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ABSTRACT 

 

 

 

Anodic oxidation has been widely used to modify the surface properties of titanium in 

order to improve the biocompatibility after implantation. In this study, high purity 

titanium foils were exposed in a mixture of β-glycerophosphate disodium salt 

pentahydrate (β-GP) and calcium acetate monohydrate (CA). The parameters for 

anodic oxidation method such as applied voltage (50-350 V), current density(10-70 

mA.cm-2), electrolyte concentration (0.02 M β-GP + 0.2 M CA, 0.04 M β-GP + 0.04 

M CA) , anodising time (5-10 mins), agitation speed (300-1500 rpm), ultrasonic 

amplitude (20-60 μm) and bath temperature (4-100 °C) were varied to investigate the 

impact on the surface properties of titanium. The results showed that surface of the 

titanium foil appeared to be highly porous and demonstrated high crystallinity as well 

as high hydrophilic properties especially when the parameters of anodic oxidation have 

been varied.  This study also proposes two novel methods particularly to accelerate the 

bone-like apatite formation on the anodised titanium in a shorted time: (1) UV 

irradiation during in vitro testing and (2) adding additives in electrolyte. After soaked 

and irradiated with UV in simulated body fluid (SBF) for 7 days, highly crystallised 

bone-like apatite was fully covered on the anodised surface. Interestingly, the smooth 

and partially porous surface of the anodised titanium was observed to be fully covered 

by the bone-like apatite layer, which contradict previous research results. The 

mechanism for growth of bone-like apatite was developed and involved several stages 

from the existence of hydroxyl groups (•OH) under the UV irradiation has been 

disclosed thoroughly. Further, additives such as sulphuric acid (H2SO4), hydrogen 

peroxide (H2O2) and sodium hydroxide (NaOH) were added into the electrolyte were 

also able to accelerate the formation of bone-like apatite because of the presence of 

(•OH), tricalcium phosphate (Ca3O8P2), calcium diphosphate (Ca2O7P2), calcium 

titanate (CaTiO3) or sodium titanate (Na2Ti3O7) on the anodised surface, which able 

to induce the nucleation site of bone-like apatite.   
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ABSTRAK 

 

 

 

Pengoksidaan anod telah digunakan secara meluas untuk mengubahsuai sifat-sifat 

permukaan titanium bagi memperbaiki keserasian bio selepas implitasi. Dalam kajian 

ini, kerajang titanium berketulenan tinggi telah didedahkan di dalam campuran garam 

pentahidrat dinatrium β-gliserofosfat (β-GP) dan kalsium asetat monohidrat (CA). 

Parameter-parameter bagi langkah pengoksidaan anod seperti voltan gunaan (50-350 

V), ketumpatan arus (10-70 mA.cm-2), kepekatan elektrolit (0.02 M β-GP + 0.2 M CA, 

0.04 M β-GP + 0.04 M CA), tempoh penganodan (5-10 mins), kelajuan agitasi (300-

1500 rpm), amplitud ultrasonik (20-60 μm) dan suhu elektrolit (4-100 °C) telah 

diambil kira bagi mengkaji kesan terhadap sifat-sifat permukaan titanium. Permukaan 

kerajang titanium didapati mempunyai liang yang banyak  dan menunjukkan 

kekristilan serta sifat hidrofilik yang tinggi terutama semasa parameter-parameter 

pengoksidaan anod telah diubah-ubah. Kajian ini turut mencadangkan dua kaedah baru 

bagi mempercepatkan pembentukan apatit berbentuk tulang pada titanium yang sudah 

dianodkan dalam masa yang singkat : (1)  penyinaran UV semasa ujian in vitro dan (2) 

peletakan bahan tambahan dalam campuran β-GP + CA. Setelah direndam dan 

didedahkan dengan UV di dalam SBF selama 7 hari, didapati apatit berbentuk tulang 

tinggi kekristilan telah dilitupi pada permukaan titanium yang sudah dianodkan. 

Permukaan titanium tersadur yang licin dan sebahagiannya berliang didapati telah 

dilitupi sepenuhnya dengan lapisan apatit berbentuk tulang bertentangan dengan 

dapatan yang. Mekanisma bagi pertumbuhan apatit berbentuk tulang telah 

dibangunkan dan melibatkan  beberapa peringkat bermula dari kewujudan kumpulan 

hidroksil (•OH) di bawah sinaran UV telah dilampirkan. Bukan itu sahaja, bahan 

tambahan seperti asid sulfuric (H2S04), hidrogen peroksida (H2O2) dan natrium 

hidroksida (NaOH) ke dalam elektrolit juga berkemampuan untuk mempercepatkan 

pembentukan apatit berbentuk tulang disebabkan oleh kewujudan kumpulan hidroksil 

(•OH), trikalsium fosfat (Ca3O8P2), di-kalsium difosfat (Ca2O7P2), kalsium titanat  
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(CaTiO3) atau  natrium titanat (Na2Ti3O7) yang berkebolehan untuk mendorong 

pembentukan tapak penukleusan apatit berbentuk tulang telah dianodkan pada 

permukaan titanium.  
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CHAPTER 1 
 
 
 
 
 
 
 
 
 
 

INTRODUCTION  

 
 
 
 

 

1.1 Background  
 
 
 

Titanium and its alloys are the most popular implant material due to its superior 

properties such as biocompatibility, good mechanical properties, low modulus of 

elasticity, and high corrosion resistance compared to other metals (Liu et al., 2004; 

Geetha et al., 2009 & Mohammad et al., 2012).  There has been increased use of 

titanium, particularly as dental implants, cochlear replacements, screws for 

orthodontic surgery, bone fixation, artificial heart valves, and surgical instruments 

(Patel & Gohil, 2012).  Figures 1.1 and 1.2 show the applications of titanium within 

the biomedical industry.  However, titanium is a bio-inert material and does not 

allow significant bone apposition after implantation (Mohammad et al., 2012).  The 

formation of a thin and passive titanium dioxide (TiO2) layer occurs upon exposure 

of titanium to atmospheric conditions (Park et al., 2013). 

TiO2 is the most popular photocatalytic material due to its outstanding 

properties such as low cost, high stability, high photocatalytic performance, and 

strong oxidation ability (Augugliaro et al., 2010).  Titanium dioxide (TiO2) exists as 

three main crystalline phases, namely anatase, brookite, and rutile, of which rutile is 

the most common and stable form (Diebold, 2013).  The band gaps for anatase and 

rutile TiO2 are 3.20 eV and 3.02 eV, respectively (Hanaor & Sorrell, 2011).  Hence, a 

number of research had been conducted on photocatalytic performance of TiO2 due 
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to its wider band gap energy. Most research has been conducted on the photocatalytic 

properties of anatase and rutile TiO2 compared to those on brookite TiO2 (Diebold, 

2013 & Koelsch et al., 2004).  

 

Figure 1.1: Artificial bone screw (Liu et al., 2004). 

 

Figure 1.2: Artificial hip joint (Liu et al., 2004). 

 

The surface of the implant plays a crucial role in promoting osseointegration. 

Osseointegration is important to ensure the implants integrated into bone for long-

term successful clinical outcome. Properties such as porous, rough, high crystallinity, 

and high hydrophilicity are ideal to enhance the osseointegration process (Elias, 2010; 

Ehrenfest et al, 2010 & Kim et al., 2012).  A number of efforts have been undertaken 

using anodic oxidation, alkaline treatment, gel oxidation, and plasma spraying in 

order to enhance the bioactivity of the titanium (Liu et al., 2010).  Among these, 

anodic oxidation is the simplest and cost-effective method.  The anodic oxidation of 

Titanium 

Titanium 
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titanium is categorised by solid state diffusion in the oxide and/or by dissolution 

deposition in the electrolyte. Anodic oxidation combines electric field-driven metal 

and oxygen ion diffusion to form an oxide layer on the anode surface (Liu et al., 

2004; Kim & Ramaswamy, 2009). This process thus enhances the adhesion and 

bonding, improves crystallinity, and increases the corrosion resistance of the inherent 

oxide layer (Liu et al., 2004).  Post implantation, anodised titanium forms a bone-like 

apatite layer on the surface that bonds to living bone tissue.  The composition and 

structure of bone-like apatite that is formed is very similar to human bone (Kasuga et 

al., 2002). 

 In this study, a mixture of β-glycerophosphate disodium salt pentahydrate and 

calcium acetate monohydrate (β-GP + CA) was used as the electrolyte. For 

biomedical applications, this solution provides phosphorous and calcium ions that 

promote bone tissue growth and thereby enhance the anchorage of the implant to the 

bone (Lee et al., 2015a & Abdullah et al., 2014).   The in vitro bioactivities of the 

implant are normally evaluated by using simulated body fluid (SBF).  The SBF 

solution is prepared by following the recipe of Kokubo & Takadama (2006) in order 

to study the precipitation of bone-like apatite as well as prediction of natural bone 

growth on the implant.   

 This study investigates the effect of processing parameters such as applied 

voltage, current density, anodising time, electrolyte concentration, stirring methods 

during anodic oxidation, bath temperature, UV light treatment condition and type of 

additive in electrolyte to improve the biocompatibility of the material as well as to 

improve the bonding time and reduce the healing time once the material is placed in 

the body. 

 

 

1.2 Problem Statements   
 
 

To date, anodic oxidation of titanium with a mixture of β-GP + CA requires a longer 

time (more that 300 days) to form bone-like apatite on the surface.  This is due to the 

lack of sufficient nucleation sites on the oxide layer (TiO2) for the growth of bone-

like apatite (Abdullah, 2010).  Using a mixture of β-GP + CA as the electrolyte for 
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preparing anodised titanium, Ishizama and Ogino (1995) observed that bone-like 

apatite was not formed on the surface of anodised titanium even after soaking in SBF 

for 300 days.  Han et al. (2008) also noted the absence of bone-like apatite on the 

surface of anodised titanium after soaking in SBF for 90 days, and similar results 

were observed by Huang et al. (2007) and Abdullah (2010) after soaking in SBF for 

50 days and 7 days, respectively. 

  In order to address the issues, this research was conducted to explore the 

effective ways to shorten the time for the growth of bone-like apatite on the surface 

of anodised titanium and improve the biocompatibility of the titanium. The tendency 

of the oxide layer to may exhibit bone-like apatite forming ability could be enhanced 

upon exposure to ultraviolet (UV) irradiation (Han et al., 2008).  Therefore, UV light 

treatment after anodic oxidation and UV irradiation during in vitro testing were 

conducted to elucidate the effect of UV irradiation on the bone-like apatite forming 

ability.  Apart from that, additives such as sulphuric acid (H2SO4), hydrogen 

peroxide (H2O2), acetic acid (C2H4O2) and sodium hydroxide (NaOH) were used in 

order to activate the nucleation sites of bone-like apatite. 

 

1.3 Objectives  
 
 

The present research has the following objectives:  
 

(a) To investigate the anodic oxidation behaviour of titanium surface in a weak 

organic acid mixture (β-glycerophosphate + calcium acetate).  

(b) To propose and access a new approach of in vitro bioactivation of the 

anodised titanium in SBF with UV irradiation. 

(c) To explore the effect of stirring methods and bath temperature during 

anodic oxidation on the surface properties of anodised titanium. 

(d) To investigate the effect of UV light treatment after anodic oxidation on the 

bone-like apatite forming ability of the anodised titanium. 

(e) To characterise the growth of bone-like apatite on the surface of anodised 

titanium in SBF.  

(f) To investigate the effect of additives in mixture of β-GP + CA electrolyte 

on the bone-like apatite forming ability of anodised titanium.   
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1.4 Scope of Study  

 

 

 

The scope of this study is as follows: 

 

(a) Oxide layers on titanium were produced via anodic oxidation in mixtures of 

β-GP + CA. The parameters used are as follow: 

• Applied voltage  : 50-350 V 

• Current density  : 10-70 mA/cm2 

• Anodising time  : 5-10 min 

• Concentration of β-GP + CA : 0.02 M + 0.2 M and 0.04 M +0.4 M  

• Temperature   : ~25°C 

(b) SBF was used to conduct the in vitro testing by following Kokubo's recipe.  

In vitro testing were conducted in three different conditions:  

• Without UV irradiation 

• With short wavelength (254 nm) UV irradiation 

• With long wavelength (365 nm) UV irradiation 

(c) Different stirring methods and varying bath temperatures were used to 

investigate the effect of these parameters on the resultant surface properties 

of the anodised titanium.  The parameters used are as follows: 

• Stirring Method  : Magnetic, Ultrasonic, Water Bath 

• Agitation speed  : 300-1500 rpm 

• Ultrasonic amplitude  : 20-60 μm 

• Bath temperature  : 4-100°C 

(d) UV light treatment was conducted after anodic oxidation.  The parameters 

used for UV light treatment are as follows:  

• pH of solution during UV light treatment  : 1-11 

 **pH of solution was adjusted using H2SO4 and NaOH 

• Duration of UV light treatment    : 4-12 hours 

• Wavelength of UV irradiation    : 365 nm 

(e) UV-treated anodised titanium was soaked in SBF for 7 days.  The samples 

were analysed each day in order to investigate the growth mechanism of 

bone-like apatite.  

(f) Additives were added to the mixture of β-GP + CA electrolyte to explore 
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the effect on bone-like apatite forming ability of anodised titanium.  

Parameters in this part of the study are as follows:  

• Types of additives  : H2SO4, H2O2,C2H4O2 and NaOH  

• Molarity of additive  : 1 M 

• Volume fraction of additives : 12.5-50.0 vol % 

(g) The characterisation of anodised titanium were carried out using the 

following techniques: 

• Digital camera - colourisation  

• Colourimeter - colourisation 

• Field emission scanning electron microscopy (FESEM) - surface 

 morphology 

• Focus ion beam (FIB) - cross sectional image 

• Glancing angle X-ray diffractometer (GAXRD) - surface 

 mineralogy 

• Laser Raman microspectroscopy - surface mineralogy   

• Atomic force microscopy (AFM) - surface topography  

• Fourier transform infrared spectroscopy (FTIR) - structural 

 characteristic  

• Goniometer - surface wettability and surface energy 

• UV-VIS spectroscopy - optical properties 

 

1.5 Significance of Study 
 
 
 

This section briefly describes the significances of this project with regard to helping 

in faster recover from injury and aging, and surface modification technology of the 

biomedical implant. 

 

(a) Injury and aging 

Kovan (2008) reported that the most common causes for bone fracture are 

vehicles accident, severe assault and falls. Meanwhile, Farr & Khosla (2016) 

claimed that aging is the most significant risk factor for osteoporosis and 

fractures. This research can assist in helping in the growth of new bone on the 

implant surface and help the patients experienced bone fracture caused by 
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accident and osteoporosis to replace fractured bone. Anodisation of titanium 

in mixture of calcium acetate and β-glycerophosphate will enhance the 

osseointegration of tissues and bones with the implant titanium and shorten 

the recovery time of patient suffered injury.   

(b) Surface medication technology 

This research can show the potential of anodised titanium for biomedical uses.  

Furthermore, the new approach of in vitro testing under UV irradiation on 

anodised titanium can provide information on the effect of UV irradiation 

during immersion in SBF.   

 

1.6  Novelty of study 
 
 
 

The present work reveals novel methods (UV irradiation and additives addition in β-

GP + CA) to enhance the rate of growth of bone-like apatite on the surface of 

titanium metal anodised in a mixture of β-GP + CA.  

Previous researchers (Ishizama & Ogino, 1995; Huang et al., 2007) observed 

absent of bone-like apatite on anodised surface even after soaking in SBF for more 

than 300 days. Han et al. (2008) and Gao et al. (2013) proved that UV irradiation is 

able to enhance the bioactivity of anodic films. However, better understanding of the 

effect of UV irradiation on growth of bone-like apatite need to be elucidated due to 

absent of studies on investigating the effect of UV irradiation during in vitro testing.   

Therefore, the study was carried out was also able contribute new knowledge 

in biomaterials research field and propose novel methods to accelerate the growth of 

bone-like apatite. In this study, highly crystallised bone-like apatite was fully 

covered on the anodised surface after soaking in SBF with UV irradiation for 7 days. 

Moreover, there are no available study and literature with regards to effect of 

additives addition in β-GP + CA electrolyte on bone-like apatite forming ability of 

anodised titanium. In this study, H2SO4, H2O2, C2H4O2 and NaOH were added in 

mixture of β-GP + CA. It was found that addition of additives in β-GP + CA 

electrolyte is capable to accelerate the formation of highly crystallised bone-like 

apatite on anodised surface in 7 days only. 



 
 
 
 
 

 

CHAPTER 2 
 
 
 
 
 
 
 
 
 
 

LITERATURE REVIEW 

 
 
 
 

 

2.1 Introduction  
 
 
 

Titanium and its alloys have been widely used in biomedical applications as implant 

materials due to its good biocompatibility with hard tissue.  However, titanium and 

its alloys do not facilitate osseointegration since the surface of machined titanium is 

smooth, low in crystallinity, hydrophobic, and poor in bioactivity.  Consequently, 

machined implants do not promote significant better bone apposition (Liu et al., 

2004).  Therefore, it is necessary to conduct surface modification though anodic 

oxidation in order to produce micro-rough, highly crystalline, hydrophilic, and 

bioactive surfaces.  This particular mechanism will enhance the process of 

osseointegration.  Anodic oxidation is a simple and low-cost surface modification 

method for titanium-based implants and has been widely used for dental implants and 

medical fastener (Kim & Ramaswamy, 2009).  In vitro and in vivo tests proved that 

anodised titanium implants showed a considerable improvement in their 

osseointegration capability as compared to the machined titanium implants (Kim & 

Ramaswamy, 2009).  
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2.2 Biomaterials 

 

 

2.2.1 Overview of Biomaterials  
 
 
 

Biomaterials can be defined as “any substance (other than a drug) or combination of 

substances, synthetic or natural in origin, which can be used for any period of time, 

as a whole or as a part of a system which treats, augments, or replace any tissue, 

organ, or function of the body” (Boretos & Eden, 1984). 

 Biomaterials in the form of implants are widely used to replace, repair and 

restore the damaged organs or tissues and thus improve the life quality of the patient.  

For blood contact applications, biomaterials are inserted into blood vessels or devices 

that are permanently implanted to remove and return the blood from the body.  For 

soft tissue applications, biomaterials are implanted to augment or redefine the 

damaged tissue.  On the other hand, for orthopaedic and dental applications, 

biomaterials are implanted to repair the defective parts of the body (Nascimento et 

al., 2007).  Figure 2.1 presents the human anatomy and organs where biomedical 

materials are used.  Biomaterials are very important for improving the quality and 

longevity of human life (Manivasagam et al., 2010). 

 Basically, biomaterials can be divided into three categories which are metals, 

ceramics and polymers.  Each biomaterials has its own unique functions whether for 

hard or soft tissue implants. The selection of biomaterials is important in order to 

provide true biological and mechanical match for living tissue. Table 2.1 shows the 

comparison among metals, ceramics and polymers biomaterials. Table 2.2 shows the 

biomedical application of metals, ceramics and polymers biomaterials (Bauer, 2013).  
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Figure 2.1: Implants in the human body (Patel & Gohil, 2012). 

 

Table 2.1:  Advantages and disadvantages of metals, ceramics and polymers for 

biomedical applications (Nallaswamy, 2008) 

Materials Advantages Disadvantages 

Metals 
High strength, high ductility 

biocompatibility,  

Low corrosion resistance, may disrupt 

the interfacial attachment. 

Ceramics 

Biocompatibility, minimal thermal and 

electrical conductivity; modulus of 

expansion, colour and chemical 

composition are similar to bone.  

Low mechanical, tensile and shear 

strength under fatigue loading, low 

attachment strengths for some coatings 

with the substrate interface.   

Polymers 

Low term experience, biocompatibility, 

ability to control properties through 

compositional means 

Porous polymers undergo elastic 

deformation and lead to closing and 

opening of regions intended for tissue 

growth, difficult to clean contaminations 
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Table 2.2: Example of metal, ceramic, and polymer biomaterial use for biomedical 

applications (Bauer, 2013) 

No Material Medical applications 

Metals 

1 Cobalt – chromium alloys 
Artificial heart valves, dental prosthesis, orthopaedic 

fixation plates, artificial joint components, vascular stents 

2 Stainless steel 
Dental prostheses, orthopaedic fixation plates, vascular 

stents 

3 Titanium alloys 

Artificial heart valves, dental implants, artificial joint 

components, orthopaedic screws, pacemaker cases, vascular 

stents 

4 Gold or platinum Dental fillings, electrodes for cochlear implants 

5 Silver–tin–copper alloys Dental amalgams 

Ceramics 

6 Aluminium oxides 
Orthopaedic joint replacement, orthopaedic load-bearing 

implants, implant coatings, dental implants 

7 Zirconium oxides Orthopaedic joint replacement, dental implants 

8 Calcium phosphates 
Orthopaedic and dental implant coatings, dental implant 

materials, bone graft substitute materials 

9 Bioactive glasses 

Orthopaedic and dental implant coatings, dental implants, 

facial reconstruction components, bone graft substitute 

materials, bone cements 

Polymers 

10 Polyethylene Orthopaedic joint implants, syringes 

11 Polypropylene Heart valves, sutures, syringes 

12 Polydimethylsiloxane 
Breast implants, contact lenses, knuckle replacements, heart 

valves, artificial hearts 

13 Polyethyleneterephthalate Vascular grafts, sutures, blood vessels 

14 Polyethyleneglycol Pharmaceutical fillers, wound dressings 

15 Polytetafluoroethylene Vascular grafts, sutures 

16 Collagen 
Orthopaedic repair matrices, nerve repair matrices, tissue 

engineering matrices 

17 Hyaluronic acid Orthopaedic repair matrices 

18 Elastin Skin repair matrices 

19 Fibri Haemostatic products, tissue sealants 

20 Chitosan Wound dressing 

21 Alginate Wound dressing 
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2.2.2 Important Properties of Biomaterials for Implants 
 
 
 
The biomaterials used for implant must possess important properties such as 

biocompatibility, good mechanical properties, and non-toxicity for a long term usage 

in human body without any negative effects.  Table 2.3 briefly describes the 

important properties of biomaterials (Patel & Gohil, 2012).  

 

Table 2.3: Important properties of biomaterials for use as implants (Patel & Gohil, 

2012; Basu & Nath, 2009) 

Properties  Brief Description 

Host Response  Response of the host organism either local or systemic to the 

implanted material.  There are 3 types of host response:  

a) Bioinert / biotoletant 

 Unable to induce any interfacial biological bond between 

implant and bone.  

 Examples:  alumina, titanium and zirconia. 

b) Bioactive 

 Able to attach directly with body tissues and form chemical 

and biological bonds during early stages of the post 

implantation period.  

 Examples:  45S5 bioglass and calcium phosphates. 

c) Bioresorbable  

 Gradually resorbed before they finally disappear and are 

totally replaced by new tissue in vivo.  

 Examples:  bone cement and tricalcium phosphate.  

Biocompatibility  Ability of a material to perform without any adverse host response in 

a specific application implies harmony with the living system. 

Biofunctionality  Ability to withstand load transmission and stress distribution, 

allowing for movement, controlling of fluid flow of blood, ability to 

provide space filling, electrical stimuli, light and sound transmission. 

Functional Tissue 

Structure and Pathobiology 

Ability to govern the structure of normal and abnormal cells, tissues 

and organs. 

Non - toxicology Toxicity of biomaterials will cause cell and human death 

Sufficient Mechanical 

Properties 

Biomaterials should possess high tensile strength, yield strength, 

elastic modulus, surface finish, creep, hardness and be easy to 

manufacture 

High Corrosion Resistance  Avoid toxic ions 

High Wear Resistance Avoid implant loosening. 
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2.3 Metallic Implant Materials 

 

 

2.3.1 Overview of Metallic Implant Materials   

 
 
Metals had been used as implant materials for more than 100 years when Lane used 

metal plate to fix the bone fracture.  However, metal implants suffer from corrosion 

and strength problems (Lane, 1895).  In the 1920s, stainless steel was used for these 

applications (Hermawan et al., 2011).  In 1932, cobalt-based alloys such as Vitallium 

were introduced for biomedical applications (Elias et al., 2008a).  Titanium and its 

alloys were introduced in 1950s and a number of modification methods were applied 

to alter the alloy composition and surface properties in order to improve the 

functionality and implant duration in the human body (Geetha et al., 2009).  Apart 

from that, biodegradable metals have been developed to meet the requirements of 

biomedical applications.  Biodegradable metals permit the implants to degrade in 

biological environments.  In term of mechanical properties, biodegradable metals are 

more suitable for internal bone fixation compared to the biodegradable polymers 

(Hermawan & Mantovani, 2009).  Table 2.4 shows the examples of metallic 

biomaterials used for implants and their mechanical properties.    

 

Table 2.4: Comparison of mechanical properties of commonly used metals and its 

alloys for biomedical applications (Hermawan et al., 2011; Nag & Banerjee, 2012) 

Metallic Biomaterial 
Young’s Modulus 

(GPa) 

Yield Strength 

(MPa) 

Ultimate Tensile 

Strength (MPa) 

Stainless Steel 200 170-750 465-950 

Co-Cr-Mo 200-230 275-1585 600-1795 

Commercially pure Ti 105 692 785 

Ti-6A1-4V 110 850-900 960-970 

Iron – annealed plate 200 150 210 

Fe35Mn alloy, powder N/A 235 550 

Magnesium, annealed 

sheet 
45 90 160 

WE43 magnesium 

alloy, temper T6 
44 170 220 
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2.3.2 Titanium and its Alloys 
 
 

Titanium and its alloys were widely used as implant materials due to its high 

biocompatibility and high corrosion resistance.  The Young’s modulus of titanium 

and its alloys is only half of that of stainless steel or Co-Cr alloys.  However, the 

properties of titanium are closer to cortical bones (Hanawa, 2008.).  The applications 

of titanium and its alloys as implants includes cochlear replacements, bone and joint 

replacements, dental implants for tooth fixation, screw parts for orthodontic surgery, 

bone fixation like nails, screws and plates, artificial heart valves and surgical 

instruments (Patel & Gohil, 2012).  Table 2.5 shows the mechanical properties of the 

titanium and its alloys for implants. 

 

Table 2.5:  Comparison of mechanical properties among titanium and its alloys 

(Long & Rack, 1998) 

Alloy Designation Microstructure 

Young’s 

Modulus 

(GPa) 

Yield Strength 

(MPa) 

Ultimate 

Tensile 

Strength 

(MPa) 

Commercially pure Ti α 105 692 785 

Ti-6A1-4V α/β 110 850-900 960-970 

Ti-6Al-7Nb α/β 105 921 1024 

Ti-5Al-2.5Fe α/β 110 914 1033 

Ti-5Al-.5Fe Metastable β 74-85 1000-1060 1060-1100 

Ti-15Mo-5Zr-3Al Metastable β 75 870-968 882-975 

 Aged β + α 88-113 1087-1284 1099-1312 

Ti-15Mo-2.8Nb-3Al Metastable β 82 771 812 

 Aged β + α 100 1215 1310 

Ti-13Nb-13Zr α/β 79 900 1030 

Ti-15Mo-3Nb-0.3O 

(21SRx) 

Metastable β  + 

silicides 
82 1020 1020 

Ti-35Nb-7Zr-5Ta Metastable β 55 530 590 

Ti-35Nb-7Zr-5Ta-0.4O Metastable β 66 976 1010 

 

Among all the titanium and its alloys, commercially pure Ti and Ti-6Al-4V 

are the most commonly used materials for biomedical and implant applications.  

Although Ti-6Al-4V has high reputation for biocompatibility and corrosion 
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resistance, it can release ions such as aluminium (Al) and vanadium (V) which are 

toxic and can cause long term health problems such as Alzheimers disease, 

neuropathy, and ostemomalacia.  These problems affect the long-term use of Ti-6Al-

4V for implant applications (Geetha et al., 2009). 

 On the other hand, commercially pure titanium (Cp Ti) can be considered as 

the best biomaterial among titanium and its alloys owing to Cp Ti exhibiting the best 

biocompatible metallic surface.  This is due to the build-up of a stable and inert oxide 

layer.  Apart from that, Cp Ti also demonstrates good physical properties such as low 

level of electronic conductivity, high corrosion resistance, thermodynamic state at 

physiological pH value, low ion formation tendency in aqueous environments, and 

isoelectric point of the oxide of 5-6 (Elias et al., 2008a).  Generally, Cp Ti can be 

classified into four types which are Cp Ti Grade 1, Cp Ti Grade 2, Cp Ti Grade 3 and 

Cp Ti Grade 4.  Among all types of Cp Ti, Cp Ti Grade 4 has highest ultimate tensile 

strength and yield strength at 1.0% offset but lowest elongation.  The mechanical 

properties for different types of Cp Ti are presented in Table 2.6. 

 

Table 2.6: Mechanical properties of different grade of Cp Ti (ZAPP Materials 

Engineering, 2012) 

Types of Cp Ti 
Ultimate Tensile 

Strength (MPa) 

Yield Strength at 1.0% 

Offset (MPa) 
Elongation (%) 

Cp Ti Grade 1 290-410 ≥ 200 30 

Cp Ti Grade 2 390-540 ≥ 270 22 

Cp Ti Grade 3 460-590 ≥ 350 18 

Cp Ti Grade 4 540-740 ≥ 410 16 

 

 

2.3.3 Properties of Titanium Implants 
 
 

It is well known that titanium and its alloys are one of the popular biomaterials for 

implants application due to its properties such as biocompatibility, osseointegration, 

good mechanical properties, low modulus of elasticity, and high corrosion resistance.  

Nowadays, there is an increasing trend in using titanium implants especially for 

dental implants and prostheses (Özcan & Hämmerle, 2012).  The important 
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properties of titanium and its alloy for biomedical application are presented in Table 

2.7. 

Table 2.7: Important properties of titanium in biomedical applications (Mohammed 

et al., 2012; Oldani & Dominguez, 2012; Ogawa & Nishimura, 2003; Sumner & 

Galante, 1992; Lilley et al., 1992) 

Properties  of 

titanium and its alloys 
Description 

Biocompatibility   Cp TI, α + β and β type 

 Non-toxic 

 Hydrated titanium oxide enhanced the growth of calcium 

phosphorous compounds and accelerated the osseointegration 

Osseointegration  Able to integrate well with adjacent bone 

 Success rate ≈ 65 % 

Mechanical Properties  Able to withstand a variety of loads during physical activities 

 High strength, high ductility, high fracture toughness, crack 

resistance, high bending strength, high fatigue resistance, and 

admission strain (the ratio of yield strength to modulus of 

elasticity. 

 Suitable for load bearing or non-load bearing applications. 

Low Modulus of 

Elasticity  

 Not very high of compared to human bone 

 Adequate mechanical stress on the adjacent bone can be 

avoided due to the low modulus of elasticity. 

 Reduce the probability of bone cells damage 

Corrosion Resistance   Protective TiO2 surface layer 

 

 

2.3.4 Application of Titanium and its Alloy in Biomedical Industry 
 
 

Titanium and titanium alloys are widely used in biomedical devices and components, 

especially as hard tissue replacements and for cardiac and cardiovascular 

applications.  Figures 2.2 to Figure 2.5 show the applications of titanium and its 

alloys in biomedical applications.  
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Figure 2.2:  Artificial heart value (Liu et al., 2014). 

 

 

Figure 2.3:  Artificial vascular stents (Liu et al., 2014). 

Titanium 

Titanium 
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Figure 2.4:  Bone screw and bone plate (Liu et al., 2014). 

 

 

Figure 2.5:  Commercial dental implant (Elias et al., 2008a). 

 

Titanium 

Titanium 
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2.4 Titanium Dioxide 

 

 

2.4.1 Overview of Titanium Dioxide 
 
 

Titanium is an oxide of titanium and is also known as titanium (IV) oxide, titania, 

titanium white, E171 in food colouring and pigment white 6 in building paints. The 

photocatalytic property of TiO2 was first discovered when used as a white pigment in 

buildings since the pigment bleached under solar irradiation.  Since then TiO2 has 

been widely used in many industrial applications (Lan et al., 2013). 

 

 

2.4.2 Polymorphs of Titanium Dioxide 
 
 
 

The oxide layer on titanium is a passive film and normally made up of two forms: 

amorphous or low crystalline stoichiometric TiO2.  Titanium dioxide has three 

naturally occurring crystallographic forms which are anatase, brookite and rutile.  

Rutile is the most common and stable form and only anatase and rutile are 

manufactured on a large scale.   

 Rutile structure consists of a slightly distorted hexagonal close packing of 

oxygen atoms with the titanium atoms occupying half of the octahedral interstices.  

On the other hand, anatase and brookite are both based on cubic packing of the 

oxygen atoms with octahedral coordination (Rouquerol et al., 2013).  It is reported 

that anatase is the most active, rutile is less active, and brookite is not active at all for 

photocatalytic applications (Liu, 2012).  Anatase TiO2 is generally accepted to be a 

better photocatalyst than rutile and brookite.  However, rutile TiO2 is the most 

thermodynamically stable phase among all the titanium dioxide forms (Mantz, 2010). 

Figures 2.6 to 2.8 demonstrate the crystal lattice structures of rutile, anatase, and 

brookite TiO2.  Table 2.8 compares the properties between rutile, anatase, and 

brookite forms of TiO2. 
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Figure 2.6: Structure of rutile TiO2 (Winkler, 2003). 

 

Figure 2.7: Structure of anatase TiO2 (Winkler, 2003). 

 

Figure 2.8: Structure of brookite TiO2 (Winkler, 2003). 
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Table 2.8: Properties of rutile, anatase, and brookite TiO2 (Winkler, 2003) 

Properties Rutile TiO2 Anatase TiO2 Brookite TiO2 

Density (g/cm3) 4.2 – 4.3 3.8 – 3.9 3.9 – 4.1 

Point group according to Schonflies D4h D4h D2h 

a (nm) 0.4594 0.3785 0.9184 

b(nm) 0.4594 0.3785 0.5447 

c (nm) 0.2958 0.9514 0.5245 

Volume of the elementary cell (nm3) 62.07 136.25 257.38 

Molar volume (cm3/mol) 18.693 20.156 19.377 

Moh’s hardness 6.5 – 7 5.5 – 6.0 5.5 – 6.0 

Melting point (oC) 1830 – 1850 
Transforms to 

rutile 

Transforms to 

rutile 

 

 

2.4.3 Photocatalytic Properties of Titanium Dioxide 

 
 
 
The Singh (2008) defined photocatalysis as a process in which light is used to 

activate a substance, the photocatalyst, which modifies the rate of a chemical 

reaction without being involved itself in the chemical transformation.  Photocatalysis 

can be classified as an advanced oxidation process.  Photocatalysis in the presence of 

an irradiated semiconductor has proven to be effective in the field of environmental 

remediation.  Semiconductors are superior photocatalyst due to it favourable 

combination of electronic structure, light absorption properties, charge transport 

characteristics, and long lifetimes.  In fact, the irradiation of a semiconductor oxide 

with light will produce hydroxyl radicals on the catalyst surface (Augugliaro et al., 

2010).  

Photocatalysts are widely used in common industrial applications such as 

photocatalytic water splitting, purification of pollutants, photocatalytic self-cleaning, 

photocatalytic antibacterial, photo-induced super hydrophilicity, and photosynthesis 

(Lan et al., 2013).  To date, researchers in the photocatalysis field have clarified the 

following advantages of photocatalysis (Kaneko & Okura, 2002). 

 

(a) Multiple process such as reduction and oxidation, proceed successively in a 

one pot reaction  

http://www.amazon.ca/s?_encoding=UTF8&field-author=Masao%20Kaneko&search-alias=books-ca
http://www.amazon.ca/s?_encoding=UTF8&field-author=Ichiro%20Okura&search-alias=books-ca
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(b) Catalysts can be separated and reused easily 

(c) The reactions proceed at ambient temperature under atmospheric pressure 

(d) Unlike ordinary organic synthetic procedures, water can be used as a 

solvent and this enables the use of water-soluble organic substrates  

(e) Sustainable and environmental friendly chemical processes  

(f) Inexpensive 

(g) Minimal infrastructural requirements 

  

 Semiconductors such as titanium oxide (TiO2), zinc sulphide (ZnS), strontium 

titanate (SrTiO3), zinc oxide (ZnO), zirconium dioxide (ZrO2), cadmium sulphide 

(Cds), molybdenum disulfide (MoS2), iron (III) oxide (Fe2O3), tungsten trioxide 

(WO3), has been widely used as photocatalysts.  In fact, the photocatalytic properties 

of the photocatalyst is strongly dependent on the band gap, energy level locations, 

mean life time, and mobility of electron and holes, light absorption coefficient, 

nature of the interface, as well as the method of preparation.  Figure 2.9 shows the 

band gaps of different semiconductors (Augugliaro et al., 2010).  

An ideal photocatalyst should present the following characteristics 

(Augugliaro et al., 2010):  

(a) High reaction rate with wider band bad  

(b) Photostability 

(c) Chemical and biological inactivity 

(d) Low cost 

(e) Non-toxic and harmless 
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Figure 2.9: Band gap for commonly used photocatalysts (Augugliaro et al., 2010). 

The photocatalyst will produce pairs of electrons and holes after it absorbs 

the UV irradiation from the sunlight or illuminated light source.  The electrons in the 

valance band of the photocatalyst become energetic after irradiation by UV.  The 

electron will be excited to the conduction band and thus creating negative electron (e-) 

and positive hole (h+) pairs.  The electrons and holes can recombine and can release 

the absorbed heat without any chemical effects.  The valance band hole is strongly 

oxidising.  However, the conduction band electron is strongly reducing.  The band 

gap is the energy difference between the valance band and conduction band.  The 

positive hole of the photocatalyst can react with water molecules to form hydrogen 

gas and hydroxyl radicals (•OH).  The •OH radicals are able to rapidly attack the 

pollutants at the solution surface.  On the other hand, the negative electrons will react 

with the oxygen molecule and form superoxide anions (O2
-).  The process will 

continue as long as there is irradiation (Augugliaro et al., 2010 & Al-Rasheed, 2005).  

Figure 2.10 shows the simplified mechanism for the photocatalytic process of a 

semiconductor catalyst. 
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Figure 2.10: Mechanism of the photocatalytic process (re-illustrated from Al-

Rasheed, 2005). 

 The equations 2.1 to 2.10 show chemical reactions that occur during the 

photocatalytic process at the TiO2-water interface.  Generally, •OH, •O2
- and H2O2 

are the key reactive oxygen species (ROS) are formed during the photocatalytic 

process (Augugliaro et al., 2010 & Cai, 2013). 

 TiO2 reacts with UV light and produces pairs of free electrons (e-
(CB)) and 

positively charged holes ( h+
(VB)) as shown in Equation 2.1. 

TiO2 + hv → TiO2 (e
-
(CB) + h+

(VB))               (2.1) 

 

 Equation 2.2 and Equation 2.3 show the water molecular or hydroxide ions 

trapped in the positively charged hole and form the hydroxyl radicals (•OH)  

H2O + h+
(VB) → •OH + H+                 (2.2) 

OH- + h+
(VB) → •OH                 (2.3) 

 

 The Ti4+ reacts with the conduction band electron and is reduced to Ti3+ as 

shown in equation 2.4. 

Ti4+ + e-
(CB) → Ti3+                    (2.4) 
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