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SUMMARY

In this paper, a three-dimensional smooth particle hydrodynamics (SPH) simulator for modeling
grain scale fluid flow in porous media is presented. The versatility of the SPH method has driven
its use in increasingly complex areas of flow analysis, including, the characterization of flow through
permeable rock for both groundwater and petroleum reservoir research. SPH provides the means to
model complex multi-phase flows through such media however acceptance of the methodology has been
hampered by the apparent lack of actual verification within the literature, particulary in the three-
dimensional case. In this paper, the accuracy of SPH is addressed via a comparison to the previously
recognized benchmarks of authors such as Sangani and Acrivos (1982), Zick and Homsy (1982) and
Larson and Higdon (1989) for the well defined classical problems of flow through idealized two- and
three-dimensional porous media. The accuracy of results for such low Reynolds number flows is highly
dependent on the implementation of no-slip boundary conditions. A new, robust, and numerically
efficient, method for implementing such boundaries in SPH is presented. Simulation results for friction
coefficient and permeability are shown to agree well with the available benchmarks. Copyright c©
2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Understanding the behavior of fluids as they flow through permeable rock is important
to a variety of contemporary problems in earth science and engineering. Oil recovery,
groundwater contamination and carbon sequestration represent a few such areas where
improved understanding of pore scale flow may result in significant enhancements. A variety of
existing numerical techniques are capable of simulating porous media to determine important
properties such as permeability, relative permeability, capillary pressure, etc (eg. Stokes solvers
[1, 2, 3, 4], finite difference [5, 6, 7], finite element [6, 8], lattice-Boltzmann [9], volume of fluid
[10], level-sets [11]). Few of these methods, however, have been demonstrated to accurately
simulate the complex 3D multi-phase immiscible and miscible fluid behaviors characteristic of
problems in geological flow. For problems where the physics at the grain scale is dominated by
phenomena such as surface tension and wettability, simulating the effect rather than the cause
can limit the insight which can be achieved. Smooth particle hydrodynamics (SPH) is one of
the few numerical methods capable of realistically modeling actual phase interactions, however,
the little amount of verification work published on the method has hindered its acceptance.

SPH is a mesh-free Lagrangian particle method first proposed for astrophysical problems by
Lucy [12] and Gingold and Monaghan [13] and now widely applied to fluid mechanics problems
[14, 15, 16, 17, 18, 19] and continuum problems involving large deformation [19, 20] or brittle
fracture [21]. A key advantage of particle methods such as SPH (see also dissipative particle
dynamics (DPD) [22, 23]) is in their ability to advect mass with each particle, thus removing
the need to explicitly track phase interfaces for problems involving multiple fluid phases or
free surface flows. There is a computational price for managing free particles, however, in
many circumstances this expense can be justified by the versatility with which a variety of
multi-physics phenomena can be included. Additionally, new parallel hardware architectures
such as multi-core [24] are removing many of the barriers which have traditionally limited the
practicality of high resolution numerical techniques like SPH.

While the ability to simulate a diverse range of complex phenomena with SPH represents a
key advantage over alternate methods, the accuracy of such a method must be supported by
verifying tests on more simple, single-phase benchmark problems. The performance of SPH in
the reproduction of one-dimensional flow characteristics have been well defined in the literature
(Takeda et al [25], Morris et al [26], Sigalotti et al [27]). Additionally, two-dimensional flows
past systems such as periodic arrays of cylinders (Morris et al [26], Zhu et al [16], Zhu and
Fox [28]) and more complex flow obstructions (Zhu and Fox [28]) have demonstrated good
agreement with conventional numerical and analytical solutions to the same problems. For the
case of three-dimensional flow, however, verification of SPH remains largely untreated within
the published literature. Ordered sphere packs are an idealized three-dimensional porous media
and modeling flow through such media has commonly been used as a standard test problem
to verify the three-dimensional accuracy of a numerical method [1, 2, 3, 4]. Simulating such
a system using SPH will go a long way towards verifying the method and validating its more
advanced capabilities.

In what follows, we first present some of the fundamentals of the exact form of SPH used
in this work. The development of a new method for enforcing no-slip boundary conditions
in SPH is then detailed. Following this, results are presented for flow simulations of several
well defined one-, two- and three dimensional flow problems as a means to verify both the
new no-slip boundary method, and the SPH method itself. It will be shown that the results
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SPH SIMULATIONS OF FLOW THROUGH POROUS MEDIA 3

demonstrate excellent agreement with previously published benchmarks.

2. SMOOTH PARTICLE HYDRODYNAMICS

Comprehensive reviews of smooth particle hydrodynamics theory have been published by
various authors including Benz [29], Monaghan [14, 17] and Liu and Liu [19]. In what follows
we provide a brief overview of the fundamentals of the specific form of SPH used in this work
and its implementation†. This is followed by the development of a new methodology for no-slip
boundary conditions for use in low Reynolds number flow simulations.

2.1. Fundamentals

In SPH, a fluid volume is discretized it into a set of disordered ‘integration points’ or
‘particles’. Those particles then advect with the fluid velocity in a Lagrangian sense. SPH field
approximations for quantities such as density, velocity, etc develop from the exact integral
interpolant of a field

A (r) =
∫

A (r′) δ (r − r′) dr′ (1)

where A (r) is a field quantity determined at the position vector r, while δ is the Dirac delta
function.

Equation (1) defines a value at some specific location, r, as being a singularity on a known
continuous field. Equation (1) can be approximated by

A (r) =
∫

A (r′) W (r − r′, h) dr′ (2)

where W (r − r′, h) is referred to as an interpolation kernel or smoothing function and now
A (r) is determined through a weighted interpolation of surrounding field values. This weighting
is characterized by the smoothing length, h, and should decay with distance from r.

For consistency, the kernel W typically approximates a Gaussian satisfying the conditions∫
W (r − r′, h) dr′ = 1 (3)

and
lim
h→0

W (r − r′, h) = δ (r − r′) (4)

Due to the nature of a Gaussian function, the contribution of field values outside of some
finite support domain tend toward zero. For numerical efficiency it is convenient to impose a
compact support on the smoothing function where only values within some specified bound

W (r − r′, h) = 0 when |r − r′| > κh (5)

are considered to have non-negligible effect, see Fig. 1. The parameter κ is chosen to ensure
that an adequate proportion of the function resides in each support domain to ensure the error
associated with such an assumption is small.

†The reader is referred to the aforementioned works for a more definitive overview.
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4 D. W. HOLMES, J. R. WILLIAMS AND P. TILKE

Figure 1. The compact support imposed on an otherwise infinite Gaussian support domain.

By discretizing the fluid volume into a finite number of disordered integration points or
‘particles’, (2) can be approximated by the summation interpolant

Ai =
∑

j

mj

ρj
AjW (ri − rj , h) (6)

where smoothing length h is generally set as the initial particle spacing, mj and ρj are the mass
and density of particle j at position rj , and the fraction mj/ρj accounts for the approximate
volume of space each particle represents to maintain consistency between the continuous (2)
and the discrete (6) forms of the field expression. Correspondingly, the gradient of A is given

∇Ai =
∑

j

mj

ρj
Aj∇iW (ri − rj , h) (7)

Fig. 2 illustrates a smoothing function for a single integration point in space, a.
Authors such as Tartakovsky and Meakin [30, 18] and Hu and Adams[31] have suggested

a variation to (6) and (7) where a particle number density term, ni is used in place of ρi/mi

where
ni =

ρi

mi
(8)

and now

Ai =
∑

j

Aj

nj
W (ri − rj , h) (9)

∇Ai =
∑

j

Aj

nj
∇iW (ri − rj , h) (10)

Applying (9) to the particle number density itself, ni can be given in terms of the smoothing
function as

ni =
∑

j

W (ri − rj , h) (11)

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2000; 00:1–6
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SPH SIMULATIONS OF FLOW THROUGH POROUS MEDIA 5

Figure 2. The support domain and smoothing function in 2D for some particle a.

and similarly, mass density of each particle can be given

ρi = mini

= mi

∑

j

W (ri − rj , h) (12)

This expression conserves mass exactly, much like the summation density approach of
conventional SPH [19].

Use of a particle number density variant of the SPH formulation is typically motivated by
the need to accommodate multiple fluid phases of significantly differing densities [30, 18, 31].
Use of (9) and (10) eliminates the artificial surface tension effects observed by Hoover [32]
and removes density discrepancies which would otherwise manifest at phase interfaces. In
this paper consideration of multi-phase flow has been left to future publication, however, the
particle number density formulation has been retained because of other advantages which will
become apparent later in Section 2.2.

Determination of particle velocity is achieved through discretization of the Navier-Stokes
conservation of linear momentum equation. In this work, a modified version of the expression
provided by Morris et al [26] and used by Tartakovsky and Meakin [30] has been used, where

dvα
i

dt
= − 1

mi

N∑

j=1

(
Pi

n2
i

+
Pj

n2
j

)
∂Wij

∂rα
i

+
1

mi

N∑

j=1

(µi + µj)
ninj

(
vα

i − vα
j

) rβ
i − rβ

j∣∣∣rβ
i − rβ

j

∣∣∣
2 ·

∂Wij

∂rβ
i

+ Fα
i (13)
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6 D. W. HOLMES, J. R. WILLIAMS AND P. TILKE

where Pi is the pressure, µi is the dynamic viscosity, vi is the particle velocity and F i is the
body force applied on the ith particle. Indices α and β refer to vector components and, β
corresponds to an Einstein’s summation on the right of the expression.

An equation of state proposed by Morris and co-workers [26, 33, 34] has been used to
determine particle pressure at each time step via

Pi = c2 (ρi − ρ0) (14)

where ρ0 is the fluid reference density while c is the artificial sound speed. Following Morris
et al [26], the artificial sound speed term, c, should be chosen according to

c2 ' Max
(

ρ0V
2
0

∆ρ
,
ρ0νV0

L0∆ρ
,
ρ0 |F |L0

∆ρ

)
(15)

where ν is the kinematic viscosity (ν = µ/ρ0), V0 and L0 are the velocity and length scales
and |F | is the magnitude of body force per unit mass. ∆ρ is the maximum allowed amount of
density fluctuation (generally chosen as being around 1%) meaning that c will scale with the
degree of incompressibility of the system.

In this work, we integrate the differential rate equation (13) using a conventional Leapfrog
[35] numerical integration scheme. A stable solution can be achieved by enforcing the following
conditions on the time step length [19, 16, 36]

∆t ≤ 0.125
h2

ν
(16a)

∆t ≤ 0.25
h

3c
(16b)

∆t ≤ 0.25 min
i

(h/3 |F i|)1/2 (16c)

Here, |F i| is the magnitude of force on a particle.
A quintic spline kernel function has been used following Morris [26, 37] such that, given

R = |ri − rj |/h, then

W (R, h) = αd ×





(3−R)5 − 6 (2−R)5 + 15 (1−R)5 0 ≤ R < 1
(3−R)5 − 6 (2−R)5 1 ≤ R < 2
(3−R)5 2 ≤ R < 3
0 3 ≤ R

(17)

where αd = 120/h, αd = 7/(478πh2), αd = 3/(359πh3) in 1, 2 and 3 dimensions respectively.

2.2. Boundary Treatment

Typically, for the permeable rock applications of most interest in this research, fluid flow will
occur in the range of low Reynolds numbers. In such circumstances, a no-slip condition exists
at solid boundaries and must be enforced within a simulation to achieve accurate flow profiles.
Libersky et al [38] first suggested the use of ghost particles for representing SPH boundaries.
Such particles are a reflection of real particles through the boundary and an approximation
to no-slip conditions can be achieved by designating the ghost particle velocities as being
inverse to that of the corresponding real particle. A method developed by Takeda et al [25],

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2000; 00:1–6
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SPH SIMULATIONS OF FLOW THROUGH POROUS MEDIA 7

and later used by Sigalotti et al [27], applies a similar theory whereby the velocities of a
zone of imaginary boundary particles are determined as a scaled inverse of that of their real
counterparts. The relative distances between imaginary and real particles and the boundary
are used to determine this scaling. Making further improvements to the method of Takeda
et al, Morris et al [26], and later Zhu et al [16], presented what has perhaps become the
unofficial standard in SPH no-slip boundary methods. Their method was shown to be highly
accurate, particularly for low Reynolds number flows. Later work by Tartakovsky and co
workers [18, 36, 39] cited the artificial velocity method of Morris et al as being superior in
accuracy to alternative methods, but computationally expensive and, instead, opted for a
simpler bounce-back boundary condition.

The computational expense of the method of Morris et al [26] stems from the need to
determine a tangent to the boundary surface for each fluid particle‡. This requires that either
the exact boundary surface be known, or some alternative surface recognition procedure be
carried out (such as has been used by Morris in the determination of surface tension effects
[34]). Superficial boundary particle velocities are then determined from

vB = −dB

dA
vA (18)

where dA and dB are the normal distances from the tangent to particle A and boundary particle
B respectively. Generally dA is limited to avoid overly large boundary velocities by a condition
such as dA = max(dA,

√
3h/4) [16]. For the general case of complex 3D and/or deformable

pore geometries, it is computationally unrealistic to maintain actual boundary surfaces and,
as such, complex calculations are necessary to establish boundary tangents dynamically.

It is at this point where the use of the particle number density variant of SPH proves to be
a particular advantage. To eliminate the need to determine boundary tangents, we introduce
a state specific particle number density, n̄i, where

n̄i,φ =
∑

j

δφθW (ri,φ − rj,θ, h) (19)

and where φ and θ indicate the state of respective particles (i.e. fluid or boundary). δφθ is the
Kronecker delta where

δφθ =

{
1 φ = θ

0 φ 6= θ
(20)

From (19) and (20) it is evident that only kernel values corresponding to particles of the same
sate as particle i will contribute to n̄i. By comparing this state specific particle number density,
n̄i, with the actual particle number density, ni (equation (11)), i.e.

χi =
n̄i

ni
(21)

the result is a ratio representing the proximity of a particle (fluid or boundary) to the boundary

‡Or boundary particles in the case of concave boundaries.

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2000; 00:1–6
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8 D. W. HOLMES, J. R. WILLIAMS AND P. TILKE

Figure 3. Relationship between proximity ratio and particle distance from the boundary surface.

surface. For the ideal case of a straight boundary, then

χi =





0.5 di = 0
∈ (0.5, 1) 0 < di < κh

1 di ≥ κh

(22)

where di is the distance of particle i from the boundary surface, see Fig. 3.
Based on (22), it is possible to derive a relationship between fluid and boundary proximity

ratios, χi, which produces approximately the same degree of velocity scaling as the relationship
of Morris et al (equation (18)), i.e.

vB = −
κh
0.5 (χB − 0.5)

max
(

κh
0.5 (χA − 0.5) ,

√
3

4 h
)vA (23)

where, as with equation (18), the denominator is limited to avoid overly large boundary
velocities. Also, as per Morris et al, if the boundary has actual motion, vA in equation (23)
should be replaced with the fluid velocity relative to the boundary, i.e. vA − vB .

While (23) was derived using straight boundaries, in practice we have found that actual
proximity ratios of fluid and boundary surface particles will exceed 0.5 for all but the most
sharp of boundaries (i.e. angles sharper than ∼ 90◦). This is primarily a result of the significant
self contribution of each particle to its own particle number density. As such, equation (23) will
enforce a no-slip boundary condition successfully for all boundary profiles, including concave
and convex curved boundaries. This is of particular benefit for the case of non-uniform or rough
boundaries as might be encountered within permeable rock. If severely sharp boundaries must
be accommodated within a model, the numerator of (23) can be limited to max( κh

0.5 (χB−0.5), 0)

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2000; 00:1–6
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SPH SIMULATIONS OF FLOW THROUGH POROUS MEDIA 9

to maintain consistency§.
As a result of the dependance of particle number density on the nonlinear smoothing

function, the boundary proximity ratio, χi, will only loosely approximate the linear equivalent
from the expression of Morris et al (see Fig. 3). Additionally, where Morris et al scaled velocity
as a function of normal distance to a tangent, in our approach we scale velocity as a function of
distance from the actual boundary interface. In this way, (23) is only approximately equivalent
to (18). The advantage of using such a modified artificial velocity method is, however, clear.
Provided the particle number density variant of SPH is used, there is almost no additional
computational expense associated with enforcing no-slip boundary conditions using the new
method. While not an exact reproduction of the boundary behavior of Morris et al, results
are presented in later Sections which demonstrate the new method to produce high levels of
accuracy thus validating its use.

2.3. Parallel Implementation

While there is a significant amount of published work on pore scale fluid flow using SPH (see
for example [30, 18, 16, 39, 33, 28]), there is comparably little on the three-dimensional case.
This can almost exclusively be attributed to the significant increase in computational expense
associated with extending a complex model to 3D. The SPH code developed in this work has
been implemented within a new multi-core simulation framework (the development of which
has been presented elsewhere, see [24]), to make three-dimensional simulation viable. Using the
H-Dispatch programming model developed in [24], scaling results in excess of 70% on a 24-core
Dell Server PER900 with Intel Xeon CPU, E7450 @ 2.40 GHz, running 64-bit Windows Server
Enterprise 2007, have been achieved. This has made possible the 3D simulation results which
will be presented in what follows.

3. TESTING AND VERIFICATION

As a means to verify the accuracy of the developed SPH code, simulations of several well
defined one-, two- and three-dimensional flow problems were carried out. Results from these
simulations are presented in what follows

3.1. One-Dimensional Flow Problems

Simulations involving one-dimensional flow between infinite plates have typically been used
as an initial test of the performance of no-slip boundary conditions in SPH (see for example
Morris et al [26], Takeda et al [25], Sigalotti et al [27]). In such conditions, it is possible to
develop analytical solutions to the Navier-Stokes equations, thus providing a useful means of
comparison.

Following Morris et al [26], we have developed SPH results for both Poiseuille and Couette
flow. In both cases, a 2D section of the system was simulated with the plates positioned at
y = 0 and y = 10−3m. 13, 668 particles were initially arranged on a hexagonal grid with

§Note, however, that in such circumstances, the physical meaning of both no-slip boundary interactions and,
indeed, the SPH formulation itself, may be lost.
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10 D. W. HOLMES, J. R. WILLIAMS AND P. TILKE

Figure 4. Results for fluid velocity for Poiseuille flow comparing SPH simulation results with the
analytical solution.

spacing h = 2 × 10−5m (see Fig. 6 (a)) and the fluid was assigned the properties of water
(ρ0 = 103kgm−3, ν = 10−6m2s−1). Periodic boundaries constrained the problem in the x
direction such that fluid particles were allowed to recirculate, approximating an infinite domain
(see Zhu et al [16]). For the case of Poiseuille flow, flow was driven from rest by a constantly
applied body force of F = 10−4ms−2. For Couette flow, flow was driven by assigning the top
solid boundary a constant velocity of V0 = 1.25× 10−5ms−1. In both cases, a sound speed of
c = 5×10−5ms−1 was chosen and the simulation was continued until equilibrium was achieved.

Fig. 4 provides results for particle velocity for Poiseuille flow at a range of times compared to
the analytical solution of the Navier-Stokes equations. This analytical solution was determined
from the expression provided by Morris et al [26], i.e.

vx (y, t) =
F

2ν
y (y − L) +

∞∑
n=0

4FL2

νπ3 (2n + 1)3
sin

(πy

L
(2n + 1)

)
exp

(
− (2n + 1)2 π2ν

L2
t

)
(24)

where L is the width of the channel and vx (y, t) is the fluid velocity calculated at position y
and time t. Comparable to the results observed by Morris et al, the determined SPH results
deviated from the exact solution by no more than 0.59%. As with Morris’s findings, this figure
was observed to degrade with increasing mesh coarseness due, primarily, to a loss of resolution
at the boundary surface.

Fig. 5 provides velocity profile results from the Couette flow simulations. Again from Morris

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2000; 00:1–6
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SPH SIMULATIONS OF FLOW THROUGH POROUS MEDIA 11

Figure 5. Results for fluid velocity for Couette flow comparing SPH simulation results with the
analytical solution.

et al [26], the analytical solution used for comparison was determined from

vx (y, t) =
V0

L
y +

∞∑
n=0

2V0

nπ
(−1)n sin

(nπ

L
y
)

exp
(
−ν

n2π2

L2
t

)
(25)

Again, high accuracy was observed with SPH results less than 0.2% from that of the analytical
solution.

A study of the stability of the solution at long time was carried out for the case of Couette
flow. Fig. 6 shows initial and long time particle configurations for a section of the problem. In
the absence of flow obstructions, particles remained relatively ordered for the entire span of
the test. The long time flow rate is provided in Fig. 7 showing that equilibrium was reached
after approximately 1 sec, and remained relatively stable for the remainder of the test.

The accuracy of the results presented here validate the developed no-slip boundary method in
the presence of straight boundaries. The remainder of this section addresses the more complex
case of non-straight boundaries.

3.2. Two-Dimensional Flow Through a Square Array of Cylinders

A well defined example of two-dimensional flow is that of flow past a periodic array of infinite
cylinders. Such models have been used extensively as ideal two-dimensional porous media for
testing of various numerical methods including SPH [26, 16, 40, 41, 42, 8, 43, 44]. We limit
our focus to the case of a square array of cylinders following the work of Zhu et al [16] (see
Fig. 8).

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2000; 00:1–6
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12 D. W. HOLMES, J. R. WILLIAMS AND P. TILKE

Figure 6. Model geometry for Couette flow simulation showing particle distribution at (a) initial
configuration time = 0 sec, and (b) time step 2, 660, 000, time = 26.6 sec.

Due to symmetry, a model of such an array of cylinders can be reduced to the two-
dimensional unit cell shown in the right of Fig. 8. As for the one-dimensional case above,
recirculating periodic boundaries [16], here in the x and y directions, allowed the unit cell to
approximate an infinite domain. For all simulations, a center-to-center cylinder distance, d, of
1 × 10−3m was chosen and the fluid was assigned the properties of water (ρ0 = 103kgm−3,
ν = 10−6m2s−1).

Investigated during the simulations was the effect of solid volume fraction, φ, on fluid flow,
where

φ =
Vsolid

Vcell
(26)

and where Vsolid is the volume of a solid cylinder, while Vcell is the total volume of the unit
cell. This is conjugate to porosity, n, where n = (1− φ). Simulations for various cylinder radii,
r, were carried out corresponding to solid volume fractions of φ = 0.05, 0.1, 0.2, 0.3, 0.4,
0.5, 0.6 and 0.7 (i.e. r = 0.126, 0.178, 0.252, 0.309, 0.357, 0.399, 0.437 and 0.472mm). In all
simulations, flow was driven from rest to equilibrium by a constant body force F = 0.049ms−2

and an artificial sound speed of c = 0.045ms−1 was chosen.

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2000; 00:1–6
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SPH SIMULATIONS OF FLOW THROUGH POROUS MEDIA 13

Figure 7. Long time response of flow rate for Couette flow.

Figure 8. Square periodic array of infinite cylinders.
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14 D. W. HOLMES, J. R. WILLIAMS AND P. TILKE

(a) (b)

Figure 9. (color online). Particle positions for square array of cylinders (φ = 0.5) at (a) ordered initial
configuration, and (b) fully disordered long time configuration. Boundary particles are shown in black

and fluid particles in blue.

Particles were initially arranged on a uniform two-dimensional hexagonal grid and those
positioned within the bounds of the solid cylindrical grains were specified as boundary particles
as described in Section 2.2. Boundary particles located further than 6h from a boundary surface
contributed nothing to the solution and so were deleted for efficiency. Diagrams of initial and
‘late time’ particle distributions are provided in Fig. 9 (a) and (b) respectively.

3.2.1. Characterization of Flow
Consistent with most other works on fluid flow in porous media, in this paper we characterize

flow in terms of a friction coefficient, K, and the permeability, k [4].

The friction coefficient is an indication of the resistance of a porous media to flow and is
typically given as a dimensionless form of the drag force, Fd [45]. For the case of a cylinder
of infinite length in an infinitely dilute domain (i.e. φ → 0), Huner and Hussey [46] define
cylinder drag per unit length as Fd = 4πµUε where U is the superficial fluid velocity and ε is
a term based on the Reynolds number of the flow. Hasimoto [1] and Sangani and Acrivos [3]
use similar terms for cylinder drag. Neglecting the dimensionless ε, an appropriate expression
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for friction coefficient then takes the form

K =
Fd

4πµU
(27)

where the drag force, Fd, is determined directly during flow simulations as the net force exerted
by fluid particles on the lattice of cylinders. Additionally, the volumetric flow rate, q, can be
determined during simulation as the sum of fluid particle volumes (i.e.

∑
Vi =

∑
mi/ρi =∑

1/ni) traveling out the model bounds over time. From this, fluid velocity, u, is calculated as
u = q/A, where A is the cross-sectional area of the unit cell, and the superficial fluid velocity
is then determined from U = (1− φ)u [45].

Determination of the permeability, k, of a porous media develops directly from Darcy’s law,
i.e.

µU = −k∇p̄ (28)

where ∇p̄ is the mean pressure gradient driving flow. Following Larson and Higdon [4], the
mean pressure gradient is directly related to the drag force on the cylindrical inclusions via
∇p̄ = −Fd/Vcell, so that from (27) and (28), the permeability can be expressed

k =
Vcell

4πK
(29)

Nondimensionalizing this term with respect to d2, dimensionless permeability is then given

k

d2
=

1
K

(
Vcell

4πd2

)
(30)

3.2.2. Mesh Sensitivity
Particle number for each model geometry was chosen to provide sufficient resolution

whilst minimizing computational effort. Minimum particle density is typically limited by the
narrowest model region. As a consequence, models with the narrowest pore throats require the
greatest number of particles to achieve a sufficiently accurate results for flow. Zhu et al [16]
suggests that a minimum of 15 fluid particles should span the narrowest model dimension in
two-dimensional flow problems. In our experience we have found this figure to correspond to
results within approximately 5% of the best case asymptotic solution, i.e. the value approached
when progressively increasing particle number to infinity. In the results presented in the
following section, we have favored the use of particle densities corresponding to approximately
25 fluid particles spanning the model pore throats, having observed this figure to improve
accuracy to within 1% of the ideal.

3.2.3. Flow Results
Simulation results for friction coefficient at the various solid volume fractions are provided

in Table I. These results are compared to those published by Zhu et al [16] using a similar
SPH simulator and those of Sangani and Acrivos [40] using an algebraic numerical method.
These results are also plotted in Fig. 10. It is evident that the present results agree well with
the widely accepted results of Sangani and Acrivos. While the present results represent an
improvement over those of Zhu et al, this can mainly be attributed to the increased particle
density. Tests carried out with comparable particle numbers resulted in a similar order of
accuracy. Corresponding results for dimensionless permeability are plotted in Fig. 11.
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Table I. Friction coefficient, K, for various values of solid volume fraction, φ, for flow through a
square array of cylinders. Results determined in the current work are compared to several previously

published results for the same problem.

KSolid Volume
Fraction (φ)

︷ ︸︸ ︷
Present Results Zhu et al [16] Sangani and Acrivos [40]

0.05 1.25 - 1.24
0.1 2.00 - 1.98
0.2 4.12 - 4.10
0.3 8.24 - 8.19
0.4 17.25 17.02 17.34
0.5 41.94 43.58 42.38
0.6 140.48 142.10 140.30
0.7 1066.83 1123.13 1075.89

Fig. 12 shows the long time response of flow rate for the case of a cylinder array with
φ = 0.5. Clearly, the flow very quickly reaches equilibrium state (after approximately 0.15 sec)
and maintains this value well past the point at which particles become fully disordered (see
Fig. 9 (b)). The results show the model and developed no-slip boundary method to be stable
for long time porous media simulations.

3.3. Three-Dimensional Flow Through a Cubic Array of Consolidated Spheres

Ordered sphere packings have been used extensively within the literature as idealized three-
dimensional porous media. Authors such as Hasimoto [1], Zick and Homsy [2] and Sangani and
Acrivos [3] have each presented well verified results for flows through simple cubic, body- and
face-centered cubic arrays of spheres with porosities ranging up to the close touching limits
of the spheres. Unlike in the case of cylinders (Section 3.2), fluid flow will continue in sphere
packs well past the point where sphere radii exceed the close touching limit (Fig. 13). Authors
such as Larson and Higdon [4] and Roberts and Schwartz [47] have used such model geometries
to represent consolidated porous media. In this work, we have tested the performance of the
developed SPH code for three-dimensional flow using a simple cubic array of spheres with
sphere radii up to, and past, the sphere close touching limits as per Larson and Higdon [4],
see Fig. 13.

Again, symmetry of the periodic system facilitated the reduction of the model to the
representative three-dimensional unit cell shown in the right of Fig. 13. Recirculating periodic
boundaries were enforced in all three model dimensions and a center-to-center sphere distance,
d, of 1 × 10−3m was chosen. The fluid was again assigned the properties of water (ρ0 =
103kgm−3, ν = 10−6m2s−1).

For the sphere pack case, solid volume fraction is still given by equation (26) where now
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Figure 10. Friction coefficient.

Vsolid corresponds to the volume of a spherical grain¶. A variety of solid volume fractions
were used in the simulations following the work of Larson and Higdon [4]. These are listed
later in Table II. In all simulations, flow was driven from rest by a constant body force of
F = 0.049ms−2 and an artificial sound speed of c = 0.07ms−1 was chosen.

During model definition, SPH particles were initially arranged on a uniform three-
dimensional hexagonal close packed grid and, as was the case for the cylindrical lattice of
Section 3.2, particles positioned inside the bounds of solid spherical grains were designated as
being boundary particles. Again, boundary particles greater than 6h from a boundary surface
were removed.

3.3.1. Characterization of Flow
Like for the two-dimensional flow of Section 3.2, flow through the cubic array of consolidated

spheres has been characterized in terms of a friction coefficient, K, and the permeability, k.

¶Note that the determination of this volume is arbitrary for sphere radii up to the close touching limit of the

spheres and slightly more complex when spheres overlap.
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Figure 11. Dimensionless permeability.

For the case of a spherical grain in infinite dilution, the drag force, Fd, can be expressed via
the Stokes-Einstein form, Fd = 6πµrU [45]. Using this term to nondimensionalize the sphere
pack drag, we establish the friction coefficient used by authors such as Zick and Homsy [2] and
Larson and Higdon [4] as

K =
Fd

6πµrU
(31)

The force and velocity terms in (31) were determined from simulation results in the same way
as has been described earlier in Section 3.2.1.

Once again, permeability was determined through Darcy’s law with the dimensionless form
being given by

k

d2
=

1
K

(
Vcell

6πrd2

)
(32)

3.3.2. Mesh Sensitivity
While the relationship between SPH solution accuracy and particle density in the presence of

narrow flow channels is fairly well defined in two-dimensions (see [16]), the same cannot be said
of three-dimensions. The lack of published work on three-dimensional SPH flow simulations has
meant little work has been done on the subject. The problem is compounded by the significant
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Figure 12. Long time response of flow rate for a square array of cylinders with φ = 0.5.

Figure 13. Cubic arrangement of consolidated spheres.
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Figure 14. Determination of an equivalent circular throat area for mesh density specification.

increase in pore throat complexity when moving from two- to three-dimensions for even the
most simple of model geometries; clearly it is more challenging to determine a characteristic
pore throat dimension when considering the sphere packing of Fig. 13 compared to the two-
dimensional case of Fig. 8. With the pore throats being the critical limitation on mesh density,
a benchmark for choosing mesh size would be highly desirable.

Throughout simulation runs (see the next section for the full results set), a certain amount
of trial and error has provided insight into the relationship between mesh density and result
accuracy. We have found it effective to characterize each pore throat via a circle of equivalent
throat area, see Fig. 14. Particle density should then be defined such that approximately 30
fluid particles span the proxy circular throat, i.e.

h ' 2
30

√
Athroat

π
(33)

This technique produces results within approximately 2% of the ideal asymptotic result for
an infinitely dense model. Additionally, this methodology is applicable for a wide range of
pore throat geometries of arbitrary complexity. More detailed verification of such a method is
required, however, within the context of the current investigation, the proposed method has
proven to be effective.

3.3.3. Flow Results
The full set of simulation results for friction coefficient at the various solid volume fractions

are provided in Table II. The results are contrast to those of Larson and Higdon [4]
demonstrating excellent agreement at all ranges of porosity. Friction coefficient results are
plotted in Fig. 15, while results for dimensionless permeability are plotted in Fig. 16.
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Table II. Friction coefficient, K, for various values of solid volume fraction, φ, for flow through a cubic
array of consolidated spheres. Results determined in the current work are compared to previously

results from Larson and Higdon [4] for the same problem.

KSolid Volume
Fraction (φ)

︷ ︸︸ ︷
Present Results Larson and Higdon [4]

0.001 1.210 1.212
0.008 1.538 1.5247
0.027 1.946 2.0077
0.064 2.777 2.8102
0.125 4.253 4.292
0.216 7.449 7.4423
0.343 15.61 15.402
0.450 27.92 28.09
0.5236 41.95 41.99
0.53 43.78 43.6
0.55 47.93 48.8
0.60 66.41 66.10
0.65 93.29 93.36
0.70 137.37 139.8
0.75 233.48 228.3
0.80 423.10 426.9
0.85 1.003× 103 1.020× 103

0.90 4.366× 103 4.290× 103

4. CONCLUSIONS

A new approach to addressing no-slip boundary conditions in SPH simulations of low Reynolds
number flows has been presented. The method provides a versatile and numerically efficient
way of enforcing such boundary conditions for a wide range of problems. Results from grain
scale fluid flow simulations for two- and three-dimensional porous media have demonstrated
excellent agreement with those from a variety of well verified numerical and analytical solutions
from the literature. Of particular significance are the results for flow through consolidated
three-dimensional porous media with porosities ranging down to levels indicative of actual
permeable rock (i.e. n = 10%). To our knowledge, this is the first time SPH has been applied
to this problem.

While the verification of SPH as an accurate analysis tool for single-phase flows is a non-
trivial result, the true benefits of such a result are realized when applying SPH to problems
involving multi-phase flows and complex pore geometries. Particularly, the ability of SPH
to simulate multiple fluid phases with accurate expression of surface tension and interfacial
properties such as wettability and contact angle (see [30, 18, 48]), make the method an
extremely powerful numerical tool. By verifying the explicit accuracy of the method to simulate
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Figure 15. Friction coefficient.

flow, the power of these capabilities become all the more significant. A major advantage of the
no-slip boundary method presented in this work is the ease with which it can be extended to
account for multiple fluid phases including surface tension.
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