IN VITRO BIOACTIVITIES OF ANODISED TITANIUM IN MIXTURE OF β-GLYCEROPHOSPHATE AND CALCIUM ACETATE FOR BIOMEDICAL APPLICATION

LEE TE CHUAN

A thesis submitted in fulfilment of the requirement for the award of the Doctor of Philosophy of Mechanical Engineering

Faculty of Mechanical and Manufacturing Engineering Universiti Tun Hussein Onn Malaysia

AUGUST 2016

Special thanks to **my beloved family**, LEE ING KUANG, LOW CHIEW CHOO, LEE CHING SHEN, LEE CHING JUI, LEE TE HSIANG and also to my family members, for the love, care, and moral support. Thanks for continuous support for the encouragement toward the success of this study

My inspirational supervisor and co-supervisor, ASSOC. PROF. DR MAIZLINDA IZWANA BINTI IDRIS & ASSOC. PROF. DR HASAN ZUHUDI BIN ABDULLAH for their understanding, support and encouragement during this research

All my friends,

for their concern, encouragement and knowledge.

All the support, enthusiasm and sacrifice in giving me assistance and strength to complete this thesis will never be forgotten.

ACKNOWLEDGMENT

First of all, I would like to thank God for being my strength and courage to do this research

Secondly, I would like to express my sincere appreciation to my supervisor, Assoc. Prof. Dr. Maizlinda Izwana Binti Idris and co-supervisor, Assoc. Prof. Dr. Hasan Zuhudi Bin Abdullah who gave me a good opportunity to do this meaningful research and the support given during this PhD's project. Apart from that, I would like to express my special thanks to Dr Pramod Koshy, lecturer from University of New South Wales, Sydney, Australia, who helps me for proofreading my thesis.

Last but not least, I would like to thank my parents, relatives, and friends for always being supportive of my education especially during this research duration. Thanks again to all who helped me.

ABSTRACT

Anodic oxidation has been widely used to modify the surface properties of titanium in order to improve the biocompatibility after implantation. In this study, high purity titanium foils were exposed in a mixture of β -glycerophosphate disodium salt pentahydrate (β-GP) and calcium acetate monohydrate (CA). The parameters for anodic oxidation method such as applied voltage (50-350 V), current density(10-70 mA.cm⁻²), electrolyte concentration (0.02 M β -GP + 0.2 M CA, 0.04 M β -GP + 0.04 M CA), anodising time (5-10 mins), agitation speed (300-1500 rpm), ultrasonic amplitude (20-60 µm) and bath temperature (4-100 °C) were varied to investigate the impact on the surface properties of titanium. The results showed that surface of the titanium foil appeared to be highly porous and demonstrated high crystallinity as well as high hydrophilic properties especially when the parameters of anodic oxidation have been varied. This study also proposes two novel methods particularly to accelerate the bone-like apatite formation on the anodised titanium in a shorted time: (1) UV irradiation during in vitro testing and (2) adding additives in electrolyte. After soaked and irradiated with UV in simulated body fluid (SBF) for 7 days, highly crystallised bone-like apatite was fully covered on the anodised surface. Interestingly, the smooth and partially porous surface of the anodised titanium was observed to be fully covered by the bone-like apatite layer, which contradict previous research results. The mechanism for growth of bone-like apatite was developed and involved several stages from the existence of hydroxyl groups (•OH) under the UV irradiation has been disclosed thoroughly. Further, additives such as sulphuric acid (H₂SO₄), hydrogen peroxide (H₂O₂) and sodium hydroxide (NaOH) were added into the electrolyte were also able to accelerate the formation of bone-like apatite because of the presence of (•OH), tricalcium phosphate (Ca₃O₈P₂), calcium diphosphate (Ca₂O₇P₂), calcium titanate (CaTiO₃) or sodium titanate (Na₂Ti₃O₇) on the anodised surface, which able to induce the nucleation site of bone-like apatite.

ABSTRAK

Pengoksidaan anod telah digunakan secara meluas untuk mengubahsuai sifat-sifat permukaan titanium bagi memperbaiki keserasian bio selepas implitasi. Dalam kajian ini, kerajang titanium berketulenan tinggi telah didedahkan di dalam campuran garam pentahidrat dinatrium β-gliserofosfat (β-GP) dan kalsium asetat monohidrat (CA). Parameter-parameter bagi langkah pengoksidaan anod seperti voltan gunaan (50-350 V). ketumpatan arus (10-70 mA.cm⁻²), kepekatan elektrolit (0.02 M β -GP + 0.2 M CA, $0.04 \text{ M}\beta$ -GP + 0.04 M CA), tempoh penganodan (5-10 mins), kelajuan agitasi (300-1500 rpm), amplitud ultrasonik (20-60 µm) dan suhu elektrolit (4-100 °C) telah diambil kira bagi mengkaji kesan terhadap sifat-sifat permukaan titanium. Permukaan kerajang titanium didapati mempunyai liang yang banyak dan menunjukkan kekristilan serta sifat hidrofilik yang tinggi terutama semasa parameter-parameter pengoksidaan anod telah diubah-ubah. Kajian ini turut mencadangkan dua kaedah baru bagi mempercepatkan pembentukan apatit berbentuk tulang pada titanium yang sudah dianodkan dalam masa yang singkat : (1) penyinaran UV semasa ujian *in vitro* dan (2) peletakan bahan tambahan dalam campuran β -GP + CA. Setelah direndam dan didedahkan dengan UV di dalam SBF selama 7 hari, didapati apatit berbentuk tulang tinggi kekristilan telah dilitupi pada permukaan titanium yang sudah dianodkan. Permukaan titanium tersadur yang licin dan sebahagiannya berliang didapati telah dilitupi sepenuhnya dengan lapisan apatit berbentuk tulang bertentangan dengan dapatan yang. Mekanisma bagi pertumbuhan apatit berbentuk tulang telah dibangunkan dan melibatkan beberapa peringkat bermula dari kewujudan kumpulan hidroksil (•OH) di bawah sinaran UV telah dilampirkan. Bukan itu sahaja, bahan tambahan seperti asid sulfuric (H₂SO₄), hidrogen peroksida (H₂O₂) dan natrium hidroksida (NaOH) ke dalam elektrolit juga berkemampuan untuk mempercepatkan pembentukan apatit berbentuk tulang disebabkan oleh kewujudan kumpulan hidroksil (•OH), trikalsium fosfat (Ca₃O₈P₂), di-kalsium difosfat (Ca₂O₇P₂), kalsium titanat $(CaTiO_3)$ atau natrium titanat $(Na_2Ti_3O_7)$ yang berkebolehan untuk mendorong pembentukan tapak penukleusan apatit berbentuk tulang telah dianodkan pada permukaan titanium.

CONTENTS

DECLARATION	i
DEDICATION	V
ACKNOWLEDGMENT	vi
ABSTRACT	vii
CONTENTS	X
LIST OF TABLES	xviii
LIST OF FIGURES	xxii
LIST OF SYMBOLS AND ABBREVIATIONS	xlv

CHAPTER 1 INTRODUCTION

1.1	Background	1
1.2	Problem Statements	3
1.3	Objectives	4
1.4	Scope of Study	5
1.5	Significance of Study	6
1.6	Novelty of Study	7

CHAPTER 2 LITERATURE REVIEW

2.1	Introduction	8
2.2	Biomaterials	9

1

8

	2.2.1 Overview of Biomaterials	9
	2.2.2 Important Properties of Biomaterials	12
	for Implants	
2.3	Titanium	13
	2.3.1 Metallic Implant Materials	13
	2.3.2 Titanium and its Alloys	14
	2.3.3 Properties of Titanium Implants	15
	2.3.4 Application of Titanium and its Alloy	16
	in Biomedical Industry	
2.4	Titanium Dioxide	19
	2.4.1 Overview of Titanium Dioxide	19
	2.4.2 Polymorphs of Titanium Dioxide	19
	2.4.3 Photocatalytic Properties of Titanium	21
	Dioxide	
	2.4.4 Role of TiO_2 as a Photocatalyst in	25
	Biomedical Applications	
2.5	Calcium Phosphates	28
	2.5.1 Overview of Calcium Phosphate	28
	2.5.2 Osteoinduction of Ca-P Bioceramics	31
	2.5.3 Calcium Acetate	33
	2.5.4 β-Glycerophosphate	35
2.6	Biological Tests	37
	2.6.1 Types of Biological Tests	37
	2.6.2 Simulated Body Fluid (SBF)	38
	2.6.3 Mechanism of Bone-Like Apatite	40
	Formation in SBF	
2.7	Implant Surface	43
	2.7.1 Osseointegration	43

	2.7.2 Mechanism of Osseointegration for	43
	Titanium Implants	
	2.7.3 Important Features of Implant Surface	46
	for Clinical Success	
2.8	Surface Medication of Titanium and its Alloys	51
	2.8.1 Overview of Surface Modification of	51
	Titanium and its Alloys	
	2.8.2 Classification of Surface Modification	51
	Techniques for Titanium and its Alloys	
	2.8.3 Mechanical Methods	54
	2.8.4 Chemical Methods	55
	2.8.5 Physical Methods	56
	2.8.6 Anodic oxidation	58
	2.8.6.1 Overview of Anodic Oxidation	58
	2.8.6.2 Mechanism of Anodic Oxidation	60
	2.8.6.3 Parameters Affecting the Properties of	61
	Oxide Layer	
	2.8.6.4 Anodic oxidation in mixture of β -GP + CA	73

CHAPTER 3 METHODOLOGY

3.1	Sample Preparation	78
3.2	Setup of Anodic Oxidation for Different Stirring	78
	Methods and Bath Temperatures	
3.3	UV Light Treatment	82
3.4	In Vitro Testing	83
	3.4.1 Preparation of SBF	83
	3.4.2 Procedures of Bone-Like Apatite	85
	Forming Ability Testing	
3.5	Sample Characterisation	86

	3.5.1 Colour Measurement	86
	3.5.2 Field Emission Scanning Electron	88
	Microscopy (FESEM)	
	3.5.3 Glancing Angle X-ray Diffractometer	89
	(GAXRD)	
	3.5.4 Laser Raman Microspectroscopy	90
	3.5.5 Atomic Force Microscopy (AFM)	91
	3.5.6 Fourier Transform Infrared	92
	Spectroscopy (FTIR)	
	3.5.7 Goniometer	93
	3.5.8 UV-VIS Spectroscopy	93
	3.5.9 Focused Ion Beam (FIB) Milling	95
3.6	Overview of Research Methodology	96

CHAPTER 4 CHARACTERISION AND IN VITRO		101
BIO	ACTIVITY OF ANODISED TITANIUM	
IN N	MIXTURE OF β-GP + CA	
4.1	Introduction	101
4.2	Colour of Anodised Titanium	102
4.3	Surface Morphology of Anodised Titanium	110
4.4	Surface Morphology of Anodised Titanium	122
	4.4.1 GAXRD	122
	4.4.2 Laser Raman Microspectroscopy	135
4.5	Surface Topography of Anodised Titanium	139
4.6	Structural Characteristics of Anodised Titanium	147
4.7	Surface Wettability and Surface Energy of Anodised	148

Titanium

CHAPTER 5 EFFECT OF DIFFERENT STIRRING		182
Ν	IETHODS AND BATH TEMPERATURES	
0	N SURFACE PROPERTIES OF ANODISED	
Т	ITANIUM	
5.1	Introduction	182

5.2	Observation of Cathode and Anode during Anodic	185
	Oxidation	
5.3	Maximal Voltage during Anodic Oxidation under	190
	Different Stirring Methods and Bath Temperatures	
5.4	Colouration of Anodised Titanium under Different	194
	Stirring Methods and Bath Temperatures	
5.5	Surface Morphology of Anodised Titanium Produced	196
	under Different Stirring Methods and Bath	
	Temperatures	
5.6	Surface Mineralogy of Anodised Titanium under	203

	Different Stirring methods and Bath Temperatures	
5.7	Surface Topography of Anodised Titanium under	211
	Different Stirring Methods and Bath Temperatures	

5.8 Surface Wettability of Anodised Titanium Fabricated 217 under Different Stirring Methods and Bath Temperatures

CHAPTER 6 EFFECT OF UV LIGHT TREATMENT ON	222
THE IN VITRO BIOACTIVITY OF	
ANODISED TITANIUM	

6.2	Colourisation of UV-treated Anodised Titanium	224
6.3	Surface Morphology of UV-Treated Anodised	225
	Titanium	
6.4	Surface Mineralogy of UV-Treated Anodised	225
	Titanium	
6.5	Surface Wettability of UV-Treated Anodised	231
	Titanium	
6.6	In Vitro Testing of UV-Treated Anodised Titanium	237
	(Without UV Irradiation)	
6.7	In Vitro Testing of UV-Treated Anodised Titanium	250
	(With UV Irradiation)	
6.8	Effect of UV Irradiation on the In Vitro Bioactivity of	267
	Anodised Titanium	
6.9	Mechanism of Bone-Like Apatite Formation on	272
	Anodised Titanium under UV Irradiation	

CHAPTER 7 EFFECT OF ADDITIVES IN MIXTURE OF B-
GP + CA ELECTROLYTE ON THE IN VITRO
BIOACTIVITY OF ANODISED TITANIUM279

7.1	Introduction	279
7.2	Anodic Oxidation in Mixture of β -GP + CA + H ₂ SO ₄	281
	7.2.1 Colourisation of Anodised Titanium (β - GP + CA + H ₂ SO ₄)	281
	7.2.2 Surface Morphology of Anodised Titanium (β - GP + CA + H ₂ SO ₄)	282
	7.2.3 Surface Mineralogy of Anodised Titanium (β -GP + CA + H ₂ SO ₄)	282
	7.2.4 Surface Topography of Anodised Titanium (β -GP + CA + H ₂ SO ₄)	284
	7.2.5 Structural Characteristics of Anodised Titanium $(\beta$ -GP + CA + H ₂ SO ₄)	287

	7.2.6 Surface Wettability of Anodised Titanium (β-	288
	$GP + CA + H_2SO_4)$	
	7.2.7 In vitro Testing of Anodised Titanium (β-GP +	289
	$CA + H_2SO_4)$	
7.3	Anodic Oxidation in Mixture of β -GP + CA + H ₂ O ₂	293
	7.3.1 Colourisation of Anodised Titanium (β -GP +	293
	CA + H ₂ O ₂) 7.3.2 Surface Morphology of Anodised Titanium (β- GP + CA + H ₂ O ₂)	294
	7.3.3 Surface Mineralogy of Anodised Titanium (β -GP + CA + H ₂ O ₂)	294
	7.3.4 Surface Topography of Anodised Titanium (β -GP + CA + H ₂ O ₂)	296
	7.3.5 Structural Characteristics of Anodised Titanium $(\beta$ -GP + CA + H ₂ O ₂)	298
	7.3.6 Surface Wettability of Anodised Titanium (β -GP + CA + H ₂ O ₂)	299
	7.3.7 <i>In vitro</i> Testing of Anodised Titanium (β -GP + CA + H ₂ O ₂)	299
74	Anodic Oxidation in Mixture of β -GP + CA +	303
,	$C_2H_4O_2$	202
	7.4.1 Colourisation of Anodised Titanium (β -GP +	303
	CA + C ₂ H ₄ O ₂) 7.4.2 Surface Morphology of Anodised Titanium (β-	304
	$GP + CA + C_2H_4O_2$ 7.4.3 Surface Mineralogy of Anodised Titanium (β -	304
	$GP + CA + C_2H_4O_2$ 7.4.4 Surface Topography of Anodised Titanium (β -	307
	$GP + CA + C_2H_4O_2$) 7.4.5 Structural Characteristics of Anodised Titanium $(B_2GP + CA + C_2H_4O_2)$	308
	(p-OF + CA + C ₂ H ₄ O ₂) 7.4.6 Surface Wettability of Anodised Titanium (β- GP + CA + C ₂ H ₄ O ₂)	309

	7.4.7 In vitro Testing of Anodised Titanium (β -GP +	311
	$CA + C_2H_4O_2$)	
7.5	Anodic Oxidation in Mixture of β -GP + CA + NaOH	314
	7.5.1 Colourisation of Anodised Titanium (β -GP +	314
	CA + NaOH)	
	7.5.2 Surface Morphology of Anodised Titanium (β -	314
	GP + CA + NaOH)	
	7.5.3 Surface Mineralogy of Anodised Titanium (β -	315
	GP + CA + NaOH)	
	7.5.4 Surface Topography of Anodised Titanium (β -	318
	GP + CA + NaOH)	
	7.5.5 Structural Characteristics of Anodised Titanium	319
	$(\beta$ -GP + CA + NaOH)	
	7.5.6 Surface Wettability of Anodised Titanium (β-	320
	GP + CA + NaOH)	
	7.5.7 In vitro Testing of Anodised Titanium (β-GP +	321
	CA + NaOH)	

CHAPTER 8 CON	CLUSIONS AND RECOMMENDATIONS	325
8.1	Conclusions	325
8.2	Recommendations	327
REFERE	ENCES	328
APPEND	DIX	351
	Analysis Results	351
	List of Publications and Awards	357

LIST OF TABLE

2.1	Advantages and disadvantages of metals, ceramics and	10
	polymers for biomedical applications	
2.2	Example of metal, ceramic, and polymer biomaterial use	11
	for biomedical applications	
2.3	Important properties of biomaterials for use as implants	12
2.4	Comparison of mechanical properties of commonly used	13
	metals and its alloys for biomedical applications	
2.5	Comparison of mechanical properties among titanium	14
	and its alloys	
2.6	Mechanical properties of different grade of Cp Ti	15
2.7	Important properties of titanium in biomedical	16
	applications	
2.8	Properties of rutile, anatase, and brookite TiO ₂	21
2.9	Properties of different phases of Ca-P	29
2.10	Properties of calcium acetate	34
2.11	Properties of β -glycerophosphate	36
2.12	Description of each type of in vitro and in vivo tests	39
2.13	Comparison of the compositions of human blood plasma,	39
	original SBF, c-SBF, r-SBF and n-SBF	
2.14	Definitions of osseointegration	43
2.15	Size range and features of macro rough, micro rough, and	47
	nano surface	
2.16	Previous studies on effect of surface roughness on the	47
	clinical success of implants	
2.17	Previous research on the effect of physicochemical	49
	composition on the clinical success of implants	

2.18	Summary of surface modification methods for titanium	53
	and its alloys implants	
2.19	Example of acid electrolytes and non-acid electrolytes	59
2.20	Experimental parameters of previous studies on anodic	62
	oxidation	
2.21	Summary of conceptual model of oxide layer growth for	76
	β -GP + CA electrolyte	
3.1	Order, amounts, weighting containers, purities and	83
	formula weights of reagents for preparing 1000 ml of	
	SBF	
3.2	Summary of flowcharts of the methodology planned in	96
	this thesis	
4.1	Parameters used for anodic oxidation	102
4.2	Summary for effect of anodic oxidation parameters on	121
	surface morphology of anodised titanium	
4.3	Parameters for study depicted in Figures 4.19-4.24	122
4.4	Parameters used in studies shown in Figure 4.25 to Figure	128
	4.30	
4.5	Parameters used in studies shown in Figure 4.32 to Figure	135
	4.36	
4.6	Summary of AFM images of anodised titanium formed	143
	in 0.04 M β -GP + 0.4 M CA for 10 minutes at 70 mA.cm ⁻	
	2 with varying applied voltages (50-350 V)	
4.7	Summary of 3D AFM images of anodised titanium	143
	formed in 0.04 M β -GP + 0.4 M CA for 10 minutes at 350	
	V with varying current densities (10-70 mA.cm ⁻²)	
4.8	Conceptual illustration of topography of anodised	146
	titanium prepared in mixture of β -GP + CA	
4.9	Summary of types of electrical behaviour observed	156
	during anodisation	
4.10	Parameters for study depicted in Figures 4.58 to Figure	158
	4.65	

5.1	Parameters used for investigating the effect of magnetic	183
	stirring on the surface properties of anodised titanium	
5.2	Parameters used for investigating the effect of ultrasonic	183
	stirring on surface properties of anodised titanium	
5.3	Parameters used for investigating the effect of	184
	combination stirring on surface properties of anodised	
	titanium	
5.4	Parameter used for investigating the effect of bath	184
	temperature on surface properties of anodised titanium	
5.5	Descriptions for Figure 5.1 to Figure 5.4	185
5.6	Summary for observations of phenomena at the surface	186
	of anode and cathode during anodic oxidation	
5.7	Summary of GAXRD patterns for Figure 5.18.	205
5.8	Summary of GAXRD patterns for Figure 5.22	209
5.9	Summary of AFM images of the surface of anodised	211
	titanium formed at 350 V and 30 mA.cm ⁻² with different	
	agitation speeds	
5.10	Summary of AFM images of anodised titanium formed at	212
	350 V and 30 mA.cm ⁻² with different ultrasonic	
	amplitude	
5.11	Summary of AFM images of anodised titanium formed at	212
	350 V and 30 mA.cm ⁻² with different bath temperatures	
6.1	Parameters used for UV light irradiation	223
6.2	Summary of water contact angles on the anodised surface	231
	for series A after UV light treatment	
6.3	Parameters used in studies shown in Figures 6.17 to 6.20	237
6.4	Summary of UV-treated anodised titanium (AR series)	243
	after 7 days immersion in SBF	
6.5	Summary of surface characteristics of UV-treated	250
	anodised samples (series A) after 7 days immersion in	
	SBF	

6.6	Summary of features observed on the surface of UV-	257
	treated anodised samples (series AR) after 7 days	
	immersion in SBF	
6.7	Parameters used for investigating the effect of UV	267
	irradiation on the growth of bone-like apatite	
6.8	Summary of surface morphologies of UV-treated	273
	anodised titanium before and after soaking in SBF under	
	UV irradiation	
7.1	The composition of electrolyte in volume fraction for	280
	anodic oxidation	
7.2	Summary of GAXRD patterns for Figure 7.3	282
7.3	Summary of GAXRD patterns for Figure 7.5	287
7.4	The summary of surface topography of anodised titanium	297
	obtained at 350 V and 70 mA.cm ⁻² for 10 minutes at	
	various volume fraction of 1 M H ₂ O ₂ (12.5-50 vol %)	
7.5	Summary of GAXRD patterns for Figure 7.19	304
7.6	Summary of GAXRD patterns for Figure 7.27	315

LIST OF FIGURES

1.1	Artificial bone screw	2
1.2	Artificial hip joint	2
2.1	Implants in the human body	10
2.2	Artificial heart value	17
2.3	Artificial vascular stents	17
2.4	Bone screw and bone plate	18
2.5	Commercial dental implant	18
2.6	Structure of rutile TiO ₂	20
2.7	Structure of anatase TiO ₂	20
2.8	Structure of brookite TiO ₂	20
2.9	Band gap for commonly used photocatalysts	23
2.10	Mechanism of the photocatalytic process	24
2.11	Schematic diagram of TiO ₂ surface (A) before UV	26
	irradiation (B) after UV irradiation	
2.12	The surface morphology of TiO ₂ surface (A) before UV	26
	irradiation ,hydrophobic surface (B) after UV irradiation,	
	hydrophilic surface	
2.13	Surface morphologies of (a) without UV light and (b)	27
	with UV light coatings after immersion in SBF for 15	
	days	
2.14	Process of mineralisation of collagen fibril, (A) stable	32
	mineral droplet. (B) binding to distinct region, (C)	
	diffusion into fibril, (E) solidification and mineralisation	
	of fibril	
2.15	Molecular events in osteogenic process	32
2.16	Chemical structure of calcium acetate	33

2.17	Different types of fish skin gelatin scaffolds. G: simple	34
	gelatin; GC: gelatin + chitosan; GCA: gelatin + calcium	
	acetate; GCCA: gelatin + chitosan + calcium acetate	
2.18	SEM images of the microstructure of different types of	34
	gelatin scaffolds G: simple gelatin; GC: gelatin +	
	chitosan; GCA: gelatin + calcium acetate; GCCA: gelatin	
	+ chitosan + calcium acetate	
2.19	Chemical structure of β -glycerophosphate	35
2.20	SEM images of the hydrogels prepared by using different	36
	ratios of chitosan/ α , β glycerophosphate (S1) 0.18%	
	chitosan solution 9.6 mL; 50% α , β glycerophosphate	
	solution 0.4 ml (S2) 0.18% chitosan solution 9.6 mL;	
	50% α,β glycerophosphate solution 1.0 ml (S3) 0.18%	
	chitosan solution 8.4 mL; 50% α , β glycerophosphate	
	solution 1.6 mL	
2.21	Classification of biological tests	38
2.22	Ion exchange between the Ti-OH group and Ca ²⁺	40
2.23	Formation of amorphous calcium phosphate	40
2.24	Ion exchange between the amorphous calcium phosphate	41
	and Na ⁺ and Mg ²⁺ ions	
2.25	Formation of bone-like apatite on the surface of TiO_2 in	41
	SBF	
2.26	SEM images of the surface of polyetheretherketone	42
	surface after soaking in 1.5 SBF for 4 weeks	
2.27	Surface morphology of laser-cladded coating on Ti-6Al-	42
	4V soaked in SBF for 14 days	
2.28	The illustration of osseointegration between implant and	45
	tissue	
2.29	SEM micrographs showing MC3T3-E1 osteoblastic cell	48
	morphology after 2 days of culture on (A) Smooth-Ti, (B)	
	Alumina–Ti, (C) SLA and (D) BCP–Ti	

2.30	SEM micrographs of various as-deposited TiO_2 thin films	50
	immersed in SBF for 12 weeks at 37 °C, (A) Amorphous,	
	(B) Mixed (Rutile/Anatase), (C) Rutile and (D) Anatase	
2.31	Classification of the surface modification technologies	52
	for titanium and its alloys	
2.32	Dependence of yield stress and ultimate tensile strength	54
	on the peak current applied during EDM process	
2.33	Surface morphologies of Ti and Nb alkali-heat-treated at	56
	different temperatures	
2.34	Surface morphology of PVD coated surfaces on Ti-6Al-	57
	4V: SEM (a)–(c) and AFM (d)–(f) images of CrN (a) and	
	(d), CrN/NbN superlattice (b) and (e) and WC/C (c) and	
	(f)	
2.35	Schematic diagram of anodic oxidation (1) D.C. power	59
	supply, (2) Ti anode (3) Ti cathode (4) cooling water (5)	
	magnetic stirrer bar (6) thermometer, and (7) jacketed	
	beaker	
2.36	SEM surface morphologies of Ti surfaces treated with	67
	MAO at different voltages: (A) 190 V, (B) 230 V, (C)	
	270 V, (D) 350 V, (E) 450V and (F) 600 V	
2.37	XRD diffractograms for untreated Ti and the samples	68
	anodically oxidized using current densities of 150 and	
	300 mA/cm^2 . Ti = titanium, A = anatase R = rutile and	
	HA = hydroxyapatite	
2.38	TF-XRD patterns of titanium metals anodically oxidised	68
	at 155V in H_2SO_4 with concentration of (A) 0.5M, (B) 1	
	M, (C) 3 M for 1 min	
2.39	Surface morphologies of PEO coatings: (a) 1 min, (b) 5	69
	min, (c) 10 min, (d) 20 min, (e) 40 min, (f) 60 min and	
	(g) 120 min	
2.40	Surface morphology of anodised titanium prepared in	70
	different electrolyte (A) H ₂ SO ₄ (B) C ₂ H ₄ O ₂ (C) H ₃ PO ₄	
	(D) Na_2SO_4 (E) NH_4F + ethylene glycol	

2.41	Average surface roughness of samples produced by	71
	different ultrasonic power intensities	
2.42	EDS compositional analysis of (a) MAO (b) MAO-180	71
	(c) MAO-250 and (d) MAO-350 samples	
2.43	SEM images of the films prepared at 30 V in 2 M NaOH	72
	solutions at different temperatures (A) 20 °C (B) 40 °C	
	(C) 60 °C	
2.44	Cross-sectional SEM images of the films prepared at 30	72
	V in 2 M NaOH solutions at different temperatures (A)	
	20 °C (B) 40 °C (C) 60 °C	
2.45	SEM micrograph of anodised titanium formed in β -GP +	74
	CA electrolyte	
2.46	XRD patterns of the anodised titanium obtained at (A)	74
	250, (B) 350 and (C) 450 V	
2.47	FIB micrographs showing the cross sectional regions for	75
	anodised samples at 10 mA.cm ⁻² and 20 mA.cm ⁻² for 10	
	minutes in mixture of β -GP + CA	
2.48	Conceptual model of oxide layer growth for β -GP + CA	76
	electrolyte	
2.49	FESEM images of the samples anodised in 0.02 M β -GP	77
	+ 0.2 M CA, current densities 10 and 20 mA.cm ⁻² at 150	
	and 350 V for 10 min after soaking in SBF for 7 days	
3.1	Schematic diagram of anodic oxidation under magnetic	79
	stirring	
3.2	Schematic diagram of anodic oxidation under ultrasonic	80
	stirring	
3.3	Schematic diagram of anodic oxidation under	80
	combination stirring	
3.4	Schematic diagram of anodic oxidation at bath	81
	temperature of 4°C	
3.5	Schematic diagram of anodic oxidation at bath	81
	temperatures of 40°-100°C	
3.6	Schematic diagram showing UV light treatment	82

3.7	Schematic diagram of in vitro testing with UV light	86
	irradiation	
3.8	Interface of EasyRGB colour conversion software	87
3.9	Schematic diagram of FESEM	88
3.10	Schematic diagram of X-ray penetration of GAXRD	89
3.11	Schematic diagram of a laser Raman spectrometer device	90
3.12	Schematic of AFM instrument showing "beam bounce"	91
	method of detection using a laser and position sensitive	
	photodiode detector	
3.13	Schematic diagram of the FTIR spectrometer	92
3.14	Schematically of Young-Laplace equation using surface	93
	tension vectors for a liquid on a solid substrate	
3.15	Schematic graphs of (a) working principle of UV-Vis	94
	spectroscopy, (b)	
	simple geometry of UV-Vis spectroscopy system	
3.16	Schematic diagram showing the configuration of a dual	95
	beam focused ion beam system	
3.17	Flowchart of methodology for achieving 1^{st} and 2^{nd}	97
	objectives	
3.18	Flowchart of methodology for achieving 3 rd objective	98
3.19	Flowchart of methodology for achieving 4^{th} and 5^{th}	99
	objectives	
3.20	Flowchart of methodology for achieving 6 th objective	100
4.1	Multi beam interference responsible for colour of	103
	anodised titanium	
4.2	Colours of anodised titanium (0.02 M β -GP + 0.2 M CA,	104
	5 minutes) as a function of the current density and the	
	applied voltage	
4.3	Colours of anodised titanium (0.02 M β -GP + 0.2 M CA,	104
	5 minutes) as a function of the current density and the	
	applied voltage (conversion of CIELAB using computer	
	software)	

4.4	Colours of anodised titanium (0.02 M β -GP + 0.2 M CA,	105
	10 minutes) as a function of the current density and the	
	applied voltage	
4.5	Colours of anodised titanium (0.02 M β -GP + 0.2 M CA,	106
	10 minutes) as a function of the current density and the	
	applied voltage (conversion of CIELAB using computer	
	software)	
4.6	Colours of anodised titanium (0.04 M β -GP + 0.4 M CA,	107
	5 minutes) as a function of the current density and the	
	applied voltage	
4.7	Colours of anodised titanium by conversion of CIELAB	108
	for Figure 4.6	
4.8	Colours of anodised titanium (0.04 M β -GP + 0.4 M CA,	108
	10 minutes) as a function of the current density and the	
	applied voltage	
4.9	Colours of anodised titanium by conversion of CIELAB	108
	for Figure 4.8	
4.10	Colour sequence of anodised titanium in mixture of β -GP	109
	+ CA	
4.11	FESEM micrographs of anodised titanium formed at	113
	varying voltages (50-350 V) in 0.02 M $\beta\text{-}GP$ + 0.2 M CA	
	for 10 minutes at 10 and 70 mA.cm ⁻²	
4.12	FESEM micrographs of anodised titanium formed at	114
	varying voltages (50-350 V) in 0.04 M β -GP + 0.4 M CA	
	for 10 minutes at 10 and 70 mA.cm ⁻²	
4.13	FESEM micrographs of anodised titanium formed at	115
	varying current densities (10-70 mA.cm ⁻²).in 0.02 M β -	
	GP + 0.2 M CA for 10 minutes at 50 and 350 V	
4.14	FESEM micrographs of anodised titanium formed at	116
	varying current densities (10-70 mA.cm ⁻²).in 0.04 M β -	
	GP + 0.4 M CA for 10 minutes at 50 and 350 V	

4.15	FESEM micrographs of anodised titanium formed in 0.02	117
	M β -GP + 0.2 M CA for 350 V at 10-70 mA.cm ⁻² for	
	varying anodising times (5 and 10 minutes)	
4.16	FESEM micrographs of anodised titanium formed in 0.04	118
	M β-GP + 0.4 M CA for 350 V at 10-70 mA.cm ⁻² for	
	varying anodising times (5 and 10 minutes)	
4.17	FESEM micrographs of anodised titanium formed at 70	119
	$mA.cm^{-2}$, 50-350 V with varying electrolyte	
	concentrations (0.02 M β -GP + 0.2 M CA and 0.04 M β -	
	GP + 0.4 M CA)	
4.18	Schematic diagram showing the porous titanium oxide	121
	formation above the breakdown potential: (A) oxide	
	growth to maximal thickness, (B) breakage of oxide layer	
	by the formation of crystallites (pore formation), (C)	
	immediate repassivation of pore tips, (D) breakdown of	
	the repassivated oxide, and (E) dissolution of the formed	
	oxide and second repassivation	
4.19	GAXRD patterns of the samples anodised in 0.02 M β -	124
	GP + 0.2 M CA, current density 10 mA.cm ⁻² at 50-350 V	
	for 10 minutes	
4.20	GAXRD patterns of the samples anodised in 0.02 M β -	124
	GP + 0.2 M CA, current density 70 mA.cm ⁻² at 50-350 V	
	for 10 minutes	
4.21	GAXRD patterns of the samples anodised in 0.02 M β -	125
	GP + 0.2 M CA, current density 70 mA.cm ⁻² at 50-350 V	
	for 5 minutes	
4.22	GAXRD patterns of the samples anodised in 0.02 M β -	127
	GP + 0.2 M CA, applied voltage of 50 V at 10-70 mA.cm ⁻	
	² for 10 minutes	
4.23	GAXRD patterns of the samples anodised in 0.02 M β -	127
	GP + 0.2 M CA, applied voltage of 350 V at 10-70	
	mA.cm ⁻² for 10 minutes	

4.24	GAXRD patterns of the samples anodised in 0.02 M $\beta\text{-}$	128
	GP + 0.2 M CA, applied voltage of 350 V at 10-70	
	mA.cm ⁻² for 5 minutes	
4.25	GAXRD patterns of the samples anodised in 0.04 M $\beta\text{-}$	130
	GP + 0.4 M CA, current density 10 mA.cm ⁻² at 50-350 V	
	for 10 minutes	
4.26	GAXRD patterns of the samples anodised in 0.04 M $\beta\text{-}$	130
	GP + 0.4 M CA, current density 70 mA.cm ⁻² at 50-350 V	
	for 10 minutes	
4.27	GAXRD patterns of the samples anodised in 0.04 M $\beta\text{-}$	131
	GP + 0.4 M CA, current density 70 mA.cm ⁻² at 50-350 V	
	for 5 minutes	
4.28	GAXRD patterns of the samples anodised in 0.04 M $\beta\text{-}$	132
	GP + 0.4 M CA, applied voltage of 50 V at 10-70 mA.cm ⁻	
	² for 10 minutes	
4.29	GAXRD patterns of the samples anodised in 0.04 M $\beta\text{-}$	132
	GP + 0.4 M CA, applied voltage of 350 V at 10-70	
	mA.cm ⁻² for 10 minutes	
4.30	GAXRD patterns of the samples anodised in 0.04 M $\beta\text{-}$	133
	GP + 0.4 M CA, applied voltage of 350 V at 10-70	
	mA.cm ⁻² for 5 minutes	
4.31	GAXRD patterns of the samples anodised in various	134
	electrolyte concentration (0.02 M $\beta\mbox{-}GP+0.2$ M CA and	
	0.04 M $\beta\text{-}GP$ + 0.4 M CA) and applied voltage (250 V	
	and 350 V) at 70 mA.cm ⁻² for 10 minutes	
4.32	Raman spectra of the samples anodised in 0.02 M β -GP	136
	+ 0.2 M CA, current density 70 mA.cm ⁻² at 50-350 V for	
	10 minutes	
4.33	Raman spectra of the samples anodised in 0.04 M β -GP	137
	+ 0.4 M CA, current density 70 mA.cm ⁻² at 50-350 V for	
	10 minutes	

4.34	Raman spectra of the samples anodised in 0.02 M β -GP + 0.2 M CA, applied voltage of 350 V at 10-70 mA.cm ⁻²	137
	for 10 minutes	
4.35	Raman spectra of the samples anodised in 0.04 M β -GP	138
	+ 0.4 M CA, applied voltage of 350 V at 10-70 mA.cm ⁻²	
	for 10 minutes	
4.36	Raman spectra patterns of the samples anodised in	139
	various electrolyte concentration (0.02 M β -GP + 0.2 M	
	CA and 0.04 M $\beta\text{-}GP$ + 0.4 M CA) and applied voltage	
	(250 V and 350 V) at 70 mA.cm ⁻² for 10 minutes	
4.37	Average surface roughness of anodised titanium prepared	140
	in 0.02 M β -GP + 0.2 M CA for 10 minutes	
4.38	Average surface roughness of anodised titanium prepared	141
	in 0.04 M β -GP + 0.4 M CA for 10 minutes	
4.39	3D AFM images of anodised titanium formed at varying	142
	applied voltage (50-350 V) in 0.04 M $\beta\text{-}GP$ + 0.4 M CA	
	for 10 minutes at 70 mA.cm ⁻²	
4.40	3D AFM images of anodised titanium formed at varying	142
	applied voltage (10-70 mA.cm ⁻²) in 0.04 M β -GP + 0.4	
	M CA for 10 minutes at 350 V	
4.41	Average surface roughness of anodised titanium formed	144
	in 0.04 M $\beta\text{-}GP$ + 0.4 M CA for 50-350 V at 70 mA.cm $^{-}$	
	² with varying anodising times (5 and 10 minutes)	
4.42	Average surface roughness of anodised titanium formed	144
	at 70 mA.cm ⁻² , 50-350 V with varying electrolyte	
	concentrations (0.02 M $\beta\text{-}GP$ + 0.2 M CA and 0.04 M $\beta\text{-}$	
	GP + 0.4 M CA)	
4.43	3D AFM images of anodised titanium formed in 0.04 M	145
	$\beta\text{-}GP$ + 0.4 M CA for 250 V and 350 V at 70 mA.cm^-2	
	with varying anodising times (5 and 10 minutes)	
4.44	3D AFM images of anodised titanium formed at 50	145
	mA.cm ⁻² and 70 mA.cm ⁻² at 350 V with varying	

electrolyte concentrations (0.02 M $\beta\text{-}GP$ + 0.2 M CA and 0.04 M $\beta\text{-}GP$ + 0.4 M CA)

- 4.45 FTIR spectra of anodised titanium formed at 70 mA.cm⁻ 147 ², 50-350 V in 0.04 M β-GP + 0.4 M CA for 10 minutes
- 4.46 Images of water on the anodised titanium after 148 anodisation at voltages of (A) 50 V, (B) 150 V, (C) 250 V, and (D) 350 V at 70 mA.cm⁻² in 0.02 M β -GP + 0.2 M CA for 10 minutes
- 4.47 Images of water on the anodised titanium after 149 anodisation at current density of (A) 10 mA.cm⁻², (B) 30 mA.cm⁻², (C) 50 mA.cm⁻², and (D) 70 mA.cm⁻² at 350 V in 0.02 M β -GP + 0.2 M CA for 10 minutes
- 4.48 Images of water on the anodised titanium after 150 anodisation at voltages of (A) 50 V, (B) 150 V, (C) 250 V, and (D) 350 V at 70 mA.cm⁻² in 0.04 M β -GP + 0.4 M CA for 10 minutes
- 4.49 Images of water on the anodised titanium after 151 anodisation at current densities of (A) 10 mA.cm⁻², (B) 30 mA.cm^{-2} , (C) 50 mA.cm⁻², and (D) 70 mA.cm⁻² at 350 V in 0.04 M β -GP + 0.4 M CA for 10 minutes
- 4.50 Graph of surface energy versus current density for the 152 coating produced by anodising titanium at a applied voltage of 350 V for 10 minutes in mixture of 0.04 M β -GP + 0.4 M CA
- 4.51 Graph of surface energy versus applied voltage for the 153 coating produced by anodising titanium at a current density of 70 mA.cm⁻² for 10 minutes in mixture of 0.04 M β -GP + 0.4 M CA
- 4.52 Plot of (Ahv)² versus hv for the anodised titanium at 154 350V and 70mA.cm⁻² for 10 minutes
- 4.53 Band gap of the samples anodised in 0.04 M β -GP + 0.4 154 M CA, current density 70 mA.cm⁻² at 50-350 V for 10 minutes

4.54	Band gap of the samples anodised in 0.04 M $\beta\text{-}GP+0.4$	155
	M CA, applied voltage of 350 V at 10-70 mA.cm ⁻² for 10	
	minutes	
4.55	Voltage-current density versus time graph for Type A	157
	electrical behaviour	
4.56	Voltage-current density versus time graph for Type B	157
	electrical behaviour	
4.57	Voltage-current density versus time graph for Type C	158
	electrical behaviour	
4.58	Voltage-current density versus time graph of the samples	159
	anodised in 0.02 M $\beta\text{-}GP$ + 0.2 M CA and current density	
	of 10 mA.cm ⁻² at 50-350 V for 10 minutes	
4.59	Voltage-current density versus time graph of the samples	160
	anodised in 0.02 M $\beta\text{-}GP$ + 0.2 M CA and current density	
	of 70 mA.cm ⁻² at 50-350 V for 10 minutes	
4.60	Voltage-current density versus time graph of the samples	161
	anodised in 0.02 M β -GP + 0.2 M CA and applied voltage	
	of 50 V at 10-70 mA.cm ⁻² for 10 minutes.	
4.61	Voltage-current density versus time graph of the samples	162
	anodised in 0.02 M $\beta\text{-}GP$ + 0.2 M CA and applied voltage	
	of 350 V at 10-70 mA.cm ⁻² for 10 minutes	
4.62	Voltage-current density versus time graph of the samples	163
	anodised in 0.04 M $\beta\text{-}GP$ + 0.04 M CA and current	
	density of 10 mA.cm ⁻² at 50-350 V for 10 minutes	
4.63	Voltage-current density versus time graph of the samples	164
	anodised in 0.04 M $\beta\text{-}GP$ + 0.4 M CA and current density	
	of 70 mA.cm ⁻² at 50-350 V for 10 minutes	
4.64	Voltage-current density versus time graph of the samples	165
	anodised in 0.04 M $\beta\text{-}GP$ + 0.4 M CA and applied voltage	
	of 50 V at 10-70 mA.cm ⁻² for 10 minutes	
4.65	Voltage-current density versus time graph of the samples	166
	anodised in 0.04 M β -GP + 0.4 M CA and applied voltage	
	of 350 V at 10-70 mA.cm ⁻² for 10 minutes	

4.66	Electrical behaviour of samples prepared in 0.02 M β -GP	167
	+ 0.2 M CA as a function of the applied voltage and	
	current density	
4.67	Electrical behaviour of samples prepared in 0.04 M β -GP	167
	+ 0.4 M CA as a function of the applied voltage and	
	current density	
4.68	The conceptual model of oxide growth for electrical	168
	behaviour Type A	
4.69	Conceptual model of oxide growth for electrical	169
	behaviour Type B	
4.70	Conceptual model of oxide growth for electrical	170
	behaviour Type C	
4.71	FESEM images of anodised titanium formed at different	173
	applied voltages (A) 50 V (B) 150 V (C) 250 V, and (D)	
	350 V after soaking in SBF for 7 days without UV	
	irradiation	
4.72	FESEM images of anodised titanium formed at different	174
	applied voltages (A) 50 V (B) 150 V (C) 250 V, and (D)	
	350 V after soaking in SBF for 7 days with UVC	
	irradiation	
4.73	FESEM images of anodised titanium formed at different	175
	applied voltages (A) 50 V (B) 150 V (C) 250 V, and (D)	
	350 V after soaking in SBF for 7 days with UVA	
	irradiation	
4.74	GAXRD patterns of anodised titanium at 50-350 V after	176
	soaking in SBF for 7 days with UVC irradiation	
4.75	GAXRD patterns of anodised titanium at 50-350 V after	177
	soaking in SBF for 7 days with UVA irradiation	
4.76	FTIR spectra of anodised titanium at 50-350 V after	178
	soaking in SBF for 7 days with UVC irradiation	
4.77	FTIR spectra of anodised titanium at 50-350 V after	178
	soaking in SBF for 7 days with UVA irradiation	

4.78	Schematic showing the mechanism of bone-like apatite	181
	formation on the anodised metal surface immersed in	
	SBF under UV light irradiation	
5.1	Schematic diagrams showing the phenomena at the	187
	cathode and anode at different agitation speeds	
5.2	Schematic diagrams showing the phenomena at the	188
	cathode and anode at different ultrasonic amplitudes	
5.3	Schematic diagrams showing the phenomena at the	189
	cathode and anode for combination stirring	
5.4	Schematic diagrams showing the phenomena at the	190
	cathode and anode at different bath temperatures	
5.5	Recorded maximal voltage during anodic oxidation at 30	191
	mA.cm ⁻² in 0.04 M β -GP + 0.4 M CA for 10 minutes at	
	different agitation speeds	
5.6	Recorded maximal voltage during anodic oxidation at 30	192
	mA.cm ⁻² in 0.04 M β -GP + 0.4 M CA for 10 minutes at	
	different ultrasonic amplitudes	
5.7	Recorded maximal voltage during combination stirring	193
	of anodic oxidation at 30 mA.cm ⁻² in 0.04 M β -GP + 0.4	
	M CA for 10 min	
5.8	Recorded maximal voltage during anodic oxidation at 30	193
	mA.cm ⁻² in 0.04 M β -GP + 0.4 M CA for 10 minutes at	
	different bath temperatures	
5.9	Colour of anodised titanium produced at 350 V and 30	195
	mA.cm ⁻² for 10 minutes at different agitation speeds	
5.10	Colour of anodised titanium produced at 350 V and 30	195
	mA.cm ⁻² for 10 minutes at different ultrasonic amplitudes	
5.11	Colour of anodised titanium produced at 350 V and 30	196
	mA.cm ⁻² for 10 minutes with different combination	
	stirring settings	
5.12	Colour of anodised titanium produced at 350 V and 30	196
	mA.cm ⁻² for 10 minutes at different temperatures	

5.13	FESEM micrographs of anodised titanium at 350V, 30	199
	mA.cm ⁻² for 10 minutes in mixture of 0.04 M β -GP + 0.4	
	M CA at different agitation speeds	
5.14	FESEM micrographs of anodised titanium at 350V, 30	200
	mA.cm ⁻² for 10 minutes in mixture of 0.04 M β -GP + 0.4	
	M CA at different ultrasonic amplitudes	
5.15	FESEM micrographs of anodised titanium at 350V, 30	201
	mA.cm ⁻² for 10 minutes in mixture of 0.04 M β -GP + 0.4	
	M CA (combination of magnetic stirring and ultrasonic	
	stirring)	
5.16	FESEM micrographs of anodised titanium at 350V, 30	202
	mA.cm ⁻² for 10 minutes in mixture of 0.04 M β -GP + 0.4	
	M CA at different bath temperature	
5.17	GAXRD patterns of anodised titanium fabricated at 350	204
	V and 30 mA.cm ⁻² for 10 minutes using different	
	agitation speeds	
5.18	GAXRD patterns of anodised titanium fabricated at 350	205
	V and 30 mA.cm ⁻² for 10 minutes under different	
	ultrasonic amplitudes	
5.19	GAXRD patterns of anodised titanium fabricated at 350	207
	V, 30 mA.cm ⁻² at an ultrasonic amplitude of 20 μm for	
	10 minutes at different agitation speeds	
5.20	GAXRD patterns of anodised titanium fabricated at 350	207
	V, 30 mA.cm ⁻² at an ultrasonic amplitude of 30 μ m for	
	10 minutes at different agitation speeds	
5.21	GAXRD patterns of anodised titanium fabricated at 350	208
	V, 30 mA.cm ⁻² at an ultrasonic amplitude of 40 μ m for	
	10 minutes at different agitation speeds	
5.22	GAXRD patterns of anodised titanium fabricated at 350	210
	V, 30 mA.cm ⁻² for 10 minutes at different bath	
	temperatures	

5.23	Surface topography of anodised titanium fabricated at 350 V 30 mA cm ⁻² for 10 minutes in mixture of 0.04 M	214
	β -GP + 0.4 M CA at different agitation speeds	
5.24	Surface topography of anodised titanium fabricated at	215
	350V, 30 mA.cm ⁻² for 10 minutes in mixture of 0.04 M	
	β -GP + 0.4 M CA at different ultrasonic amplitudes	
5.25	Surface topography of anodised titanium fabricated at	216
	350V, 30 mA.cm ⁻² for 10 minutes in mixture of 0.04 M	
	β -GP + 0.4 M CA at different bath temperatures	
5.26	Images of water on anodised titanium fabricated at 350V,	218
	30 mA.cm ⁻² for 10 minutes in mixture of 0.04 M β -GP +	
	0.4 M CA at different agitation speeds	
5.27	Images of water on anodised titanium fabricated at 350V,	220
	30 mA.cm ⁻² for 10 minutes in mixture of 0.04 M β -GP +	
	0.4 M CA at different ultrasonic amplitudes	
5.28	Images of water on anodised titanium fabricated at 350V,	221
	30 mA.cm ⁻² for 10 minutes in mixture of 0.04 M β -GP +	
	0.4 M CA at different bath temperatures	
6.1	Colours of anodised titanium for A series as a function of	224
	UV light treatment duration and pH of solution after UV	
	light treatment	
6.2	Colours of anodised titanium for AR series as a function	224
	of the UV light treatment duration and pH of solution	
	after UV light treatment	
6.3	Surface morphology of anodised titanium for series A as	226
	a function of the UV light treatment duration and pH of	
	solution during the UV light treatment	
6.4	Surface morphology of anodised titanium for series AR	227
	as a function of the UV light treatment duration and pH	
	of solution during the UV light treatment	
6.5	GAXRD patterns of anodised titanium for series A after	228
	UV light treatment for 4 h at different pH values	

6.6	GAXRD patterns of anodised titanium for series A after	228
	UV light treatment for 8 h at different pH values	
6.7	GAXRD patterns of anodised titanium for series A after	229
	UV light treatment for 12 h at different pH values	
6.8	GAXRD patterns of anodised titanium for series AR after	229
	UV light treatment for 4 h at different pH values	
6.9	GAXRD patterns of anodised titanium for series AR after	230
	UV light treatment for 8 h at different pH values	
6.10	GAXRD patterns of anodised titanium for series AR after	230
	UV light treatment for 12 h at different pH values	
6.11	Images of water on anodised titanium for series A after	232
	UV light treatment for 4 h at different pH of solution (A)	
	pH 1 (B) pH 4 (C) pH 7 and (D) pH 11	
6.12	Images of water on anodised titanium for series A after	232
	UV light treatment for 8 hours at different pH of solution	
	(A) pH 1 (B) pH 4 (C) pH 7 and (D) pH 11	
6.13	Images of water on anodised titanium for series A after	233
	UV light treatment for 12 hours at different pH of	
	solution (A) pH 1 (B) pH 4 (C) pH 7 and (D) pH 11	
6.14	Images of water on anodised titanium for series AR after	235
	UV light treatment for 4 hours at different pH of solution	
	(A) pH 1 (B) pH 4 (C) pH 7 and (D) pH 11	
6.15	Images of water on anodised titanium for series AR after	235
	UV light treatment for 8 hours at different pH of solution	
	(A) pH 1 (B) pH 4 (C) pH 7 and (D) pH 11	
6.16	Images of water on anodised titanium for series AR after	236
	UV light treatment for 12 hours at different pH of	
	solution (A) pH 1 (B) pH 4 (C) pH 7 and (D) pH 11	
6.17	FESEM images of 4 h UV-treated anodised titanium	238
	(series A) in solution of (A) pH 1 (B) pH 4 (C) pH 7 and	
	(D) pH 11 after soaking in SBF for 7 days without UV	
	irradiation	

6.18	FESEM images of 8 h UV-treated anodised titanium	239
	(series A) in solution of (A) pH 1 (B) pH 4 (C) pH 7 and	
	(D) pH 11 after soaking in SBF for 7 days without UV	
	irradiation	
6.19	FESEM images of 12 h UV-treated anodised titanium	240
	(series A) in solution of (A) pH 1 (B) pH 4 (C) pH 7 and	
	(D) pH 11 after soaking in SBF for 7 days without UV	
	irradiation	
6.20	FESEM images of UV-treated anodised titanium (series	241
	A) in solution of pH 1 with (A) 4 hours (B) 8 hours and	
	(C) 12 hours after soaking in SBF for 7 days without UV	
	irradiation	
6.21	FESEM images of 4h UV-treated anodised titanium	244
	(series AR) in solution of (A) pH 1 (B) pH 4 (C) pH 7	
	and (D) pH 11 after soaking in SBF for 7 days without	
	UV irradiation	
6.22	FESEM images of 8 h UV-treated anodised titanium	245
	(series AR) in solution of (A) pH 1 (B) pH 4 (C) pH 7	
	and (D) pH 11 after soaking in SBF for 7 days without	
	UV irradiation	
6.23	FESEM images of 12 h UV-treated anodised titanium	246
	(series AR) in solution of (A) pH 1 (B) pH 4 (C) pH 7	
	and (D) pH 11 after soaking in SBF for 7 days without	
	UV irradiation	
6.24	FESEM images of UV-treated anodised titanium (series	247
	AR) in solution of pH 1 with (A) 4 hours (B) 8 hours and	
	(C) 12 hours after soaking in SBF for 7 days without UV	
	irradiation	
6.25	GAXRD patterns of 12 h UV-treated anodised titanium	248
	(A series) in solution of (A) pH 1 (B) pH 4 (C) pH 7 and	
	(D) pH 11 after soaking in SBF for 7 days without UV	
	irradiation	

6.26	GAXRD patterns of 12 h UV-treated anodised titanium	249
	(AR series) in solution of (A) pH 1 (B) pH 4 (C) pH 7	
	and (D) pH 11 after soaking in SBF for 7 days without	
	UV irradiation.	
6.27	FESEM images of 4 h UV-treated anodised titanium	252
	(series A) in solutions of (A) pH 1 (B) pH 4 (C) pH 7 and	
	(D) pH 11 after soaking in SBF for 7 days with UV	
	irradiation	
6.28	FESEM images of 8 h UV-treated anodised titanium	253
	(series A) in solutions of (A) pH 1 (B) pH 4 (C) pH 7 and	
	(D) pH 11 after soaking in SBF for 7 days with UV	
	irradiation	
6.29	FESEM images of 12 h UV-treated anodised titanium	254
	(series A) in solutions of (A) pH 1 (B) pH 4 (C) pH 7 and	
	(D) pH 11 after soaking in SBF for 7 days with UV	
	irradiation	
6.30	FESEM images of UV-treated anodised titanium (series	255
	A) in solution of pH 1 with (A) 4 hours (B) 8 hours and	
	(C) 12 hours after soaking in SBF for 7 days with UV	
	irradiation	
6.31	FESEM images of 4 h UV-treated anodised titanium	258
	(series AR) in solutions of (A) pH 1 (B) pH 4 (C) pH 7	
	and (D) pH 11 after soaking in SBF for 7 days with UV	
	irradiation	
6.32	FESEM images of 8 h UV-treated anodised titanium	259
	(series AR) in solutions of (A) pH 1 (B) pH 4 (C) pH 7	
	and (D) pH 11 after soaking in SBF for 7 days with UV	
	irradiation	
6.33	FESEM images of 12 h UV-treated anodised titanium	260
	(series AR) in solutions of (A) pH 1 (B) pH 4 (C) pH 7	
	and (D) pH 11 after soaking in SBF for 7 days with UV	
	irradiation	
6.34	FESEM images of UV-treated anodised titanium (series	261
------	---	-----
	AR) in solution of pH 1 with (A) 4 hours (B) 8 hours and	
	(C) 12 hours after soaking in SBF for 7 days without UV	
	irradiation	
6.35	FIB micrographs of the cross sectional images for 12 h	262
	UV-treated anodised titanium (series AR) in solution of	
	pH 1 after soaking in SBF for 7 days with UV irradiation	
6.36	FIB micrographs of the cross sectional images for 12 h	262
	UV-treated anodised titanium (series AR) in solution of	
	pH 4 after soaking in SBF for 7 days with UV irradiation	
6.37	FIB micrographs of the cross sectional images for 12 h	263
	UV-treated anodised titanium (series AR) in solution of	
	pH 7 after soaking in SBF for 7 days with UV irradiation	
6.38	FIB micrographs of the cross sectional images for 12 h	263
	UV-treated anodised titanium (series AR) in solution of	
	pH 11 after soaking in SBF for 7 days with UV irradiation	
6.39	GAXRD patterns of 12 h UV-treated anodised titanium	265
	(series A) in solutions of (A) pH 1 (B) pH 4 (C) pH 7 and	
	(D) pH 11 after soaking in SBF for 7 days with UV	
	irradiation	
6.40	GAXRD patterns of 12 h UV-treated anodised titanium	266
	(series AR) in solutions of (A) pH 1 (B) pH 4 (C) pH 7	
	and (D) pH 11 after soaking in SBF for 7 days with UV	
	irradiation	
6.41	FESEM images of anodised titanium after soaking in	269
	SBF for 7 days under different UV irradiation conditions	
6.42	GAXRD patterns of anodised titanium after soaking in	270
	SBF for 7 days under different UV irradiation conditions	
6.43	Schematic diagram of mechanism for bone-like apatite	271
	formation on anodised titanium under different UV	
	irradiation conditions after soaking in SBF for 7 days	
6.44	Surface morphologies of anodised titanium (A) before	274
	soaking in SBF; and after soaking in SBF under UV	

	irradiation for (B) 1 day; (C) 2 days; (D) 3 days; (E) 4	
	days; (F) 5 days; (G) 6 days; and (H) 7 days	
6.45	Mechanism of the preferred and non-preferred nucleation	275
	site for growth of bone-like apatite	
6.46	FTIR spectra of anodised titanium after soaking in SBF	276
	under UV irradiation (a) 1 day; (b) 2 days; (c) 3 days; (d)	
	4 days; (e) 5 days; (f) 6 days; and (g) 7 days.	
6.47	Schematic of bone-like apatite formation in SBF under	278
	UV irradiation	
7.1	Colourisation of anodised titanium obtained at 350 V and	281
	70 mA.cm ⁻² for 10 minutes at various volume fraction of	
	1 M H ₂ SO ₄ (12.5-50 vol %)	
7.2	Surface morphology of anodised titanium obtained at 350	285
	V and 70 mA.cm ⁻² for 10 minutes at various volume	
	fraction of 1 M H ₂ SO ₄ (12.5-50 vol %)	
7.3	Surface mineralogy of anodised titanium obtained at 350	286
	V and 70 mA.cm ⁻² for 10 minutes at various volume	
	fraction of 1 M H ₂ SO ₄ (12.5-50 vol %)	
7.4	Surface topography of anodised titanium obtained at 350	286
	V and 70 mA.cm ⁻² for 10 minutes at various volume	
	fraction of 1 M H ₂ SO ₄ (12.5-50 vol %)	
7.5	FTIR spectra of anodised titanium obtained at 350 V and	287
	70 mA.cm ⁻² for 10 minutes at various volume fraction of	
	1 M H ₂ SO ₄ (12.5-50 vol %).	
7.6	Water contact angle images of anodised titanium	289
	obtained at 350 V and 70 mA.cm ⁻² for 10 minutes at	
	various volume fraction of 1 M H ₂ SO ₄ (12.5-50 vol %)	
7.7	Surface morphology of anodised titanium obtained at 350	291
	V and 70 mA.cm ⁻² for 10 minutes at various volume	
	fraction of 1 M H_2SO_4 (12.5-50 vol %) after soaking in	
	SBF for 7 days	
7.8	GAXRD patterns of anodised titanium obtained at 350 V	292
	and 70 mA.cm ⁻² for 10 minutes at various volume	

	fraction of 1 M H_2SO_4 (12.5-50 vol %) after soaking in	
	SBF for 7 days	
7.9	Colourisation of anodised titanium obtained at 350 V and	293
	70 mA.cm ⁻² for 10 minutes at various volume fraction of	
	1 M H ₂ O ₂ (12.5-50 vol %)	
7.10	Surface morphology of anodised titanium obtained at 350	295
	V and 70 mA.cm ⁻² for 10 minutes at various volume	
	fraction of $1 \text{ M H}_2\text{O}_2(12.5-50 \text{ vol }\%)$	
7.11	Surface mineralogy of anodised titanium obtained at 350	296
	V and 70 mA.cm ⁻² for 10 minutes at various volume	
	fraction of $1 \text{ M H}_2\text{O}_2(12.5-50 \text{ vol }\%)$	
7.12	Surface topography of anodised titanium obtained at 350	297
	V and 70 mA.cm ⁻² for 10 minutes at various volume	
	fraction of 1 M H ₂ O ₂ (12.5-50 vol %)	
7.13	FTIR spectra of anodised titanium obtained at 350 V and	298
	70 mA.cm ⁻² for 10 minutes at various volume fraction of	
	1 M H ₂ O ₂ (12.5-50 vol %)	
7.14	Water contact angle images of anodised titanium	300
	obtained at 350 V and 70 mA.cm ⁻² for 10 minutes at	
	various volume fraction of 1 M H ₂ O ₂ (12.5-50 vol %)	
7.15	Surface morphology of anodised titanium obtained at 350	301
	V and 70 mA.cm ⁻² for 10 minutes at various volume	
	fraction of 1 M H_2O_2 (12.5-50 vol %) after soaking in	
	SBF for 7 days	
7.16	GAXRD patterns of anodised titanium obtained at 350 V	302
	and 70 mA.cm ⁻² for 10 minutes at various volume	
	fraction of 1 M H_2O_2 (12.5-50 vol %) after soaking in	
	SBF for 7 days	
7.17	Colourisation of anodised titanium obtained at 350 V and	303
	70 mA.cm ⁻² for 10 minutes at various volume fraction of	
	1 M C ₂ H ₄ O ₂ (12.5-50 vol %)	

7.18	Surface morphology of anodised titanium obtained at 350	306
	V and 70 mA.cm ⁻² for 10 minutes at various volume	
	fraction of 1 M $C_2H_4O_2$ (12.5-50 vol %)	
7.19	Surface mineralogy of anodised titanium obtained at 350	307
	V and 70 mA.cm ⁻² for 10 minutes at various volume	
	fraction of 1 M $C_2H_4O_2$ (12.5-50 vol %)	
7.20	Surface topography of anodised titanium obtained at 350	308
	V and 70 mA.cm ⁻² for 10 minutes at various volume	
	fraction of 1 M $C_2H_4O_2$ (12.5-50 vol %)	
7.21	FTIR spectra of anodised titanium obtained at 350 V and	309
	70 mA.cm ⁻² for 10 minutes at various volume fraction of	
	1 M C ₂ H ₄ O ₂ (12.5-50 vol %)	
7.22	Water contact angle images of anodised titanium	310
	obtained at 350 V and 70 mA.cm ⁻² for 10 minutes at	
	various volume fraction of 1 M C ₂ H ₄ O ₂ (12.5-50 vol %)	
7.23	Surface morphology of anodised titanium obtained at 350	312
	V and 70 mA.cm ⁻² for 10 minutes at various volume	
	fraction of 1 M $C_2H_4O_2$ (12.5-50 vol %) after soaking in	
	SBF for 7 days	
7.24	GAXRD patterns of anodised titanium obtained at 350 V	313
	and 70 mA.cm ⁻² for 10 minutes at various volume	
	fraction of 1 M $C_2H_4O_2$ (12.5-50 vol %) after soaking in	
	SBF for 7 days	
7.25	Colourisation of anodised titanium obtained at 350 V and	314
	70 mA.cm ⁻² for 10 minutes at various volume fraction of	
	1 M NaOH (12.5-50 vol %)	
7.26	Surface morphology of anodised titanium obtained at 350	317
	V and 70 mA.cm ⁻² for 10 minutes at various volume	
	fraction of 1 M NaOH (12.5-50 vol %)	
7.27	Surface mineralogy of anodised titanium obtained at 350	318
	V and 70 mA.cm ⁻² for 10 minutes at various volume	
	fraction of 1 M NaOH (12.5-50 vol %)	

xliii

7.28	Surface topography of anodised titanium obtained at 350	319
	V and 70 mA.cm ⁻² for 10 minutes at various volume	
	fraction of 1 M NaOH (12.5-50 vol %)	
7.29	FTIR spectra of anodised titanium obtained at 350 V and	320
	70 mA.cm ⁻² for 10 minutes at various volume fraction of	
	1 M NaOH (12.5-50 vol %)	
7.30	Water contact angle images of anodised titanium	321
	obtained at 350 V and 70 mA.cm ⁻² for 10 minutes at	
	various volume fraction of 1 M NaOH (12.5-50 vol %)	
7.31	Surface morphology of anodised titanium obtained at 350	323
	V and 70 mA.cm ⁻² for 10 minutes at various volume	
	fraction of 1 M NaOH (12.5-50 vol %) after soaking in	
	SBF for 7 days	
7.32	GAXRD patterns of anodised titanium obtained at 350 V	324
	and 70 mA.cm ⁻² for 10 minutes at various volume	
	fraction of 1 M NaOH (12.5-50 vol %) after soaking in	
	SBF for 7 days	

LIST OF SYMBOLS AND ABBREVIATIONS

•OH	-	Hydroxyl group
AFM	-	Atomic force microscopy
$C_2H_4O_2$	-	Acetic acid
CA	-	Calcium acetate monohydrate
$Ca_2O_7P_2$	-	Calcium diphosphate
$Ca_3O_8P_2$	-	Tricalcium phosphate
Ca-P	-	Calcium Phosphate
CaTiO ₃	-	Calcium titanate
Cp-Ti	-	Commercially pure titanium
DSLR	-	Digital single-lens reflex camera
FESEM	-	Field emission scanning electron microscope
FIB	-	Focused ion beam
FTIR	-	Fourier transform infrared spectroscopy
GAXRD	-	Glancing angle X-ray diffraction
h	-	hour
H_2O_2	-	Hydrogen peroxide
H_2SO_4	-	Sulphuric acid
НАр	-	Hydroxyapatite
HCL	-	Hydrochloric acid
JCPDS	-	Joint Committee on Powder Diffraction Standards
Na ₂ Ti ₃ O ₇	-	Sodium titanate
NaOH	-	Sodium hydroxide
SBF	-	Simulated body fluid
Ti	-	Titanium
TiO ₂	-	Titanium dioxide
UV	-	Ultraviolet

UVA	-	Ultraviolet light type C
UVC	-	Ultraviolet light type A
β-GP	-	Beta-glycerophosphate disodium salt pentahydrate

CHAPTER 1

INTRODUCTION

1.1 Background

Titanium and its alloys are the most popular implant material due to its superior properties such as biocompatibility, good mechanical properties, low modulus of elasticity, and high corrosion resistance compared to other metals (Liu *et al.*, 2004; Geetha *et al.*, 2009 & Mohammad *et al.*, 2012). There has been increased use of titanium, particularly as dental implants, cochlear replacements, screws for orthodontic surgery, bone fixation, artificial heart valves, and surgical instruments (Patel & Gohil, 2012). Figures 1.1 and 1.2 show the applications of titanium within the biomedical industry. However, titanium is a bio-inert material and does not allow significant bone apposition after implantation (Mohammad *et al.*, 2012). The formation of a thin and passive titanium dioxide (TiO₂) layer occurs upon exposure of titanium to atmospheric conditions (Park *et al.*, 2013).

TiO₂ is the most popular photocatalytic material due to its outstanding properties such as low cost, high stability, high photocatalytic performance, and strong oxidation ability (Augugliaro *et al.*, 2010). Titanium dioxide (TiO₂) exists as three main crystalline phases, namely anatase, brookite, and rutile, of which rutile is the most common and stable form (Diebold, 2013). The band gaps for anatase and rutile TiO₂ are 3.20 eV and 3.02 eV, respectively (Hanaor & Sorrell, 2011). Hence, a number of research had been conducted on photocatalytic performance of TiO₂ due to its wider band gap energy. Most research has been conducted on the photocatalytic properties of anatase and rutile TiO_2 compared to those on brookite TiO_2 (Diebold, 2013 & Koelsch *et al.*, 2004).

Figure 1.1: Artificial bone screw (Liu et al., 2004).

Figure 1.2: Artificial hip joint (Liu et al., 2004).

The surface of the implant plays a crucial role in promoting osseointegration. Osseointegration is important to ensure the implants integrated into bone for long-term successful clinical outcome. Properties such as porous, rough, high crystallinity, and high hydrophilicity are ideal to enhance the osseointegration process (Elias, 2010; Ehrenfest *et al*, 2010 & Kim *et al.*, 2012). A number of efforts have been undertaken using anodic oxidation, alkaline treatment, gel oxidation, and plasma spraying in order to enhance the bioactivity of the titanium (Liu *et al.*, 2010). Among these, anodic oxidation is the simplest and cost-effective method. The anodic oxidation of

titanium is categorised by solid state diffusion in the oxide and/or by dissolution deposition in the electrolyte. Anodic oxidation combines electric field-driven metal and oxygen ion diffusion to form an oxide layer on the anode surface (Liu *et al.*, 2004; Kim & Ramaswamy, 2009). This process thus enhances the adhesion and bonding, improves crystallinity, and increases the corrosion resistance of the inherent oxide layer (Liu *et al.*, 2004). Post implantation, anodised titanium forms a bone-like apatite layer on the surface that bonds to living bone tissue. The composition and structure of bone-like apatite that is formed is very similar to human bone (Kasuga *et al.*, 2002).

In this study, a mixture of β -glycerophosphate disodium salt pentahydrate and calcium acetate monohydrate (β -GP + CA) was used as the electrolyte. For biomedical applications, this solution provides phosphorous and calcium ions that promote bone tissue growth and thereby enhance the anchorage of the implant to the bone (Lee *et al.*, 2015a & Abdullah *et al.*, 2014). The *in vitro* bioactivities of the implant are normally evaluated by using simulated body fluid (SBF). The SBF solution is prepared by following the recipe of Kokubo & Takadama (2006) in order to study the precipitation of bone-like apatite as well as prediction of natural bone growth on the implant.

This study investigates the effect of processing parameters such as applied voltage, current density, anodising time, electrolyte concentration, stirring methods during anodic oxidation, bath temperature, UV light treatment condition and type of additive in electrolyte to improve the biocompatibility of the material as well as to improve the bonding time and reduce the healing time once the material is placed in the body.

1.2 Problem Statements

To date, anodic oxidation of titanium with a mixture of β -GP + CA requires a longer time (more that 300 days) to form bone-like apatite on the surface. This is due to the lack of sufficient nucleation sites on the oxide layer (TiO₂) for the growth of bonelike apatite (Abdullah, 2010). Using a mixture of β -GP + CA as the electrolyte for preparing anodised titanium, Ishizama and Ogino (1995) observed that bone-like apatite was not formed on the surface of anodised titanium even after soaking in SBF for 300 days. Han *et al.* (2008) also noted the absence of bone-like apatite on the surface of anodised titanium after soaking in SBF for 90 days, and similar results were observed by Huang *et al.* (2007) and Abdullah (2010) after soaking in SBF for 50 days and 7 days, respectively.

In order to address the issues, this research was conducted to explore the effective ways to shorten the time for the growth of bone-like apatite on the surface of anodised titanium and improve the biocompatibility of the titanium. The tendency of the oxide layer to may exhibit bone-like apatite forming ability could be enhanced upon exposure to ultraviolet (UV) irradiation (Han *et al.*, 2008). Therefore, UV light treatment after anodic oxidation and UV irradiation during *in vitro* testing were conducted to elucidate the effect of UV irradiation on the bone-like apatite forming ability. Apart from that, additives such as sulphuric acid (H₂SO₄), hydrogen peroxide (H₂O₂), acetic acid (C₂H₄O₂) and sodium hydroxide (NaOH) were used in order to activate the nucleation sites of bone-like apatite.

1.3 Objectives

The present research has the following objectives:

- (a) To investigate the anodic oxidation behaviour of titanium surface in a weak organic acid mixture (β -glycerophosphate + calcium acetate).
- (b) To propose and access a new approach of *in vitro* bioactivation of the anodised titanium in SBF with UV irradiation.
- (c) To explore the effect of stirring methods and bath temperature during anodic oxidation on the surface properties of anodised titanium.
- (d) To investigate the effect of UV light treatment after anodic oxidation on the bone-like apatite forming ability of the anodised titanium.
- (e) To characterise the growth of bone-like apatite on the surface of anodised titanium in SBF.
- (f) To investigate the effect of additives in mixture of β -GP + CA electrolyte on the bone-like apatite forming ability of anodised titanium.

1.4 Scope of Study

The scope of this study is as follows:

- (a) Oxide layers on titanium were produced via anodic oxidation in mixtures of β -GP + CA. The parameters used are as follow:
 - Applied voltage : 50-350 V
 - Current density $: 10-70 \text{ mA/cm}^2$
 - Anodising time : 5-10 min
 - Concentration of β -GP + CA : 0.02 M + 0.2 M and 0.04 M +0.4 M
 - Temperature $: \sim 25^{\circ}C$
- (b) SBF was used to conduct the *in vitro* testing by following Kokubo's recipe.*In vitro* testing were conducted in three different conditions:
 - Without UV irradiation
 - With short wavelength (254 nm) UV irradiation
 - With long wavelength (365 nm) UV irradiation
- (c) Different stirring methods and varying bath temperatures were used to investigate the effect of these parameters on the resultant surface properties of the anodised titanium. The parameters used are as follows:
 - Stirring Method : Magnetic, Ultrasonic, Water Bath
 - Agitation speed : 300-1500 rpm
 - Ultrasonic amplitude : 20-60 µm
 - Bath temperature $: 4-100^{\circ}C$
- (d) UV light treatment was conducted after anodic oxidation. The parameters used for UV light treatment are as follows:
 - pH of solution during UV light treatment : 1-11
 **pH of solution was adjusted using H₂SO₄ and NaOH
 - Duration of UV light treatment : 4-12 hours
 - Wavelength of UV irradiation : 365 nm
- (e) UV-treated anodised titanium was soaked in SBF for 7 days. The samples were analysed each day in order to investigate the growth mechanism of bone-like apatite.
- (f) Additives were added to the mixture of β -GP + CA electrolyte to explore

the effect on bone-like apatite forming ability of anodised titanium. Parameters in this part of the study are as follows:

- Types of additives $: H_2SO_4, H_2O_2, C_2H_4O_2 and NaOH$
- Molarity of additive : 1 M
- Volume fraction of additives : 12.5-50.0 vol %
- (g) The characterisation of anodised titanium were carried out using the following techniques:
 - Digital camera colourisation
 - Colourimeter colourisation
 - Field emission scanning electron microscopy (FESEM) surface morphology
 - Focus ion beam (FIB) cross sectional image
 - Glancing angle X-ray diffractometer (GAXRD) surface mineralogy
 - Laser Raman microspectroscopy surface mineralogy
 - Atomic force microscopy (AFM) surface topography
 - Fourier transform infrared spectroscopy (FTIR) structural characteristic
 - Goniometer surface wettability and surface energy
 - UV-VIS spectroscopy optical properties

1.5 Significance of Study

This section briefly describes the significances of this project with regard to helping in faster recover from injury and aging, and surface modification technology of the biomedical implant.

(a) <u>Injury and aging</u>

Kovan (2008) reported that the most common causes for bone fracture are vehicles accident, severe assault and falls. Meanwhile, Farr & Khosla (2016) claimed that aging is the most significant risk factor for osteoporosis and fractures. This research can assist in helping in the growth of new bone on the implant surface and help the patients experienced bone fracture caused by

accident and osteoporosis to replace fractured bone. Anodisation of titanium in mixture of calcium acetate and β -glycerophosphate will enhance the osseointegration of tissues and bones with the implant titanium and shorten the recovery time of patient suffered injury.

(b) <u>Surface medication technology</u>

This research can show the potential of anodised titanium for biomedical uses. Furthermore, the new approach of *in vitro* testing under UV irradiation on anodised titanium can provide information on the effect of UV irradiation during immersion in SBF.

1.6 Novelty of study

The present work reveals novel methods (UV irradiation and additives addition in β -GP + CA) to enhance the rate of growth of bone-like apatite on the surface of titanium metal anodised in a mixture of β -GP + CA.

Previous researchers (Ishizama & Ogino, 1995; Huang *et al.*, 2007) observed absent of bone-like apatite on anodised surface even after soaking in SBF for more than 300 days. Han *et al.* (2008) and Gao *et al.* (2013) proved that UV irradiation is able to enhance the bioactivity of anodic films. However, better understanding of the effect of UV irradiation on growth of bone-like apatite need to be elucidated due to absent of studies on investigating the effect of UV irradiation during *in vitro* testing.

Therefore, the study was carried out was also able contribute new knowledge in biomaterials research field and propose novel methods to accelerate the growth of bone-like apatite. In this study, highly crystallised bone-like apatite was fully covered on the anodised surface after soaking in SBF with UV irradiation for 7 days.

Moreover, there are no available study and literature with regards to effect of additives addition in β -GP + CA electrolyte on bone-like apatite forming ability of anodised titanium. In this study, H₂SO₄, H₂O₂, C₂H₄O₂ and NaOH were added in mixture of β -GP + CA. It was found that addition of additives in β -GP + CA electrolyte is capable to accelerate the formation of highly crystallised bone-like apatite on anodised surface in 7 days only.

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

Titanium and its alloys have been widely used in biomedical applications as implant materials due to its good biocompatibility with hard tissue. However, titanium and its alloys do not facilitate osseointegration since the surface of machined titanium is smooth, low in crystallinity, hydrophobic, and poor in bioactivity. Consequently, machined implants do not promote significant better bone apposition (Liu *et al.*, 2004). Therefore, it is necessary to conduct surface modification though anodic oxidation in order to produce micro-rough, highly crystalline, hydrophilic, and bioactive surfaces. This particular mechanism will enhance the process of osseointegration. Anodic oxidation is a simple and low-cost surface modification method for titanium-based implants and has been widely used for dental implants and medical fastener (Kim & Ramaswamy, 2009). *In vitro* and *in vivo* tests proved that anodised titanium implants showed a considerable improvement in their osseointegration capability as compared to the machined titanium implants (Kim & Ramaswamy, 2009).

2.2 Biomaterials

2.2.1 Overview of Biomaterials

Biomaterials can be defined as "any substance (other than a drug) or combination of substances, synthetic or natural in origin, which can be used for any period of time, as a whole or as a part of a system which treats, augments, or replace any tissue, organ, or function of the body" (Boretos & Eden, 1984).

Biomaterials in the form of implants are widely used to replace, repair and restore the damaged organs or tissues and thus improve the life quality of the patient. For blood contact applications, biomaterials are inserted into blood vessels or devices that are permanently implanted to remove and return the blood from the body. For soft tissue applications, biomaterials are implanted to augment or redefine the damaged tissue. On the other hand, for orthopaedic and dental applications, biomaterials are implanted to repair the defective parts of the body (Nascimento *et al.*, 2007). Figure 2.1 presents the human anatomy and organs where biomedical materials are used. Biomaterials are very important for improving the quality and longevity of human life (Manivasagam *et al.*, 2010).

Basically, biomaterials can be divided into three categories which are metals, ceramics and polymers. Each biomaterials has its own unique functions whether for hard or soft tissue implants. The selection of biomaterials is important in order to provide true biological and mechanical match for living tissue. Table 2.1 shows the comparison among metals, ceramics and polymers biomaterials. Table 2.2 shows the biomedical application of metals, ceramics and polymers biomaterials (Bauer, 2013).

Figure 2.1: Implants in the human body (Patel & Gohil, 2012).

Table 2.1:	Advantages and disadvantages of metals, ceramics and polymers for	r		
biomedical applications (Nallaswamy, 2008)				

Materials	Advantages	Disadvantages
Motels	High strength, high ductility	Low corrosion resistance, may disrupt
wictais	biocompatibility,	the interfacial attachment.
	Biocompatibility, minimal thermal and	Low mechanical, tensile and shear
Coromios	electrical conductivity; modulus of	strength under fatigue loading, low
Ceramics	expansion, colour and chemical	attachment strengths for some coatings
	composition are similar to bone.	with the substrate interface.
	Low term experience, biocompatibility,	Porous polymers undergo elastic
Dolumora	ability to control properties through	deformation and lead to closing and
Polymers	compositional means	opening of regions intended for tissue
		growth, difficult to clean contaminations

No	Material	Medical applications	
Metals			
1	Cohalt chromium allows	Artificial heart valves, dental prosthesis, orthopaedic	
1	Cobart – chronnum anoys	fixation plates, artificial joint components, vascular stents	
2	Stainlass steel	Dental prostheses, orthopaedic fixation plates, vascular	
2	Stanness steer	stents	
		Artificial heart valves, dental implants, artificial joint	
3	Titanium alloys	components, orthopaedic screws, pacemaker cases, vascular	
		stents	
4	Gold or platinum	Dental fillings, electrodes for cochlear implants	
5	Silver-tin-copper alloys	Dental amalgams	
		Ceramics	
6	Aluminium oxidos	Orthopaedic joint replacement, orthopaedic load-bearing	
0	Thummun oxides	implants, implant coatings, dental implants	
7	Zirconium oxides	Orthopaedic joint replacement, dental implants	
8	Calcium phosphates	Orthopaedic and dental implant coatings, dental implant	
0	Calcium phosphales	materials, bone graft substitute materials	
	Bioactive glasses	Orthopaedic and dental implant coatings, dental implants,	
9		facial reconstruction components, bone graft substitute	
		materials, bone cements	
		Polymers	
10	Polyethylene	Orthopaedic joint implants, syringes	
11	Polypropylene	Heart valves, sutures, syringes	
12	Polydimethylsiloyane	Breast implants, contact lenses, knuckle replacements, heart	
12	1 oryunneuryishoxane	valves, artificial hearts	
13	Polyethyleneterephthalate	Vascular grafts, sutures, blood vessels	
14	Polyethyleneglycol	Pharmaceutical fillers, wound dressings	
15	Polytetafluoroethylene	Vascular grafts, sutures	
16	Collagen	Orthopaedic repair matrices, nerve repair matrices, tissue	
10	Conagen	engineering matrices	
17	Hyaluronic acid	Orthopaedic repair matrices	
18	Elastin	Skin repair matrices	
19	Fibri	Haemostatic products, tissue sealants	
20	Chitosan	Wound dressing	
21	Alginate	Wound dressing	

Table 2.2: Example of metal, ceramic, and polymer biomaterial use for biomedicalapplications (Bauer, 2013)

2.2.2 Important Properties of Biomaterials for Implants

The biomaterials used for implant must possess important properties such as biocompatibility, good mechanical properties, and non-toxicity for a long term usage in human body without any negative effects. Table 2.3 briefly describes the important properties of biomaterials (Patel & Gohil, 2012).

Table 2.3: Important properties of biomaterials for use as implants (Patel & Gohil,

Properties	Brief Description		
Host Response	Response of the host organism either local or systemic to the		
	implanted material. There are 3 types of host response:		
	a) Bioinert / biotoletant		
	• Unable to induce any interfacial biological bond between		
	implant and bone.		
	• Examples: alumina, titanium and zirconia.		
	b) <i>Bioactive</i>		
	• Able to attach directly with body tissues and form chemical		
	and biological bonds during early stages of the post		
	implantation period.		
	• Examples: 45S5 bioglass and calcium phosphates.		
	c) Bioresorbable		
	• Gradually resorbed before they finally disappear and are		
	totally replaced by new tissue in vivo.		
	• Examples: bone cement and tricalcium phosphate.		
Biocompatibility	Ability of a material to perform without any adverse host response in		
	a specific application implies harmony with the living system.		
Biofunctionality	Ability to withstand load transmission and stress distribution,		
	allowing for movement, controlling of fluid flow of blood, ability to		
	provide space filling, electrical stimuli, light and sound transmission.		
Functional Tissue	Ability to govern the structure of normal and abnormal cells, tissues		
Structure and Pathobiology	and organs.		
Non - toxicology	Toxicity of biomaterials will cause cell and human death		
Sufficient Machanical	Biomaterials should possess high tensile strength, yield strength,		
Proportios	elastic modulus, surface finish, creep, hardness and be easy to		
riopenies	manufacture		
High Corrosion Resistance	Avoid toxic ions		
High Wear Resistance	Avoid implant loosening.		

2012; Basu & Nath, 2009)

2.3 Metallic Implant Materials

2.3.1 Overview of Metallic Implant Materials

Metals had been used as implant materials for more than 100 years when Lane used metal plate to fix the bone fracture. However, metal implants suffer from corrosion and strength problems (Lane, 1895). In the 1920s, stainless steel was used for these applications (Hermawan *et al.*, 2011). In 1932, cobalt-based alloys such as Vitallium were introduced for biomedical applications (Elias *et al.*, 2008a). Titanium and its alloys were introduced in 1950s and a number of modification methods were applied to alter the alloy composition and surface properties in order to improve the functionality and implant duration in the human body (Geetha *et al.*, 2009). Apart from that, biodegradable metals have been developed to meet the requirements of biomedical applications. Biodegradable metals permit the implants to degrade in biological environments. In term of mechanical properties, biodegradable metals are more suitable for internal bone fixation compared to the biodegradable polymers (Hermawan & Mantovani, 2009). Table 2.4 shows the examples of metallic biomaterials used for implants and their mechanical properties.

Table 2.4: Comparison of mechanical properties of commonly used metals and	its
alloys for biomedical applications (Hermawan et al., 2011; Nag & Banerjee, 20	12)

Metallic Biomaterial	Young's Modulus	Yield Strength	Ultimate Tensile
Wittaine Diomateria	(GPa)	(MPa)	Strength (MPa)
Stainless Steel	200	170-750	465-950
Co-Cr-Mo	200-230	275-1585	600-1795
Commercially pure Ti	105	692	785
Ti-6A1-4V	110	850-900	960-970
Iron – annealed plate	200	150	210
Fe35Mn alloy, powder	N/A	235	550
Magnesium, annealed sheet	45	90	160
WE43 magnesium alloy, temper T6	44	170	220

2.3.2 Titanium and its Alloys

Titanium and its alloys were widely used as implant materials due to its high biocompatibility and high corrosion resistance. The Young's modulus of titanium and its alloys is only half of that of stainless steel or Co-Cr alloys. However, the properties of titanium are closer to cortical bones (Hanawa, 2008.). The applications of titanium and its alloys as implants includes cochlear replacements, bone and joint replacements, dental implants for tooth fixation, screw parts for orthodontic surgery, bone fixation like nails, screws and plates, artificial heart valves and surgical instruments (Patel & Gohil, 2012). Table 2.5 shows the mechanical properties of the titanium and its alloys for implants.

Alloy Designation	Microstructure	Young's Modulus (GPa)	Yield Strength (MPa)	Ultimate Tensile Strength (MPa)
Commercially pure Ti	α	105	692	785
Ti-6A1-4V	α/β	110	850-900	960-970
Ti-6Al-7Nb	α/β	105	921	1024
Ti-5Al-2.5Fe	α/β	110	914	1033
Ti-5Al5Fe	Metastable β	74-85	1000-1060	1060-1100
Ti-15Mo-5Zr-3Al	Metastable β	75	870-968	882-975
	Aged $\beta + \alpha$	88-113	1087-1284	1099-1312
Ti-15Mo-2.8Nb-3Al	Metastable β	82	771	812
	Aged $\beta + \alpha$	100	1215	1310
Ti-13Nb-13Zr	α/β	79	900	1030
Ti-15Mo-3Nb-0.3O (21SRx)	Metastable β + silicides	82	1020	1020
Ti-35Nb-7Zr-5Ta	Metastable β	55	530	590
Ti-35Nb-7Zr-5Ta-0.4O	Metastable β	66	976	1010

Table 2.5: Comparison of mechanical properties among titanium and its alloys(Long & Rack, 1998)

Among all the titanium and its alloys, commercially pure Ti and Ti-6Al-4V are the most commonly used materials for biomedical and implant applications. Although Ti-6Al-4V has high reputation for biocompatibility and corrosion

resistance, it can release ions such as aluminium (Al) and vanadium (V) which are toxic and can cause long term health problems such as Alzheimers disease, neuropathy, and ostemomalacia. These problems affect the long-term use of Ti-6Al-4V for implant applications (Geetha *et al.*, 2009).

On the other hand, commercially pure titanium (Cp Ti) can be considered as the best biomaterial among titanium and its alloys owing to Cp Ti exhibiting the best biocompatible metallic surface. This is due to the build-up of a stable and inert oxide layer. Apart from that, Cp Ti also demonstrates good physical properties such as low level of electronic conductivity, high corrosion resistance, thermodynamic state at physiological pH value, low ion formation tendency in aqueous environments, and isoelectric point of the oxide of 5-6 (Elias *et al.*, 2008a). Generally, Cp Ti can be classified into four types which are Cp Ti Grade 1, Cp Ti Grade 2, Cp Ti Grade 3 and Cp Ti Grade 4. Among all types of Cp Ti, Cp Ti Grade 4 has highest ultimate tensile strength and yield strength at 1.0% offset but lowest elongation. The mechanical properties for different types of Cp Ti are presented in Table 2.6.

Table 2.6: Mechanical properties of different grade of Cp Ti (ZAPP Materials Engineering, 2012)

Types of Cp Ti	Ultimate Tensile Strength (MPa)	Yield Strength at 1.0% Offset (MPa)	Elongation (%)
Cp Ti Grade 1	290-410	≥ 200	30
Cp Ti Grade 2	390-540	≥ 270	22
Cp Ti Grade 3	460-590	≥ 350	18
Cp Ti Grade 4	540-740	≥ 410	16

2.3.3 Properties of Titanium Implants

It is well known that titanium and its alloys are one of the popular biomaterials for implants application due to its properties such as biocompatibility, osseointegration, good mechanical properties, low modulus of elasticity, and high corrosion resistance. Nowadays, there is an increasing trend in using titanium implants especially for dental implants and prostheses (Özcan & Hämmerle, 2012). The important

properties of titanium and its alloy for biomedical application are presented in Table 2.7.

Table 2.7: Important properties of titanium in biomedical applications (Mohammed et al., 2012; Oldani & Dominguez, 2012; Ogawa & Nishimura, 2003; Sumner & Galante, 1992; Lilley et al., 1992)

Properties of titanium and its alloys	Description		
Biocompatibility	• Cp TI, $\alpha + \beta$ and β type		
	• Non-toxic		
	• Hydrated titanium oxide enhanced the growth of calcium		
	phosphorous compounds and accelerated the osseointegration		
Osseointegration	Able to integrate well with adjacent bone		
	• Success rate $\approx 65 \%$		
Mechanical Properties	Able to withstand a variety of loads during physical activities		
	• High strength, high ductility, high fracture toughness, crack		
	resistance, high bending strength, high fatigue resistance, and		
	admission strain (the ratio of yield strength to modulus of		
	elasticity.		
	• Suitable for load bearing or non-load bearing applications.		
Low Modulus of	Not very high of compared to human bone		
Elasticity	• Adequate mechanical stress on the adjacent bone can be		
	avoided due to the low modulus of elasticity.		
	• Reduce the probability of bone cells damage		
Corrosion Resistance	Protective TiO ₂ surface layer		

2.3.4 Application of Titanium and its Alloy in Biomedical Industry

Titanium and titanium alloys are widely used in biomedical devices and components, especially as hard tissue replacements and for cardiac and cardiovascular applications. Figures 2.2 to Figure 2.5 show the applications of titanium and its alloys in biomedical applications.

Figure 2.2: Artificial heart value (Liu et al., 2014).

Figure 2.3: Artificial vascular stents (Liu et al., 2014).

Figure 2.4: Bone screw and bone plate (Liu et al., 2014).

Figure 2.5: Commercial dental implant (Elias et al., 2008a).

2.4 Titanium Dioxide

2.4.1 Overview of Titanium Dioxide

Titanium is an oxide of titanium and is also known as titanium (IV) oxide, titania, titanium white, E171 in food colouring and pigment white 6 in building paints. The photocatalytic property of TiO_2 was first discovered when used as a white pigment in buildings since the pigment bleached under solar irradiation. Since then TiO_2 has been widely used in many industrial applications (Lan *et al.*, 2013).

2.4.2 Polymorphs of Titanium Dioxide

The oxide layer on titanium is a passive film and normally made up of two forms: amorphous or low crystalline stoichiometric TiO_2 . Titanium dioxide has three naturally occurring crystallographic forms which are anatase, brookite and rutile. Rutile is the most common and stable form and only anatase and rutile are manufactured on a large scale.

Rutile structure consists of a slightly distorted hexagonal close packing of oxygen atoms with the titanium atoms occupying half of the octahedral interstices. On the other hand, anatase and brookite are both based on cubic packing of the oxygen atoms with octahedral coordination (Rouquerol *et al.*, 2013). It is reported that anatase is the most active, rutile is less active, and brookite is not active at all for photocatalytic applications (Liu, 2012). Anatase TiO₂ is generally accepted to be a better photocatalyst than rutile and brookite. However, rutile TiO₂ is the most thermodynamically stable phase among all the titanium dioxide forms (Mantz, 2010). Figures 2.6 to 2.8 demonstrate the crystal lattice structures of rutile, anatase, and brookite TiO₂. Table 2.8 compares the properties between rutile, anatase, and brookite forms of TiO₂.

Figure 2.6: Structure of rutile TiO₂ (Winkler, 2003).

Figure 2.7: Structure of anatase TiO₂ (Winkler, 2003).

Figure 2.8: Structure of brookite TiO₂ (Winkler, 2003).

Properties	Rutile TiO ₂	Anatase TiO ₂	Brookite TiO ₂
Density (g/cm ³)	4.2 - 4.3	3.8 - 3.9	3.9 - 4.1
Point group according to Schonflies	D_{4h}	D_{4h}	D _{2h}
a (nm)	0.4594	0.3785	0.9184
b(nm)	0.4594	0.3785	0.5447
c (nm)	0.2958	0.9514	0.5245
Volume of the elementary cell (nm ³)	62.07	136.25	257.38
Molar volume (cm ³ /mol)	18.693	20.156	19.377
Moh's hardness	6.5 – 7	5.5 - 6.0	5.5 - 6.0
Melting point (^{0}C)	1830 – 1850	Transforms to	Transforms to
weeting point (C)		rutile	rutile

Table 2.8: Properties of rutile, anatase, and brookite TiO₂ (Winkler, 2003)

2.4.3 Photocatalytic Properties of Titanium Dioxide

The Singh (2008) defined photocatalysis as a process in which light is used to activate a substance, the photocatalyst, which modifies the rate of a chemical reaction without being involved itself in the chemical transformation. Photocatalysis can be classified as an advanced oxidation process. Photocatalysis in the presence of an irradiated semiconductor has proven to be effective in the field of environmental remediation. Semiconductors are superior photocatalyst due to it favourable combination of electronic structure, light absorption properties, charge transport characteristics, and long lifetimes. In fact, the irradiation of a semiconductor oxide with light will produce hydroxyl radicals on the catalyst surface (Augugliaro *et al.*, 2010).

Photocatalysts are widely used in common industrial applications such as photocatalytic water splitting, purification of pollutants, photocatalytic self-cleaning, photocatalytic antibacterial, photo-induced super hydrophilicity, and photosynthesis (Lan *et al.*, 2013). To date, researchers in the photocatalysis field have clarified the following advantages of photocatalysis (Kaneko & Okura, 2002).

Multiple process such as reduction and oxidation, proceed successively in a one pot reaction

- (b) Catalysts can be separated and reused easily
- (c) The reactions proceed at ambient temperature under atmospheric pressure
- (d) Unlike ordinary organic synthetic procedures, water can be used as a solvent and this enables the use of water-soluble organic substrates
- (e) Sustainable and environmental friendly chemical processes
- (f) Inexpensive
- (g) Minimal infrastructural requirements

Semiconductors such as titanium oxide (TiO₂), zinc sulphide (ZnS), strontium titanate (SrTiO₃), zinc oxide (ZnO), zirconium dioxide (ZrO₂), cadmium sulphide (Cds), molybdenum disulfide (MoS₂), iron (III) oxide (Fe₂O₃), tungsten trioxide (WO₃), has been widely used as photocatalysts. In fact, the photocatalytic properties of the photocatalyst is strongly dependent on the band gap, energy level locations, mean life time, and mobility of electron and holes, light absorption coefficient, nature of the interface, as well as the method of preparation. Figure 2.9 shows the band gaps of different semiconductors (Augugliaro *et al.*, 2010).

An ideal photocatalyst should present the following characteristics (Augugliaro *et al.*, 2010):

- (a) High reaction rate with wider band bad
- (b) Photostability
- (c) Chemical and biological inactivity
- (d) Low cost
- (e) Non-toxic and harmless

Figure 2.9: Band gap for commonly used photocatalysts (Augugliaro et al., 2010).

The photocatalyst will produce pairs of electrons and holes after it absorbs the UV irradiation from the sunlight or illuminated light source. The electrons in the valance band of the photocatalyst become energetic after irradiation by UV. The electron will be excited to the conduction band and thus creating negative electron (e⁻) and positive hole (h⁺) pairs. The electrons and holes can recombine and can release the absorbed heat without any chemical effects. The valance band hole is strongly oxidising. However, the conduction band electron is strongly reducing. The band gap is the energy difference between the valance band and conduction band. The positive hole of the photocatalyst can react with water molecules to form hydrogen gas and hydroxyl radicals (•OH). The •OH radicals are able to rapidly attack the pollutants at the solution surface. On the other hand, the negative electrons will react with the oxygen molecule and form superoxide anions (O₂⁻). The process will continue as long as there is irradiation (Augugliaro *et al.*, 2010 & Al-Rasheed, 2005). Figure 2.10 shows the simplified mechanism for the photocatalytic process of a semiconductor catalyst.

Figure 2.10: Mechanism of the photocatalytic process (re-illustrated from Al-Rasheed, 2005).

The equations 2.1 to 2.10 show chemical reactions that occur during the photocatalytic process at the TiO₂-water interface. Generally, \cdot OH, \cdot O₂⁻ and H₂O₂ are the key reactive oxygen species (ROS) are formed during the photocatalytic process (Augugliaro *et al.*, 2010 & Cai, 2013).

- TiO₂ reacts with UV light and produces pairs of free electrons (e⁻_(CB)) and positively charged holes (h⁺_(VB)) as shown in Equation 2.1.
 TiO₂ + hv → TiO₂ (e⁻_(CB) + h⁺_(VB)) (2.1)
- Equation 2.2 and Equation 2.3 show the water molecular or hydroxide ions trapped in the positively charged hole and form the hydroxyl radicals (•OH) $H_2O + h^+_{(VB)} \rightarrow \bullet OH + H^+$ (2.2) $OH^- + h^+_{(VB)} \rightarrow \bullet OH$ (2.3)
- The Ti⁴⁺ reacts with the conduction band electron and is reduced to Ti³⁺ as shown in equation 2.4.
 Ti⁴⁺ + e⁻_(CB) → Ti³⁺

REFERENCES

- Abbasi, S., Golestani-Fard, F., Mirhosseini, S. M. M., Ziaee, a. & Mehrjoo, M. (2013). Effect of electrolyte concentration on microstructure and properties of micro arc oxidized hydroxyapatite/titania nanostructured composite. *Materials Science & Engineering. C, Materials for Biological Applications*, 33(5), pp. 2555-2561.
- Abdullah, H.Z. & Sorrell, C. C. (2012). Titanium dioxide (TiO₂) films by anodic oxidation in phosphoric acid. *Advanced Materials Research*, 545, pp. 223-228.
- Abdullah, H. Z. & Sorrell, C. C. (2007a). TiO₂ thick films by anodic oxidation. *Journal* of Australia Ceramic. Society, 43(2), pp. 125-130.
- Abdullah, H. Z. & Sorrell, C. C. (2007b). Preparation and characterisation of TiO₂ thick films fabricated by anodic oxidation. *Material Science Forum*, *56*, pp. 2159-2162.
- Abdullah, H. Z. (2010). *Titanium surface modification by oxidation for biomedical application*. University of New South Wales: Ph.D.'s Thesis.
- Abdullah, H. Z., Koshy, P. & Sorrell, C. C. (2014). Anodic oxidation of titanium in mixture of β-glycerophosphate (β-GP) and calcium acetate (CA). *Key Engineering Materials*, 594, pp. 270-280.
- Abdullah, H. Z., Lee, T. C., Idris, M. I., & Sorrell, C. C. (2015). Effect of current density on anodised titanium in mixture of β-glycerophosphate (β-GP) and calcium acetate (CA). *Advanced Materials Research*, *1087*, pp. 212-217.
- Aguilar, F., Charrondiere, U. R., Dusemund, B., Galtier, P., Gilbert, J., Gott, D. M., Grilli, S., Guertler, R., Kass, G. E. N., Koenig, J., Lambré, C., Larsen, J. C.,

Leblanc, J. C., Mortensen, A., Parent-Massin, D., Pratt, I., Rietjens, I., Stankovic, I., Tobback, P., Verguieva, T. & Woutersen, R. (2009). Scientific opinion of the panel on food additives and nutrient sources added to food on calcium acetate, calcium pyruvate, calcium succinate, magnesium pyruvate magnesium succinate and potassium malate added for nutritional purposes to food supplements following a request from the european commission. *The EFSA Journal*, *1088*, pp.1-25.

- Ahmed, W., Ali, N. & Oechsner, A. (2008). *Biomaterials and biomedical engineering*.Dürnten: Trans Tech Publication.
- Albers, G. M., Tomkiewicz, R. P., May, M. K., Ramirez, O. E. & Rubin, B. K (1996). Ring distraction technique for measuring surface tension of sputum: relationship to sputum clearability. *Journal of Applied Physiology*, 81(6), pp. 2690-2695.
- Albrektsson, T., Branemark, P. I., Hansson, H. A. & Lindstrom, J. (1981). Osseointegrated titanium implants: requirements for ensuring a long-lasting, direct bone to implant anchorage in man. *Acta Orthopaedica Scandinavica*, 52, pp. 155-170.
- Al-Rasheed, R. A. (2005). Water treatment by heterogeneous photocatalysis an overview. *4th SWCC Acquired Experience Symposium*. Jeddah.
- American Health Packaging (2015). *Calcium Acetate*. Retrieved on 15 May, 2015 from http://medlibrary.org/lib/rx/meds/calcium-acetate-8/page/2/.
- Amin, M. S., Randeniya, L.K., Bendavid, A, Martin, P. J., & Preston, E. W. (2010). Apatite formation from simulated body fluid on various phases of TiO₂ thin films prepared by filtered cathodic vacuum arc deposition. *Thin Solid Films*, 519(4), pp. 1300-1306.
- Anil, S., Anand, P. S., Alghamdi, H., Jansen, J. A. (2011). Turkyilmaz, I. (Ed.). Dental implant surface enhancement and osseointegration. *Implant Dentistry-A Rapidly Evolving Practice*. Crotia: Intech. pp. 83-108.

- Aparicio, C., Padrós, A. & Gil, F. J. (2011). In vivo evaluation of micro-rough and bioactive titanium dental implants using histometry and pull-out tests. *Journal of the Mechanical Behavior of Biomedical Materials*, 4(8), pp. 1672-1682.
- Augugliaro, V., Loddo, V., Pagliaro, M., Palmisano, G. & Palmisanov, L. (2010). *Clean by light irradiation: practical applications of supported TiO*₂. Cambridge: RSC Publishing.
- Basu, B. & Nath, S. (2009). Fundamentals of biomaterials and biocompatibility. Basu,
 B., Katti, D. S. & Kumar, A. (Ed.). Advance Biomaterials: Fundamentals,
 Processing and Applications. New Jersey: John Wiley & Sons. pp. 3-18.
- Bauccion, M. (1993). ASM Metals Reference Book. ASM International.
- Bauer, S., Schmuki, P., von der Mark, K. & Park, J. (2013). Engineering biocompatible implant surfaces. *Progress in Materials Science*, 58(3), pp. 261-326.
- Bensalah, W., Feki, M., Wery, M. & Ayedi, H. F. (2011). Chemical dissolution resistance of anodic oxide layers formed on aluminum. *Transactions of Nonferrous Metals Society of China (English Edition)*, 21(7), pp. 1673-1679.
- Bickley, R. I., Gonzalez-carreno, T., Lee, J. S., Palmisano, L. & Tilleyd, R. J. D. (1991). Investigation of titanium dioxide photocatalysts. *Journal of Solid State Chemistry*, 92, pp. 178-190.
- Bjursten, L.M. (1991). The Bone-Implant Interface in Osseointegration. International Workshop on Osseointegration in Skeletal Reconstruction and Joint Replacement. Sweden. pp. 25-31.
- Boehm, H. P. (1971). Acidic and basic properties of hydroxylated metal oxide surfaces. *Discussion Faraday Society*, 52, pp. 264-275.
- Bohner, M., Galea, L. & Doebelin, N. (2012). Calcium phosphate bone graft substitutes: failures and hopes. *Journal of the European Ceramic Society*, 32(11), pp. 2663-2671.

- Boonchom, B. & Danvirutai, C. (2009). The morphology and thermal behavior of calcium dihydrogen phosphate monohydrate (Ca(H ₂PO₄)₂•H₂O) obtained by a rapid precipitation route at ambient temperature in different media. *Journal of Optoelectronics and Biomedical Materials*, *1*(*1*), pp. 115-123.
- Boretos, J. W. & Eden, M. (1984). Contemporary biomaterials, material and host response, clinical applications, new technology and legal aspects. New Jersey: Noyes Publications.
- Bornstein, M. M., Valderrama, P., Jones, A .a, Wilson, T. G., Seibl, R. & Cochran, D. L. (2008). Bone apposition around two different sandblasted and acid-etched titanium implant surfaces: a histomorphometric study in canine mandibles. *Clinical Oral Implants Research*, 19(3), pp. 233-241.
- Bose, S. & Tarafder, S. (2012). Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: a review. *Acta Biomaterialia*, 8(4), pp. 140-1421.
- Bouroushian, M. & Kosanovic, T. (2012). Characterization of thin films by low incidence x-ray diffraction. *Crystal Structure Theory and Applications*, 1(3), pp. 35-39.
- Brånemark, R. (n.d). Osseointegration. Centre of Orthopaedic Osseointegration (COD), Department of Orthopaedics, Sahlgren University Hosepital, Göteborg, Sweden.
- Brånemark, R., Brånemark, P., Rydevik, B. & Myers, R. R. (2001). Osseointegration in skeletal reconstruction and rehabilitation: a review. *Journal of Rehabilitation Research and Development*, 38(2), pp. 175-181.
- Bumbrah, G. S. & Sharma, R. M. (2015). Raman spectroscopy-basic principle, instrumentation and selected applications for the characterization of drugs of abuse. *Egyptian Journal of Forensic Sciences*. In press.
- Cai, K.Y. (2007). Surface modification of titanium films with sodium ion implantation: surface properties and protein adsorption. Acta Metallurgica Sinica, 20(2), pp. 148-156.
- Cai, Y .L. (2013). *Titanium dioxide photocatalysis in biomaterials applications*. Uppsala University: Ph.D.'s thesis.
- Cai, Y. L., Yang, X. J., Cui, Z. D., Chen, M. F., Hu, K. & Li, C. Y. (2013). Zhang, S. (Ed.). Biofuntionalization of NiTi shape memory alloy promoting osseointegration by chemical treatment. *Hydroxyapatite Coatings on Biomedical Applications*. Boca Raton: CRC Press. pp. 289-360.
- Cayman Chemical (2014). β-Glycerophosphate (Sodium Salt Hydrate). Retrieved on 15 July, 2014 from https://www.caymanchem.com/app/template/ Product.vm/ catalog/14405; jsessionid=0703D30E1816E05DFFC09A1137246444.
- Chai, Y. C., Carlier, A, Bolander, J., Roberts, S. J., Geris, L., Schrooten, J. & Van Oosterwyck, H. (2012). current views on calcium phosphate osteogenicity and the translation into effective bone regeneration strategies. *Acta Biomaterialia*, 8(11), pp. 3876-3887.
- Chand, P., Gaur, A. & Kumar, A. (2015). Effect of Ni doping on structural and optical properties of Cu1–xNixO ($0 \le x \le 0.20$) nanostructures. *Applied Science Letter*, 1(1), pp. 28-32.
- Chang, H. I. & Wang, Y. W. (2011). Eberli, D. (Ed.).Cell responses to surface and architecture of tissue engineering scaffolds. *Regenerative Medicine and Tissue Engineering Cells and Biomaterials*. Crotia: Intech. pp. 569-588.
- Chang, Y. & Webster, T. (2006). Anodization: a promising nano-modification technique of titanium implants for orthopedic applications. *Journal of Nanoscience and Nanotechnology*, 6(9-10), pp. 2682-2692.
- Chaudhury, M. K. (1996). Interfacial interaction between low-energy surfaces. *Material Science Engineering*. *R16*, pp. 97-159.
- Chertow, G. M., Burke, S. K. & Raggi, P. (2002). Sevelamer attenuates the progression of coronary and aortic calcification in hemodialysis patients. *Kidney International*, 62, pp. 245-252.

- Chi, M. H., Tsou, H. K., Chung, C. J. & He, J. L. (2013). Biomimetic hydroxyapatite grown on biomedical polymer coated with titanium dioxide interlayer to assist osteocompatible performance. *Thin Solid Films*, 549, pp. 98–102.
- Chug, A., Shukla, S., Mahesh, L. & Jadwani S. (2013). Osseointegration-molecular events at the bone-implant interface: a review. *Journal of Oral and Maxillofacial Surgery, Medicine, and Pathology*, 25(1), pp. 1-4.
- Chung, C. H., Golub, E. E., Forbes, E., Tokuoka, T., Shapiro, I.M. (1992). Mechanism of action of β-glycerophosphate on bone cell mineralization. *Calcified Tissue International*, 51(4), pp. 305-311.
- Ciganovic, J., Stasic, J., Gakovic, B., Momcilovic, M., Milovanovic, D., Bokorov, M.
 & Trtica, M. (2012). Surface modification of the titanium implant using TEA
 CO₂ laser pulses in controllable gas atmospheres-Comparative study. *Applied* Surface Science, 258(7), pp. 2741-2748.
- Cihlar, K. & Castkova, K. (1998). Synthesis of calcium phosphates from alkyl phosphates by the sol-gel method. *Ceramic-Silikaty*, *42*(*4*), pp. 164-170.
- Cimdina, L. B. & Borodajenko, N. (2012). Theophanides, T. (Ed.). Research of Calcium Phosphates Using Fourier Transform Infrared Spectroscopy. *Infrared Spectroscopy - Materials Science, Engineering and Technology*. Crotia: Intech. pp. 123-148.
- Cui, X., Kim, H. M., Kawashita, M., Wang, L., Xiong, T., Kokubo, T. & Nakamura, T. (2009). Preparation of bioactive titania films on titanium metal via anodic oxidation. *Dental Materials : Official Publication of the Academy of Dental Materials*, 25(1), pp. 80-86.
- Dang, Q. F., Yan, J. Q., Li, J. J., Cheng, X. J., Liu, C. S. & Chen, X. G. (2011). Controlled gelation temperature, pore diameter and degradation of a highly porous chitosan-based hydrogel. *Carbohydrate Polymers*, 83(1), pp. 171-178.
- Das, K., Bose, S. & Bandyopadhyay, A. (2007). Surface modifications and cellmaterials interactions with anodized Ti. Acta Biomaterialia, 3(4), pp. 573-585.

- De Souza, G. B., de Lima, G. G., Kuromoto, N. K., Soares, P., Lepienski, C. M., Foerster, C. E. & Mikowski, A. (2011). Tribo-mechanical characterization of rough, porous and bioactive Ti anodic layers. *Journal of the Mechanical Behavior of Biomedical Materials*, 4(5), pp. 796-806.
- Deligianni, D. D., Katsala, N., Ladas, S., Sotiropoulou, D., Amedee, J. & Missirlis, Y.
 F. (2001). Effect of surface roughness of the titanium alloy Ti-6Al-4V on human bone marrow cell response and on protein adsorption. *Biomaterials*, 22(11), pp. 1241-1251.
- Delplancke, J. L. Degrez, M., Fontana, A. & Winand, R. (1982). Self-colour anodizing of titanium. *Surface Technology*, 16(2), 153-162.
- Diamanti, M. V. & Pedeferri, M. P. (2007). Effect of anodic oxidation parameters on the titanium oxides formation. *Corrosion Science*, 49(2), pp. 939-948.
 Diebold, U. (2003). The surface science of titanium dioxide. *Surface Science Report*, 48 (5-8), pp. 53-229.
- Divya, S., Nampoori, V. P. N., Radhakrishnan, P. & Mujeeb, a. (2014). Electronic and optical properties of TiO₂ and its polymorphs by Z-scan method. *Chinese Physics B*, 23(8), pp. 1-5.
- Durdu, S., Deniz, Ö. F., Kutbay, I. & Usta, M. (2013). Characterization and formation of hydroxyapatite on Ti6Al4V coated by plasma electrolytic oxidation. *Journal of Alloys and Compounds*, 551, pp. 422-429.
- Ehrenfest, D. M. D., Coelho, P. G., Kang, B. S., Sul, Y. T. & Albrektsson, T. (2010). Classification of osseointegrated implant surfaces: materials, chemistry and topography. *Trends in Biotechnology*, 28(4), pp. 198-206.
- Elias, C. N. (2010). Titanium dental implant surfaces. Matéria, 15, pp. 138-142.
- Elias, C. N., Lima, J. H. C., Valiev, R.. & Meyers, M.A. (2008a). Biomedical applications of titanium and its alloys. *Journal of Materials*, *60*(*3*), pp. 46-49.
- Elias, C. N., Oshida, Y., Lima, J. H. C., & Muller, C. A. (2008b). Relationship between surface properties (roughness, wettability and morphology) of titanium and

dental implant removal torque. *Journal of the Mechanical Behavior of Biomedical Materials*, 1(3), pp. 234-242.

- Emmett, M. (2006), A comparison of calcium-based phosphorus binders for patients with chronic kidney disease. *Dialysis Transplantation*, *35*, pp. 284-293.
- Faghihi-Sani, M. A., Arbabi, A. & Mehdinezhad-Roshan, A. (2013). Crystallization of hydroxyapatite during hydrothermal treatment on amorphous calcium phosphate layer coated by PEO technique. *Ceramics International*, 39(2), pp. 1793-1798.
- Fairley, M. (2006). Osseointegration: in the wave of the future. *The Orthotics & Prosthetics Edge*, pp. 43-46.
- Farr, J. N. & Khosla, S. (2016). Determinants of bone strength and quality in diabetes mellitus in humans. *Bone*, 82, pp. 28-34.
- Gao, Y., Liu, Y., Zhou, L., Guo, Z. H., Rong, M. D. Liu, X. N., Lai, C. H. & Ding, X.
 L. (2012). The effects of different wavelength UV photofunctionalization on micro-arc oxidized titanium. *Chinese Journal of Stomatology*, 8, pp. 359-363.
- Geesink, R. G. T., de Groot, K. & Klein, C. P. A. T. (1987). Chemical implant fixation using hydroxyl-apatite coatings. *Clinical Orfkop*. 225, pp. 147-170.
- Geetha, M., Singh, A. K., Asokamani, R. & Gogia, A. K. (2009). Ti based biomaterials, the ultimate choice for orthopaedic implants-a review. *Progress in Materials Science*, 54(3), pp. 397-425.
- Goenka, S., Balu, R. & Sampath Kumar, T. S. (2012). Effects of nanocrystalline calcium deficient hydroxyapatite incorporation in glass ionomer cements. *Journal of the Mechanical Behavior of Biomedical Materials*, 7, pp. 69-76.
- Han, Y., Chen, D., Sun, J., Zhang, Y., & Xu, K. (2008). UV-enhanced bioactivity and cell response of micro-arc oxidized titania coatings. *Acta Biomaterialia*, 4(5), pp. 1518-1529.

- Han, Y., Hong, S. H. & Xu, K. (2003). Structure and in vitro bioactivity of titaniabased films by micro-arc oxidation. *Surface & Coatings Technology*, 168, pp. 249-258.
- Hanaor, D. a. H. & Sorrell, C. C. (2011). Review of the anatase to rutile phase transformation. *Journal of Materials Science*, 46, pp. 855-874.
- Hanawa, T. (2008). *Chapter 7: Implants and Biomaterials (Titanium Metal)*. Tokyo Dental and Medical University.
- Harcuba, P., Bacáková, L. Stráský, J., Bacáková, M., Novotná, K. & Janecek, M. (2012). Surface treatment by electric discharge machining of Ti-6Al-4V alloy for potential application in orthopaedics. *Journal of Mechanical Behavior of Biomedical Materials*, 7, pp. 96-105.
- He, W. Z., Park, S. J., Shin, D. H. Yoon, S. J., Wu, Y. Q., Qiu, J., Hwang, Y. H.,
 Kim, H. K. & Kim, B. (2011). Effect of annealing Ti foil on the structural properties of anodic TiO₂ nanotube. *Journal of the Korean Physical Society*, 58(31), pp. 575-579.
- Hermawan, H. & Mantovani, D. (2009). Degradable metallic biomaterials: the concept, current developments and future directions. *Minerva Biotec*, *21*, pp. 207-216.
- Hermawan, H., Ramdan, D. & Djuansjah, J. R. P. (2011). Rezai, R. F. (Ed.). Metals for biomedical application. *Biomedical Engineering-From Theory to Applications*. Croatia: Intech. pp. 411-424.
- Hiromoto, S., Shishido, T., Yamamoto, A. & Maruyama, N. (2008). Precipitation control of calcium phosphate on pure magnesium by anodization. *Corrosion Science*, 50(10), pp. 2906–2913.
- Hitchman, M. L., Spackman, R. A. & Agra, C. Photoelectrochemical study of titanium dioxide films prepared by anodisation of titanium metal in sulfuric acid. *Journal of Chemical Society: Faraday Transaction*, 92, pp. 4049-4052.
- Hollander, A. P. & Hatton, P. V. (2004). *Biopolymer Methods in Tissue Engineering*. New Jersey: Hamana Press Inc.

- Hsu, Y. H., Turner, I. G. & Miles, A.W. (2010). A Commentary on "evaluation of the in vitro bioactivity of bioceramics." *Bone and Tissue Regeneration Insights*, pp. 1-4.
- Hu, H., Zhang, W., Qiao, Y., Jiang, X., Liu, X. & Ding, C. (2012). Antibacterial activity and increased bone marrow stem cell functions of Zn-incorporated TiO₂ coatings on titanium. *Acta Biomaterialia*, 8(2), pp. 904-915.
- Huang, P., Xu, K. and Han, Y. (2007). Formation mechanism of biomedical apatite c coatings on porous titania layer. *Journal of Materials Science Material in Medicine*, 18 (3), pp. 457-463.
- Huang, X. & Liu, Z. (2013). Growth of titanium oxide or titanate nanostructured thin films on Ti substrates by anodic oxidation in alkali solutions. *Surface and Coatings Technology*, 232, pp. 224-233.
- Ishizawa, H. & Ogino, M. (1995). Formation and characterization of anodic titanium oxide films containing Ca and P. *Journal of Biomedical Materials Research*, 29, pp. 65-72.
- Jalota, S (2007). Development and in vitro examination of materials for osseointegration. Clemson University: Ph.D.'s Thesis.
- Jeevithan, E., Jeya Shakila, R., Varatharajakumar, a., Jeyasekaran, G. & Sukumar, D. (2013). Physico-functional and mechanical properties of chitosan and calcium salts incorporated fish gelatin scaffolds. *International Journal of Biological Macromolecules*, 60, pp. 262-267.
- Jeong, Y. H., Kim, E. J., Brantley, W. a. & Choe, H. C. (2014). Morphology of hydroxyapatite nanoparticles in coatings on nanotube-formed Ti–Nb–Zr alloys for dental implants. *Vacuum*, 107, pp.297-303.
- Kamboj, M. L. (2009). Studied on the degradation of industrial waste water using heterogeneous photocatalysis. Thapar University: Master's Thesis.
- Kaneko, M., Okura, I. (2002). *Photocatalysis: science and technology*. 1st edition. New York: Springer Publishing.

- Kasuga, T., Kondo, H. & Nogami, M. (2002). Apatite formation on TiO₂ in simulated body fluid. *Journal of Crystal Growth*, *235(1-4)*, pp. 235-240.
- Khor, K. A., Yip, C. S. & Cheang, P. (1997). Ti-6Al-4V/hydroxyapatite Composite coating preapred by thermal spray techniques. *Journal of Thermal Spray Technology*, 6(1), pp. 109-115.
- Kim, K. H. & Ramaswamy, N. (2009). Electrochemical surface modification of titanium in dentistry. *Dental materials journal*, 28(1), pp. 20-36.
- Kim, M. S., & Kim, Y. J. (2012). Synthesis of calcium-deficient hydroxyapatite in the presence of amphiphilic triblock copolymer. *Materials Letters*, 66(1), pp. 33-35.
- Kim, S. E., Lee, S. B., Kwak, S. W., Kim, C. K. & Kim, K. N. (2012), Nanoporous anodic oxidation titanium enhances cell proliferation and differentiation of immortalized mouse embryonic cells. *Surface & Coating Technology*, 228, pp. 537-540.
- Koelsch, M., Cassaignon, S., Ta, T. M., Guillemoles, J. F. & Jolivet, J. P. (2004). Electrochemical comparative study of titania (anatase, brookite and rutile) nanoparticles synthesized in aqueous medium. *Thin Solid Films*, 451-452, pp, 86-92.
- Kokubo, T. (1998). Apatite formation on surfaces of ceramics, metals and polymers in body environment. *Acta Materialia*, *46*(7), pp. 2519-2527.
- Kokubo, T., & Takadama, H. (2006). How useful is SBF in predicting in vivo bone bioactivity?. *Biomaterials*, 27(15), pp. 2907-2915.
- Kokubo, T., Kim, H. M., Takadama, H., Uchida, M., Nishiguchi, S. & Nakamura, T. (2000). Mechanism of apatite formation on bioactive titanium metal. *Materials Research Society Symposium Proceedings*. Boston. pp. 129-134.
- Kong, J., Wang, Y., Wang, Z. & Jia, H. (2016). Preparation and photocatalytic activity of carbon coating TiO₂ nanotubes. *Superlattices and Microstructures*, 89, pp. 252-258.

- Kovan, V. (2008). An assessment of impact strength of the mandible. *Journal of Biomechanics*, 41(16), pp. 3488-3491.
- Krupa, D., Baszkiewicz, J., Sobczak, J. ., Biliński, A. & Barcz, A. (2003). Modifying the properties of titanium surface with the aim of improving its bioactivity and corrosion resistance. *Journal of Materials Processing Technology*, 143-144, pp. 158-163.
- Kumar, C. (2013). Surface modification of Ti-6Al-4V by electrochemical oxidation.National Institute of Technology Rourkela: Master's Thesis.
- Lan, Y. C., Lu, Y. L. & Ren, Z. F. (2013). Mini review on photocatalysis of titanium dioxide nanoparticles and their solar applications. *Nano Energy*, 2, pp. 1031-1045.
- Lane, W. A. (1895). Some remarks on the treatment of fractures. *Journal of British Medical*, pp. 861-863.
- Le Guehennec, L., Lopez-Heredia, M. A., Enkel, B., Weiss, P., Amouriq, Y. & Layrolle, P. (2008). Osteoblastic cell behaviour on different titanium implant surfaces. *Acta Biomaterialia*, 4(3), pp. 535-543.
- Lecanda, F., Avioli, L.V. & Cheng, S. (1992). Regulation of bone matrix protein expression and induction of differentiation of human osteoblasts and human bone marrow stromal cells by bone morphogenetic protein-2. *Journal of Cell Biochemistry*, 67(3), pp. 386-396.
- Lee, T. C., Abdullah, H. Z. & Idris, M. I. (2015c). Mechanism of bone-like apatite formation on anodised titanium under UV irradiation. *Proceedings of the 3rd International Conference on Advances in Civil, Structural and Mechanical Engineering (CSM 2015).* Birmingham City University: Seek Digital Library. pp. 51-55.
- Lee, T. C., Abdullah, H. Z. & Idris, M. I. (2015e). Effect of UV wavelength on apatite formation of anodised titanium. *Advanced Materials Research*, 1125, pp. 465-469.

- Lee, T. C., Idris, M. I., Abdullah, H. Z. & Sorrell, C. C. (2015a). Effect of electrolyte concentration on anodised titanium in mixture of β-glycerophosphate (β-GP) and calcium acetate (CA). *Advanced Materials Research*, *1087*, pp. 116-120.
- Lee, T. C., Koshy, P., Abdullah, H. Z. & Idris, M. I. (2015d). Precipitation of bonelike apatite on anodised titanium in simulated body fluid under UV irradiation. *Surface & Coating Technology*, In Press.
- Lee, T. C., Rathi, M. F. M., Abidin, M. Y. Z., Abdullah, H. Z. & Idris, M. I. (2015b). Effect of applied voltage on surface properties of anodised titanium in mixture of β-glycerophosphate (β-GP) and calcium acetate (CA). *Proceedings of the 23rd Scientific Conference of Microscopy Society Malaysia* (SCMSM 2014). Universiti Teknologi Petronas: AIP Publishing.
- Leeds, S. M. (1999). Characterisation of the gas-phase environment in a microwave plasma enhanced diamond chemical vapour deposition reactor using molecular beam mass spectrometry. University of Bristol: Ph.D.'s Thesis.
- Legeros, R. Z., Ito, A., Ishikawa, K., Sakae, T. & John, P. L. (2009). Basu, B., Katti, D. S. & Kumar, A. (Ed.). Fundamental of hydroxyapatite and related calcium phosphates. *Advance Biomaterials: Fundamentals, Processing and Applications*. New Jersey: John Wiley & Sons. pp. 19-52.
- LeGuéhennec, L., Soueidan, A., Layrolle, P. & Amouriq, Y. (2007). Surface treatments of titanium dental implants for rapid osseointegration. *Dental Materials*, 23(7), pp. 844-854.
- Li, J., Wang, X., Hu, R. & Kou, H. (2014). Structure, composition and morphology of bioactive titanate layer on porous titanium surfaces. *Applied Surface Science*, 308, pp. 1-9.
- Li, L. H., Kong, Y. M., Kim, H. W., Kim, Y. W., Kim, H. E., Heo, S. J. & Koak, J. Y. (2004). Improved biological performance of Ti implants due to surface modification by micro-arc oxidation. *Biomaterials*, 25(14), pp. 2867-2875.

- Liang, F., Zhou, L. & Wang, K. (2003). Apatite formation on porous titanium by alkali and heat-treatment. *Surface and Coatings Technology*, *165*(2), pp. 133-139.
- Lilley, P.A., Walker, P.S. & Blunn, G.W. (1992). Wear of titanium by soft tissue. *Transactions of the 4th Word Biomaterials Congress*. Berlin, pp. 227-230.
- Liu, F., Wang, F., Shimizu, T., Igarashi, K. & Zhao, L. (2006). Hydroxyapatite formation on oxide films containing Ca and P by hydrothermal treatment. *Ceramics International*, 32(5), pp. 527-531.
- Liu, F., Xu, J., Wang, F., Zhao, L. & Shimizu, T. (2010). Biomimetic deposition of apatite coatings on micro-arc oxidation treated biomedical NiTi alloy. *Surface* & Coatings Technology, 204(20), pp. 3294-3299.
- Liu, R. S. (2012). *Controlled nanofabrication: advances and applications*. Singapore: Pan Stanfold Publishing Pte. Ltd.
- Liu, X., Chu, P., & Ding, C. (2004). Surface modification of titanium, titanium alloys, and related materials for biomedical applications. *Materials Science and Engineering*, 47, pp. 49-121.
- Long, M. J. & Rack, H. J. (1998). Titanium alloys in total joint replacement-a materials science perspective. *Biomaterials*, 19(18), pp. 1621-1639.

Maecker, H. (2009). *The Electric Arc*. H Popp Matlab GmbH.

- Manivasagam, G., Dhinasekaran, D. & Rajamanickam, A. (2010). Biomedical implants: corrosion and its prevention-a review. *Recent Patents on Corrosion Science*, 2, pp. 40-54.
- Mantz, R. (2010). *Semiconductor electrolyte interface and photoelectrochemistry*. New Jersey: ECS Transaction.
- Marques, M. R C., Loebenberg, R., & Almukainzi, M. (2011). Simulated biological fluids with possible application in dissolution testing. *Dissolution Technologies*, 18, pp. 15-28.

- Martini, C., & Ceschini, L. (2011). A comparative study of the tribological behaviour of PVD coatings on the Ti-6Al-4V alloy. *Tribology International*, *44*(*3*), pp. 297-308.
- Mavrogenis, A. F., Dimitriou, R., Parvizi, J. & Babis, G. C. (2009). Biology of implant osseointegration. *Journal of Musculoskelet Neuronal Interact*, 9(2), pp. 61-71.
- Milne, G.W.A. (2005). Gardner's Commercially Important Chemicals: Synonyms, Trade Names, and Properties. New Jersey: John Wiley & Sons.
- Mizukoshi, Y. & Masahashi, N. (2014). Fabrication of a TiO₂ photocatalyst by anodic oxidation of Ti in an acetic acid electrolyte. *Surface and Coatings Technology*, 240, pp. 226-232.
- Mohammad, M. T., Khan, Z. A. & Siddiquee, A. N. (2012). Titanium and its alloys, the imperative materials for biomedical applications. *Proceedings International. Conference on Recent Trends in Engineering & Technology*. Meerut, India. pp. 91-95.
- Montazeri, M., Dehghanian, C., Shokouhfar, M. & Baradaran, A. (2011). Investigation of the voltage and time effects on the formation of hydroxyapatite-containing titania prepared by plasma electrolytic oxidation on Ti-6Al-4V alloy and its corrosion behavior. *Applied Surface Science*, 257(16), pp. 7268-7275
- Morris, C. G. (1992). Academic Press Dictionary of Science and Technology. California: Academic Press, Inc
- Nag, S. & Banerjee, R. (2012). Fundamental of medical implant materials. ASM Handbook: Materials for Medical Devices, 23, pp. 6-17.
- Nallaswamy, D. (2008). *Textbook of Prosthodontics*. New Delhi: Jaypee Brothers Publishers.
- Nan, Y. (2007). Focused Ion Beam Systems: Basics and Applications 2011. Cambridge University Press.

- Nascimento, C. D., Issa, J. P. M., Oliveira, R. R. D., Iyomasa, M. M., Siéssere, S. & Regalo, S. C. H. (2007). Biomaterials applied to the bone healing process. *International Journal of Morphology*, 58(3), pp. 839-846.
- Nath, S. & Basu, B. (2009). Materials for orthopedic application. Basu, B., Katti, D. S. & Kumar, A. (Ed.). Advance Biomaterials: Fundamentals, Processing and Applications. New Jersey: John Wiley & Sons. pp. 53-100.
- Necula, B. S., Apachitei, I., Fratila-Apachitei, L. E., van Langelaan, E. J. & Duszczyk, J. (2013). Titanium bone implants with superimposed micro/nano-scale porosity and antibacterial capability. *Applied Surface Science*, 273, pp. 310-314.
- Neupane, M. P., Park, I.S., Bae, T. S. & Lee, M. H. (2013). Sonochemical assisted synthesis of nano-structured titanium oxide by anodic oxidation. *Journal of Alloys and Compounds*, 581, pp. 418-422.
- Nishiguchi, S., Kato, H., Fujita, H., Oka, M., Kim, H. M., Kokubo, T., & Nakamura, T. (2001). Titanium metals form direct bonding to bone after alkali and heat treatments. *Biomaterials*, 22(18), pp. 2525-2533.
- Ogawa, T. & Nishimura, I. (2003). Different bone integration profiles of turned and acid etched implants associated with Modulated expression of extracellular matrix genes. *International Journal of Oral Maxillofacial Implants*, *18*(2), pp. 200-210.
- Oh, H. J., Lee, J. H., Jeong, Y., Kim, Y. J. & Chi, C. S. (2005). Microstructural characterization of biomedical titanium oxide film fabricated by electrochemical method. *Surface and Coatings Technology*, 198(1-3), pp. 247-252.
- Ohtsu, N., Kozuka, T., Hirano, M. & Arai, H. (2015). Electrolyte effects on the surface chemistry and cellular response of anodized titanium. *Applied Surface Science*, 349, pp. 911-915.
- Oldani, C. & Dominguez, A. (2012). Fokter, S. K. (Ed.). Titanium as a biomaterial for implants. *Recent Advances in Arthroplasty*. Croatia: Intech. pp. 149-162.

- Ono, S., Kiyotake, A. & Asoh, H. (2008). Effect of nanostructured surfaces of light metals on hydroxyapatite coating. *ESC Transactions*, *11*(15), pp. 1-8.
- Oshida, Y., Tuna, E. B., Aktoren, O. & Gencay, K. (2010). Dental implant systems. *International Journal of Molecular Sciences*, *11*(4), pp. 1580-1678.
- Ou, S. F., Chou, H. H., Lin, C. S., Shih, C. J., Wang, K. K. & Pan, Y. N. (2012). Effects of anodic oxidation and hydrothermal treatment on surface characteristics and biocompatibility of Ti-30Nb-1Fe-1Hf alloy. *Applied Surface Science*, 258(17), pp. 6190-6198.
- Ou, S. F., Lin, C. S. & Pan, Y. N. (2011). Microstructure and surface characteristics of hydroxyapatite coating on titanium and Ti-30Nb-1Fe-1Hf alloy by anodic oxidation and hydrothermal treatment. *Surface and Coatings Technology*, 205(8-9), pp. 2899-2906.
- Özcan, M., & Hämmerle, C. (2012). Titanium as a reconstruction and implant material in dentistry: advantages and pitfalls. *Journal of Materials*, *5(12)*, pp. 1528-1545.
- Paital, S. R. & Dahotre, N. B. (2009). Wettability and kinetics of hydroxyapatite precipitation on a laser-textured Ca-P bioceramic coating. *Acta Biomaterialia*, 5(7), pp. 2763–2772.
- Pan, Y. K., Chen, C. Z., Wang, D. G. & Lin, Z. Q. (2013). Preparation and bioactivity of micro-arc oxidized calcium phosphate coatings. *Materials Chemistry and Physics*, 141(2-3), pp. 842-849.
- Park, J. B. (1984). Biomaterials sciences and enginnering. New York: Plenum Press.
- Park, K. H., Koak, J. Y., Kim, S. K. & Heo, S. J. (2011). Wettability and cellular response of UV light irradiated anodized titanium surface. *The Journal of Advanced Prosthodontics*, 3(2), pp. 63-68.
- Park, T. E., Choe, H. C. & Brantley, W. A. (2013). Bioactivity evaluation of porous TiO₂ surface formed on titanium in mixed electrolyte by spark anodisation. *Surface & Coating Technology*, 235, pp. 706-713

- Patel, N. R. & Gohil, P. P. (2012). A review on biomaterials: scope, applications & anatomy significance. *International Journal of Emerging Technology and Advanced Engineering*, 2(4), pp. 91-101.
- Perry, D. L. (2011). *Handbook of Inorganic Compounds*. 2nd Edition. Florida: CRC Press.
- Popa, M., Vasilescu, C., Drob, S. I., Osiceanu, P., Anastasescu, M. & Calderon-Moreno, J. M. (2013). Characterization and corrosion resistance of anodic electrodeposited titanium oxide/phosphate films on Ti-20Nb-10Zr-5Ta bioalloy. *Journal of the Brazilian Chemical Society*, 24(7), pp. 1123-1134.
- Ramazanoglu, M. & Oshida, Y. (2011). Turkuilmaz, I.(Ed.). Osseointegration and bioscience of implant surfaces-current concepts at bone-implant interface *Implant Dentistry-A Rapidly Evolving Practice*. Crotia: Intech. pp. 57-82.
- Ratnawati, Gunlazuardi, J., & Slamet. (2015). Development of titania nanotube arrays: The roles of water content and annealing atmosphere. *Materials Chemistry and Physics*, 160, pp. 111-118.
- Ratner, B. D. & Bryant, S. J. (2004). Biomaterials: where we have been and where we are going. *Annual Review of Biomedical Engineering*, 6, pp. 41-75.
- Ravelingien, M., Mullens, S., Luyten, J., Meynen, V., Vinck, E., Vervaet, C. & Remon,
 J. P. (2009). Thermal decomposition of bioactive sodium titanate surfaces.
 Applied Surface Science, 255(23), pp. 9539-9542.
- Rouquerol, J., Rouquerol, F., Llewellyn, P., Maurin, G. & Sing, K. S. W. (2013). Adsorption by powders and porous solids: principles, methodology and applications. 2nd Edition. United State: Academic Press.
- Saha, N. (2012). Investigation on the synthesis and optical properties of nanostructured ZnWO₄. Jadavpur University: Master's Thesis.
- Samavedi, S., Whittington, A. R. & Goldstein, A. S. (2013). Calcium phosphate ceramics in bone tissue engineering: a review of properties and their influence on cell behavior. *Acta Biomaterialia*, *9*(*9*), pp. 8037-8045.

- Schuler, M., Owen, G. R., Hamilton, D. W., de Wild, M., Textor, M., Brunette, D. M. & Tosatti, S. G. P. (2006). Biomimetic modification of titanium dental implant model surfaces using the RGDSP-peptide sequence: a cell morphology study. *Biomaterials*, 27(21), pp. 4003-4015.
- Shabani, M. & Zamiri, R. (2014). Effect of applied voltage and substrate preparation on surface modification of anodically oxidized titanium. *Journal of Ovanic Research*, 10, pp. 43-53.
- Shadanbaz, S., & Dias, G. J. (2012). Calcium phosphate coatings on magnesium alloys for biomedical applications : a review. *Acta Biomaterialia*, *8*(*1*), pp. 20-30.
- Shimohigoshi, M. & Saeki, Y. (2007). Research and applications of photocatalyst tiles. *Photocatalysis, Environment and Construction Materials*, 55, pp. 291-298.
- Shioi, A., Nishizawa, Y., Jono, S., Koyama, H., Hosoi, M. & Morii, H. (1995). β-Glycerophosphate accelerates calcification in cultured bovine vascular smooth muscle cells. *Arteriosclerosis, Thrombosis, and Vascular Biology*, 15(11), pp. 2003-2009.
- Si, H. Y., Sun, Z.H., Kang, X., Zi, W. W. & Zhang, H. L. (2009). Voltage-dependent morphology, wettability and photocurrent response of anodic porous titanium dioxide films. *Microporous and Mesoporous Materials*, 119(1-3), pp. 75-81.
- Sigma Aldrich (2013). β-Glycerophosphate Disodium Salt Hydrate. Retrieved on 18 September, 2013 from http://www.sigmaaldrich.com/catalog/product/sigma/ g9891? lang=en®ion=MY.
- Simka, W., Socha, R. P., Dercz, G., Michalska, J., Maciej, A. & Krząkała, A. (2013). Anodic oxidation of Ti-13Nb-13Zr alloy in silicate solutions. *Applied Surface Science*, 279, pp. 317-323.
- Singh, A. R. (2008). Study of photocatalytic behaviour of TiO₂ nanopowder. Thapar University: Master's thesis.
- Song, W., Jun, Y., Han, Y. & Hong, S. (2004). Biomimetic apatite coatings on microarc oxidized titania. *Biomaterials*, 25(17), pp. 3341-3349.

- Sul, Y. T., Johansson, C. B., Jeong, Y. S. & Albrektsson, T. (2001). The electrochemical oxide growth behaviour on titanium in acid and alkaline electrolytes. *Medical Engineering & Physics*, 23(5), pp. 329-326.
- Sumner, D. & Galante, J. (1992). Determinants of stress shielding: design versus materials versus interface. *Clinical Orthopaedics and Related Research*, 247, pp. 202-212.
- Sun, J., Han, Y. & Huang, X. (2007). Hydroxyapatite coatings prepared by micro-arc oxidation in Ca- and P-containing electrolyte. Surface and Coatings Technology, 201(9-11 SPEC. ISS.), pp. 5655-5658.
- Sun, X., Jiang, Z., Yao, Z. & Zhang, X. (2005). The effects of anodic and cathodic processes on the characteristics of ceramic coatings formed on titanium alloy through the MAO coating technology. *Applied Surface Science*, 252(2), pp. 441-447.
- Sundgren, J. E., Bodö, P. & Lundström, I. (1986). Auger electronspectroscopic studies of the interface between human tissue and implants of titanium and stainless steel. Journal of Colloid and Interface Science, 110, pp. 9-20.
- Szesz, E. M., Pereira, B. L., Kuromoto, N. K., Marino, C. E. B., de Souza, G. B. & Soares, P. (2013). Electrochemical and morphological analyses on the titanium surface modified by shot blasting and anodic oxidation processes. *Thin Solid Films*, 528, pp. 163-166.
- Takadama, H., Kim H. M., Kokubo, T. & Nakamura, T. (2001). TEM-EDX study of mechanism of bonelike apatite formation on bioactive titanium metal in simulated body fluid. *Journal of Biomedical Material*, 57(3), pp. 441-448.
- Tang, G., Zhang, R., Yan, Y. & Zhu, Z. (2004). Preparation of porous anatase titania film. *Materials Letters*, 58(12-13), pp. 1857-1860.
- Vasantkumar, C. V. R. & Mansingh, A. (1990). Properties of RF sputtered tetragonal and hexagonal barium titanate films. 7th International Symposium on Applications of Ferroelectric. Urbana-Champaign: IEEE.

- Vázquez, U. O. M., Shinoda, W., Moore, P. B., Chiu, C., & Nielsen, S. O. (2009). Calculating the surface tension between a flat solid and a liquid: a theoretical and computer simulation study of three topologically different methods. *Journal of Mathematical Chemistry*, 45(1), pp. 161-174.
- Wang, C. X. & Wang, M. (2002). Electrochemical impedance spectroscopy study of the nucleation and growth of apatite on chemically treated pure titanium. *Materials Letters*, 54(1), pp. 30-36.
- Wang, X. J., Li, Y. C., Lin, J. G., Yamada, Y., Hodgson, P. D. & Wen, C. E. (2008). In vitro bioactivity evaluation of titanium and niobium metals with different surface morphologies. *Acta biomaterialia*, 4(5), pp. 1530-1535.
- Wei, D., Zhou, Y., Jia, D. & Wang, Y. (2007a). Characteristic and in vitro bioactivity of a microarc-oxidized TiO₂-based coating after chemical treatment. *Acta Biomaterialia*, 3(5), pp. 817-827.
- Wei, D., Zhou, Y., Jia, D. & Wang, Y. (2008). Biomimetic apatite deposited on microarc oxidized anatase-based ceramic coating. *Ceramics International*, 34(5), pp. 1139-1144.
- Wei, D., Zhou, Y., Wang, Y. & Jia, D. (2007b). Characteristic of microarc oxidized coatings on titanium alloy formed in electrolytes containing chelate complex and nano-HA. *Applied Surface Science*, 253(11), pp. 5045-5050.
- Wennerberg, A. & Alberktsson, T. (2009). Effects of titanium surface topography on bone integration: a systematic review. *Clinical Oral Implants Research. 20*, pp. 172-184.
- Wiberg, E. & Wiberg, N. (2001). Inorganic Chemistry. Florida: Academic Press.
- Williams, D. F. & Cunningham, J. (1979). *Materials in clinical dentistry*. Oxford: Oxford University Press.
- Wilson, R. A. & Bullen, H. A. (2006). Introduction to scanning probe microscopy (SPM) basic theory atomic force microscopy (AFM). Northern Kentucky University

Winkler, J. (2003). Titanium dioxide. Germany: Vincentz.

- Wu, C., Ramaswamy, Y., Gale, D., Yang, W., Xiao, K., Zhang, L., Yin, Y. (2008). Novel sphene coatings on Ti-6Al-4V for orthopedic implants using sol-gel method. *Acta Biomaterialia*, 4(3), pp. 569-576.
- Xiong, T., Cui, X., Kim, H., Kawashita, M., Kokubo, T., Wu, J. & Nakamura, T. (2004). Effect of surface morphology and crystal structure on bioactivity of titania films formed on titanium metal via anodic oxidation in sulfuric acid solution. *Key Engineering Materials*, 256, pp. 375-378.
- Yerokhin, A. L., Nie, X., Leyland, A., Matthews, A. & Dowey, S. J. (1999). Plasma electrolysis for surface engineering. *Surface & Coatings Technology*, 122(2), pp. 73-93.
- Yu, Y., Xie, L., Chen, M., Wang, N. & Wang, H. (2015). Surface & Coatings Technology Surface characteristics and adhesive strength to epoxy of three different types of titanium alloys anodized in NaTESi electrolyte. *Surface & Coatings Technology*, 280, pp. 122-128.
- ZAPP Materials Engineering (2012). *Specialty materials titanium grade 1-4*. Germany: ZAPP.
- Zhang, P., Zhang, Z., Li, W. & Zhu, M. (2013). Effect of Ti-OH groups on microstructure and bioactivity of TiO₂ coating prepared by micro-arc oxidation. *Applied Surface Science*, 268, pp. 381-386.
- Zhang, X. D. (2007). Osteoinduction and ostogenic genes expression regulated by Ca-P bioceramics. Tateishi, T. (Ed.). *Biomaterials in Asia*. Singapore: World Scientific Publishing Company. pp. 24-34.
- Zhang, Y (2010). Laser Induced Selective Activation For Subsequent Autocatalytic Electroless Plating. Technical University of Denmark: Ph.D.'s Thesis.
- Zhao, G. L., Li, X., Xia, L., Wen, G., Song, L., Wang, X. Y. & Wu, K. (2010). Structure and apatite induction of a microarc-oxidized coating on a biomedical titanium alloy. *Applied Surface Science*, 257(5), pp. 1762-1768.

- Zhao, X., Liu, X., You, J., Chen, Z. & Ding, C. (2008). Bioactivity and cytocompatibility of plasma-sprayed titania coating treated by sulfuric acid treatment. *Surface and Coatings Technology*, 202(14), pp. 3221-3226.
- Zhao, Y. L. (2013). The bandgap, fermi level, electronic and magnetic properties of transparent conducting oxides. National University of Singapore: Ph.D.'s Thesis.
- Zheng, M., F., D., Li, X. K., Zhang, J. B. & Liu, Q. B. (2010). Microstructure and in vitro bioactivity of laser-cladded bioceramic coating on titanium alloy in a simulated body fluid. *Journal of Alloys and Compounds*, 489(1), pp. 211-214.
- Zheng, X., Huang, M. & Ding, C. (2000). Bond strength of plasma-sprayed hydroxyapatite/Ti composite coatings, *Biomaterials*, *21*(8), pp. 841-849.
- Zheng, Y., Xiong, C. & Zhang, L. (2014). Formation of bone-like apatite on plasmacarboxylated poly(etheretherketone) surface. *Materials Letters*, 126, pp. 147-150.
- Zhou, H. Y., Jiang, L. J., Cao, P. P., Li, J. B. & Chen, X. G. (2015). Glycerophosphatebased chitosan thermosensitive hydrogels and their biomedical applications. *Carbohydrate Polymers*, 117, pp. 524-536.
- Zhu, X., Kim, K. H. & Jeong, Y. (2001). Anodic oxide films containing Ca and P of titanium biomaterial. *Biomaterials*, 22(16), pp. 2199-2206.