar type 1) is presented. Four other available rotor bar types are presented in Fig. 2.
Fig. 1. Motor Specification

TABLE II

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stator Outer Radius _R_so</td>
<td>105</td>
</tr>
<tr>
<td>Stator Inner Radius _R_si</td>
<td>73.5</td>
</tr>
<tr>
<td>Rotor Outer Radius _R_ro</td>
<td>73.15</td>
</tr>
<tr>
<td>Airgap Length (g)</td>
<td>0.35</td>
</tr>
<tr>
<td>Shaft Radius _R_sh</td>
<td>18</td>
</tr>
</tbody>
</table>

TABLE III

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slot opening height _Hs0</td>
<td>1</td>
</tr>
<tr>
<td>Slot body height _Hs2</td>
<td>16.38</td>
</tr>
<tr>
<td>Slot opening width _Bs0</td>
<td>1.5</td>
</tr>
<tr>
<td>Slot wedge maximum width _Bs1</td>
<td>6.16</td>
</tr>
</tbody>
</table>

Fig. 2. Representation of different rotor bar shapes; (a) Type 2, (b) Type 3, (c) Type 4 and (d) Type 5.

III FAULTLESS ROTOR CAGE MODEL

The SCIM analyzed in this paper has no-integral number of rotor bars per pole. It is better to model the cage as having a number of identical magnetically coupled circuits [24]. The rotor cage equivalent circuit representing the impedance nature of the circuit \(Z = (R + jX) \), with symmetric faultless rotor cage bars [22, 23] is depicted in Fig 3 (a), and its current phasor representation is shown in Fig 3(b). The rotor resistance and rotor inductance matrixes are well detailed in [24].

The corresponding bar currents can be expressed as [20, 21]

\[
I_{bj} = i_{sk+1} - i_{sk} = 2I_{sk} \sin \left(\frac{\varepsilon_{er}}{2} \right) \tag{1}
\]

\[
I_{bj+1} = i_{sk+2} - i_{sk+1} = 2I_{sk+1} \sin \left(\frac{\varepsilon_{er}}{2} \right) \tag{2}
\]

\[
I_{bj+2} = i_{sk+3} - i_{sk+2} = 2I_{sk+2} \sin \left(\frac{\varepsilon_{er}}{2} \right) \tag{3}
\]

where \(\varepsilon_{er} \) is the time phase shift between currents in adjacent end ring segments \(I_{sk} \) and \(I_{sk+1} \), and \(I_{bj} \) is the current in the bar \(j \), which corresponds to the difference between currents in adjacent ring segments \(I_{sk} \) and \(I_{sk+1} \).

III. FINITE ELEMENT ANALYSIS

This work is based on a finite element model of a SCIM. The induction machine is modelled with 2D Ansys Maxwell software. The dynamic and static analysis of the machine is performed for various rotor bar types for both healthy and
faulty conditions. The behaviour of the air-gap flux density is studied for different rotor bar types and operating conditions. The magnetic flux density distribution of the machine with rotor bar type 1 is presented in Fig. 4. In Fig. 5 the behaviour of the air-gap flux density for Type 1 rotor bar when three adjacent rotor bars per pole are broken is illustrated, the breakage of the rotor bars creates some distortion in the air-gap flux density. The air-gap flux density presented in Fig. 6 illustrates changes as rotor bars types are changed.

IV. ANALYSIS OF RESULTS

A. Instantaneous torque

Fig. 7 to Fig. 12 show the dynamic behavior of the motor from starting to steady state in relation to the torque. In Fig. 7 the starting behavior of different rotor bar shapes is illustrated, it is clear that changing the shape of the rotor bar will influence the starting performance of a motor because different rotor bar shapes will yield different rotor resistance. Rotor bar type 4 has smaller upper body cross-sectional area which results in increased rotor resistance hence a better starting torque compared to type 1 and 2. For all rotor bar types, the healthy machines seems to produce a smoother torque at starting as well as the steady state. As the motor is starting, the electromagnetic torque takes a negative direction because of very high inrush starting current and this results in voltage depression. This depression tends to significantly reduce the starting torque hence the torque is in a negative direction, but because of the skin effect phenomenon, the starting torque starts to take a positive turn as the starting current is reduced and the rotor bar current is evenly distributed throughout the bar [25, 27]. There is very high fluctuation in the starting torque for all faulty conditions compared to the healthy machine, this starting torque also seems to have a very high ripple content. Observing the starting torque between 0 ms to 20 ms, the torque ripple increases with increasing number of broken rotor bars.
B. Steady-state torque

Broken rotor bars have a significant impact on the steady-state average torque of three phase induction machines. A clearer representation of the steady state torque is presented in Fig. 13 to Fig. 17. The steady state torque for the for rotor bar type 1 in Fig. 13 shows a lower average value for a healthy machine compared to that of broken rotor bars. Although the average torque is lower, the healthy machine presents a much smoother torque compared to the faulty machine. When rotor bars break, harmonic components of the stator current are and this results in increased oscillation on the developed torque [15, 16]. Furthermore, the efficiency of rotor bar type 1 in Table VI is higher when the machine healthy than when rotor bars are broken. It can therefore be concluded that although the average torque of this rotor type under healthy conditions is lower, it still achieves a higher efficiency.
machine is healthy and when adjacent rotor bars are broken. For all the rotor bar types there is a slight or no change in the efficiency when only one rotor bar is broken. With the original rotor bar type, there is a noticeable decrease in efficiency under faulty conditions. The efficiency seems to increase for the rest of the rotor bar types when 1 and 2 rotor bar are broken, but as 3 bars break there is a slight decrease in efficiency. The rotor bar types that exhibits a better performance under faulty conditions as far as efficiency is concerned are rotor bar type 4 and 5.

As for the power factor presented in Table VII for various rotor bar types, the results prove a very slight but noticeable improvement in the overall power factor under healthy and faulty conditions. When the motor is healthy, rotor bar type 2 presents a better power factor compared to other rotor bar types. With adjacent broken rotor bars, rotor bars type 1 and 2 exhibit better power factor as compared to the rest of the rotor bar types. As the number of broken rotor bars increases from 2 to 3, the power factor increases with either 0.001 pu or 0.002 pu for all rotor bars except for type 5 with a significant increase of 0.025 pu.

V. Conclusion

In this paper, modeling and performance analysis of squirrel cage induction machine with broken rotor bars is carried out with use of Maxwell Ansys 2D Finite Element Method. The transient and steady-state behaviour of the machine is studied for both healthy and faulty conditions. The electromagnetic torque, torque ripple, air-gap flux density, efficiency and power factor under both conditions for different rotor bar types are studied. From the results it is clear that changes in the shape of a rotor bar has a significant impact in the overall performance of the machine. The steady-state torque remains stable under healthy conditions, whereas there is an intense fluctuation noticed in the presence of broken rotor bars. In general there is a small but noticeable decrease in efficiency and power factor when the number of broken rotor bars increases. The rotor bar type that seems to stand out in

C. Efficiency and Power Factor

One of the important aspects in energy saving is improvement of power factor and efficiency in induction machines, even a slight improvement in efficiency can save a great deal of energy [19]. Rotor bar breakage as well as changes in rotor bar shapes causes the magnetic field to change, and this has an effect on the core losses which in turn affects the power factor and efficiency of the motor. Table VI presents the efficiency for different rotor bar types when the

<table>
<thead>
<tr>
<th>Rotor Bar Type</th>
<th>Healthy Efficiency (%)</th>
<th>1 Broken Bar Efficiency (%)</th>
<th>2 Broken Bars Efficiency (%)</th>
<th>3 Broken Bars Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 1</td>
<td>10.903</td>
<td>10.829</td>
<td>19.896</td>
<td>32.028</td>
</tr>
<tr>
<td>Type 2</td>
<td>7.389</td>
<td>9.866</td>
<td>9.986</td>
<td>24.033</td>
</tr>
<tr>
<td>Type 3</td>
<td>10.518</td>
<td>12.670</td>
<td>12.140</td>
<td>28.444</td>
</tr>
<tr>
<td>Type 4</td>
<td>10.257</td>
<td>13.467</td>
<td>13.254</td>
<td>31.085</td>
</tr>
<tr>
<td>Type 5</td>
<td>7.124</td>
<td>10.622</td>
<td>18.897</td>
<td>29.594</td>
</tr>
</tbody>
</table>
performance under faulty conditions is rotor bar type 5, which is a rectangular bar type.

REFERENCES

