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Abstract Reliable estimates of regional evapotranspiration are necessary to improve water resources
management and planning. However, direct measurements of evaporation are expensive and difficult to
obtain. Some of the difficulties are illustrated in a comparison of several satellite-based estimates of evapo-
transpiration for the Upper Blue Nile (UBN) basin in Ethiopia. These estimates disagree both temporally and
spatially. All the available data products underestimate evapotranspiration leading to basin-scale mass bal-
ance errors on the order of 35 percent of the mean annual rainfall. This paper presents a methodology that
combines satellite observations of rainfall, terrestrial water storage as well as river-flow gauge measure-
ments to estimate actual evapotranspiration over the UBN basin. The estimates derived from these inputs
are constrained using a one-layer soil water balance and routing model. Our results describe physically con-
sistent long-term spatial and temporal distributions of key hydrologic variables, including rainfall, evapo-
transpiration, and river-flow. We estimate an annual evapotranspiration over the UBN basin of about
2.55 mm per day. Spatial and temporal evapotranspiration trends are revealed by dividing the basin into
smaller subbasins. The methodology described here is applicable to other basins with limited observational
coverage that are facing similar future challenges of water scarcity and climate change.

1. Introduction

The Nile River basin is shared by eleven countries, five of which are relatively underdeveloped. About 370
million people rely on the Nile's water, and the basin's population is projected to continue growing signifi-
cantly which will intensify water scarcity problems in the region. With over two thirds of the basin's agricul-
ture being subsistence rain-fed farming and the low rate of application of fertilizers, the agricultural yields
in the basin are very low compared to the average global yields. The Nile basin has large agricultural and
hydropower potentials that have not yet been tapped, but with the high dependence of its riparian coun-
tries on its water any development project can be a source of conflict in the region. A major recent conflict
involves three countries: Egypt, Ethiopia, and Sudan. These countries share the Blue Nile basin, which con-
tributes over 60 percent of the flow measured at Aswan. Since the announcement of the Grand Ethiopian
Renaissance Dam (GERD) at the outlet of the Upper Blue Nile (UBN) basin, a conflict over this dam has been
escalating between Egypt and Ethiopia. A lack of adequate data and comprehensive knowledge of key
hydrologic variables has only contributed to worsening the conflict with each side taking positions based
on inadequate information.

A reanalysis system produces data sets through a frozen data assimilation scheme and model which merges
available observations (irregular in space and time) with model forecast to generate uniform gridded data.
There are several atmospheric reanalysis data sets available such as the Japanese 25 year reanalysis data
(JRA-25) which was released in March 2006 [Onogi et al., 2005, 2007]; the 40 year European Centre for
Medium-Range Weather Forecasts (ECMWF) Re-Analysis data (ERA-40) available for the period 1979–2002
[Uppala et al., 2005]; the National Centers for Atmospheric Research—Department of Energy 2nd reanalysis
data (NCEP-DOE R2) [Kanamitsu et al., 2002]; the ERA-Interim reanalysis data also produced by ECMWF avail-
able for the period 1989–current [Simmons et al., 2007; Uppala et al., 2008]; the NCEP-CFSR released in 2010
[Saha et al., 2010] and the modern-era reanalysis (MERRA) available for the period 1979–current [Rienecker
et al., 2011]. The reanalysis products have been proven useful in driving land surface models, studying the
climate system, validating General Circulation Models (GCMs) and providing boundary conditions for
regional modeling [Decker et al., 2012]. However, they should be used with appropriate care since their
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reliability varies depending on the location, time, and variable considered since they are observation driven
and the changing mix of observations ingested to the model at each time step can introduce artificial vari-
ability and false trends. Siam et al. [2013] have compared the hydrologic cycle of GCMs and reanalysis prod-
ucts over the Congo and the upper Blue Nile basins. They found that the ERA-40 and the NCEP-NCAR do
not satisfy the atmospheric and soil water balances and their simulated seasonal cycles do not match obser-
vations. ERA-Interim was found to have a better performance regarding balancing the water budget and
representing the seasonal cycle of the hydrological variable, however it overestimates the hydrological vari-
ables compared to observations.

Remote sensing and global satellite data have become readily available sources for testing models of land
and water resources. It would seem that the readily available remote sensing data sets can be used to deter-
mine regional water budgets accurately. However, different data sets come from different instruments with
different accuracies, resolution, and coverage, using different algorithms. These differences lead to signifi-
cant discrepancies and inconsistencies between available data sets for key variables such as precipitation
and evapotranspiration. There have been several attempts to estimate the terrestrial water budget at large
scales using remote sensing and satellite data. Sahoo et al. [2011] assessed the terrestrial water budgets
using remote sensing data sets over 20 large global river basins and significant uncertainties were traced to
the precipitation data sets. Sheffield et al. [2009] attempted to close the water budget for the Mississippi
River basin and found significant errors that were larger than the observed streamflow even after removing
systematic biases in the remote sensing estimates of precipitation and evaporation. Gao et al. [2010] esti-
mated the water budget of major U.S. river basins using satellite data and evaluated them using gridded
precipitation observation and the Variable Infiltration Capacity (VIC) model evaporation and water storage.
This study concluded that water budget closure at the scale of large continental river basins using satellite
data alone is not possible, and the largest sources of nonclosure errors are precipitation and evaporation.
Pan and Wood [2006] have proposed a constrained ensemble Kalman-filter data assimilation procedure to
merge observations and Variable Infiltration Capacity (VIC) model estimates and assure closure of the water
balance. Pan et al. [2012] have merged several satellite and reanalysis data in a data assimilation model to
estimate the long-term terrestrial water budget for major global river basins. They concluded that the error
analysis for each water budget variable is challenging at the global scale and that the error analysis for
evapotranspiration lack supportive quantitative analysis and may not hold for specific locations.

Here the annual water budget of the UBN basin was investigated using the TRMM 3B43 v7 annual precipita-
tion depth of about (1359 mm), the WM annual actual evapotranspiration of about (639 mm), and the Flow
Gauge measurements at Diem station the outlet of the UBN basin of about (276 mm). The water budget clo-
sure error was found to be 444 mm which is about 35 percent of the annual rainfall falling over the UBN
basin.

Readily available global data sets that describe evapotranspiration based on satellite observations over the
UBN basin do not agree on the spatial or the temporal distributions, as shown in Figures 1 and 2. Evapo-
transpiration is an important component of the water budget which influences the planning of agricultural
development projects and cropping strategies and the releases from hydropower dams. The objective of
this paper is to develop a more accurate self-consistent picture of the UBN basin's hydrology to aid the
decision-making process for developing the basin.

2. The Upper Blue Nile Basin Description

The UBN basin also known as the Abbay basin is located in the Ethiopian highlands with a drainage area of
about 176, 000 km2 (Table 1). It extends from 78400 to 12850 N and from 348250 to 398490 E (Figure 3). The
river extends from its origin at Lake Tana to the Sudanese border at Diem with a contribution of 60 percent
of the Nile flow measured at Aswan. The basin's climate varies from humid to semiarid. The annual precipi-
tation increases from northeast to southwest and ranges from 1200 to 1600 mm as shown in Figure 4 [Con-
way, 1997, 2000; Tafesse, 2001; Kim et al., 2008]. Most of the precipitation occurs in the wet season called
locally Kiremt (June–September) and less precipitation occurs in the dry and mild seasons known locally as
Bega (October–February) and Belg (February–May). The interannual variability of the upper Blue Nile precip-
itation in the wet season is correlated with El-Nino southern oscillations in which the rainfall tend to be
high during La-Nina events and low during El-Nino events [Eltahir, 1996; Siam and Eltahir, 2015; Siam et al.,
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2014]. The mean annual tem-
perature is about 18.58C with
a seasonal variation of less
than 28C [Kim et al., 2008]
and the annual potential
evapotranspiration is esti-
mated to be about 1100 mm
[Gamachu, 1977; Kim et al.,
2008]. The eastern part of
the basin has the highest
elevation reaching 4000 m
above mean sea level and
decreasing gradually toward
the western outlet of the
basin where the elevation is
approximately 500 m above
mean sea level as shown in
Figure 3.

3. Data Assimilation
Procedure

3.1. General Approach
Our approach for characteriz-
ing the UBN hydrology is to
extract the greatest possible
information from available data
using data assimilation tech-
niques McLaughlin [1995];
Houser et al. [1998]; Pan and
Wood [2006]; Pan et. al. [2012].
We treat the hydrological

fluxes and states within the UBN basin as uncertain variables that are estimated from imperfect measurements while
honoring physical constraints. The estimation process is posed as an optimization problem. The objective is to mini-
mize the weighted mean-squared error between estimates and measurements of observed hydrologic variables.
The minimization process is constrained by mass and energy balance relationships and relevant hydrologic thresh-
olds. The variables to be estimated (the decision variables in the optimization problem) are: precipitation, evapo-
transpiration, potential evaporation, flow-routing, and water storage within the basin. The result of the data
assimilation process is a set of spatially distributed hydrologic flux and storage estimates that are physically consist-
ent as well as compatible with observations. The estimates can then be used for planning and management
studies.

3.2. Optimization Objective Function
The objective of the data assimilation optimization problem is the minimization of the weighted squared
deviations between the estimated and measured values of each hydrologic variable. The least-squared error
objective function is written as:
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Where the normalized differences between measurements and estimates are defined as follows:

dPn;m : Pixel precipitation misfit5
1
�P

Pn;m2P'n;m
� �

(2)

Figure 1. (a) Comparison of the spatial long-term average actual evapotranspiration for the
ALEXI, NTSG, and WM data sets over the UBN basin for the period 2002–2013. (b) Comparison
of the CRU and WM long-term spatial average potential evaporation over the UBN basin for
the period 2002–2013.
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dPETn;m : Pixel Potential Evapotranspiration misfit5
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h i
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dETcropn;m : Pixel crop ET misfit5
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h i
(6)

dSn;m : UBN basin storage misfit5
1
�S
Sm2S'm½ � (7)

Normalization factors are used to give the objective function terms a dimensionless nature. These factors are
calculated as the averages of the corresponding measurements over time and space (indicated by overbars).

The weights assigned to the hydrologic budget terms such as wP , wPET, wR, wETnoncrop , wETcrop , and wS are calcu-
lated to be inversely proportional to the possible errors in the data sets inferred from: (1) the error variance
of the data set used as input to the model for each hydrologic variable, (2) the variation across different

Figure 2. A comparison between the spatial distribution of the long-term average annual actual evapotranspiration depth of the NTSG,
WM, and ALEXI data sets for the period 2002–2013.
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data sets examined for each hydrologic variable. For instance, the expected errors in the runoff and precipi-
tation data sets were found to be about 10 and 50 percent.

In order to check the sensitivity of the data assimilation procedure to the weights, the weights were varied by fac-
tors of 0.1, 0.5, 2, and 10. The resulting assimilated hydrologic variables changed only by 0.5 and 5%, respectively.

3.3. Constraints
The least-squares data assimilation procedure is based on a set of constraints that describe physical rela-
tionships among uncertain hydrologic variables. These equations collectively define an UBN river basin
model. The model is formulated on a regular grid of quarter degree (�25 km) pixels and describes temporal

changes over a typical year, using a monthly
time step to investigate the long-term monthly
averaged variability in the UBN basin hydrology.
The model can be easily extended in the future
to investigate interannual variability in the
hydrological time series.

The water budget (or mass balance) equation for
each pixel is:

DSn;m5Sn;m112Sn;m5Qinn;m1Pn;m

2ETn;m2Qoutn;m

(8)

where DSn;m is the change in the monthly storage
of pixel n (km3/month), Qin is the flow into the
pixel from tributary pixels contributing into it, and
Qout is the outflow from the pixel as shown in the
schematic diagram in Figure 5, Pn;m is the pixel
monthly precipitation (km3/month) and ETn;m is
the pixel monthly evapotranspiration (km3/month).
The inflow to pixel n is the sum of all contributions
from upstream pixels:

Figure 3. Upper Blue Nile Basin within the Nile Basin in Africa. Inset shows UBN basin topography.

Figure 4. A map of the TRMM annual precipitation depth over the
upper Blue Nile basin for the period 2002–2013.
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(9)

The storage in each pixel is limited by the soil water
holding capacity of an assumed 1.5 m depth root zone.
If the storage exceeds the capacity the excess water
contributes to runoff towards a downstream pixel.

Sn;m � Sthresholdn (10)

Similarly the change in storage in each pixel is con-
strained by the infiltration capacity of the soil.

DSmin � DSn;m � DSmax (11)

where Sthreshold is the storage water holding capacity
in pixel n (km3) and DSmin&DSmax are the infiltration
and exfiltration capacity rates of the basin's soil.

The flow from the river basin outlet is the outflow
from the most downstream pixel which is calculated
through summing the pixel hydrologic fluxes in the
whole basin contributing to the most downstream
pixel.

Rm;g 5Qoutg;m (12)

Where Rm;g is the UBN basin monthly run-off (km3/month) and Qoutg;m is the monthly outflow from the pixel
at the location of gauge g (km3/month).

Additional constraints are used to divide evaporation into three components: evaporation from water
bodies ETlaken;m

� �
, crop evapotranspiration ðETcropn;mÞ, and evaporation from natural vegetation and soils

ðETnon2cropn;mÞ all represented as follows:

ETn;m 5 ETcropn;m 1 ETnon2cropn;m1 ETlaken;m (13)

ETcropn;m 5 Kcropgenn;m PETn;m Acropn=An
� �

(14)

ETlaken;m5PETn;m (15)

where Kcropgenn;m is a generalized crop factor calculated based on the cropping patterns in the UBN basin,
PETn;m is the monthly potential evaporation from pixel n (km3/month), and (Acropn /An) is the crop area frac-
tion of pixel n.

Evapotranspiration is constrained to be no greater than net radiation minus the sensible and ground heat
fluxes heat. This is represented in our model as:

ETn;m � Rnetn;m
kCF

1CDTn;m (16)

where Rnetn;m is the monthly available net radiation for pixel n (W/m2), k is the latent heat of vaporization
(kJ/kg), CF is a unit conversion factor, C is a constant parameter to be estimated by the model that accounts
for the sensible and ground heat fluxes and DTn;m is the monthly change in temperature at pixel n. In addi-
tion to the above constraints, all variables are constrained to be nonnegative. The least-squares data assimi-
lation problem with these mass and energy balance constraints have a unique optimum solution because it
has a convex quadratic objective and its constraints are all linear [Markowitz, 1956].

4. Data

Table 2 summarizes the data sets used as inputs to the objective function and the constraints equations.
Here we examine differences between the several data sets examined over the UBN basin and explain why
we chose particular data sets for the UBN basin analysis.

Figure 5. A schematic diagram of a typical grid cell with
hydrologic variables used in the data assimilation procedure.

Table 1. Summary of the UBN Basin Characteristics

Characteristic

Area (km2) 176,000
Mean annual precipitation (mm d21) 1224
Mean annual streamflow (km3) 46
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4.1. Objective Function Inputs
The data assimilation procedure adjusts estimates of hydrologic variables to obtain the best physically con-
sistent fit to available measurements. In the UBN application, the measurements considered are satellite
observations of rainfall, evapotranspiration, and terrestrial water storage as well as river flow gauge meas-
urements. Since the final results depend significantly on the data set selected and on the amount of adjust-
ment required to fit the data several global data sets were screened to choose the most appropriate inputs
for the UBN. The following paragraphs summarize the results of the screening process:
4.1.1. Precipitation Data
The precipitation data sets examined and compared over the upper Blue Nile basin are: the Climatic Research
Unit (CRU) [Mitchell and Jones, 2005], the Tropical Rainfall Measuring Mission (TRMM) [Huffman et al., 2007],
and the Global Precipitation Climatology Project (GPCP) [Adler et al., 2003]. In general the three data sets agree
on the temporal distribution of rainfall over the basin, and the difference between their estimates of annual
rainfall is less than 5 percent as shown in Figure 6. Accordingly, the TRMM data set was chosen because of its
higher resolution.
4.1.2. Potential Evaporation
The potential evaporation sources examined are: the Climatic Research Unit (CRU) data set [Mitchell and Jones,
2005] and the Willmot Matsuura (WM) data set [Willmott and Matsuura, 2000], both shown in Figure 1. It was
found that WM generally underestimates the potential evaporation over the UBN basin when compared to

previous studies [Conway,
1997; Tekleab et al., 2011].
Consequently, the CRU data
set was selected for the data
assimilation procedure.
4.1.3. River Flow Data
Flow data from nine river
flow gauges (Diem, Megech,
Ribb, Gumera, Bahir Dar, Gil-
gel Aba, Mendaya, Kardobi,
and Kessie) are used in the
data assimilation procedure
to improve the river flow
routing. The stations loca-
tions' and names are shown
in Figure 7.

Table 2. Summary of the Data Sets Considered and Used in the Data Assimilation Procedure

Data Source (Abbreviation) Spatial Resolution Data Citation

River Flow Routing
Topography data SRTM 90 m USGS, 2004
Flow direction data NTSG-DRT 0.258 Wu et al. [2011]
Crop data
Crop coefficients
Crop maps Cropland and pasture data 0.58 Ramankutty and Foley [1999]
Crop patterns Major crops 0.58 Ramankutty and Foley [1998]; Leff et al. [2004]
Temperature CRU TS3 0.58
Precipitation CRU TS3 0.58 Mitchel and Jones [2005]

TRMM 0.258 Huffman et al. [2007]
GPCP 2.58 Adler et al. [2003]

Evapotranspiration WM 0.58 Willmott and Matsuura [2000]
NTSG 0.58 Zhang et al. [2009]; Zhang et al. [2010]
ALEXI 0.0278 Anderson et al. [2007a, 2007b,]

Potential evaporation WM 0.58 Willmott and Matsuura [2000]
CRU TS3 0.58 Mitchell and Jones [2005]

Soil moisture GRACE 18 Chambers et al. [2006]
CPC 0.58 van den Dool et al. [2003]
ESA 0.258 Liu et al. [2012];

Soil water holding capacity HWSD 1 km Nachtergaele [1999]; FAO [2012]
Radiation data NASA-SRB 18 Darnell et al. [1996]; Gupta et al. [1999]

Figure 6. Comparison of the temporal distributions of TRMM, CRU, and GPCP precipitation
over the UBN basin for the period 2002–2013.
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4.1.4. Actual Evapotranspiration Data
Various evaporation data sets were
examined over the upper Blue Nile basin
and were all found to underestimate
actual evaporation, compared to esti-
mates obtained from water budget cal-
culations, and to give different spatial
and temporal distributions, as shown in
Figures 1 and 2.The data sets investi-
gated were: the WM data [Willmott and
Matsuura, 2000], the Numerical Terrady-
namic Simulation Group (NTSG) data
[Zhang et al., 2009], and The
Atmosphere-Land exchange Inverse
(ALEXI) data set [Anderson et al., 2007a,b].
The NTSG data set was eliminated due to
its poor correlation with precipitation
and runoff over the basin. The WM data
set is used as the initial evapotranspira-

tion estimate over the UBN basin since it had a better correlation with the precipitation data set. It should
be mentioned that the ALEXI data set had the most consistent estimate of annual actual ET compared to (P-
R) data over the basin. This data set was reserved to provide verification for the final data assimilation actual
ET estimates.
4.1.5. Soil Moisture Data
Three water storage data sets were considered: the Climate Prediction Center (CPC) global monthly soil moisture
data [van den Dool et al., 2003], the Gravity Recovery and Climate Experiment (GRACE) terrestrial water storage
[Chambers, 2006], and the European Space Agency—Climate Change Initiative (ESA-CCI) soil moisture product [Liu
et al., 2012]. A comparison between the long-term seasonal pattern of the terrestrial water storage anomalies and
soil moisture data sets is shown in Figure 8. The GRACE and the CPC data sets agree very well. However, the ESA
soil moisture shows the temporal distribution of the soil moisture for the top soil layer only. Thus the soil moisture
range in the ESA data set is smaller than the other data sets and the peak soil moisture occurs earlier in July and
August following the rainy season. The GRACE terrestrial water storage is used here as a measurement of the basin
average soil water storage averaged over the basin since it is the most compatible with our vertically aggregated
definition of water storage.

4.2. Constraint Inputs
The data needed for the optimization problem constraints can be summarized as follows:

Figure 7. A map of the UBN basin showing the flow gauge stations locations.
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4.2.1. Flow Direction Data
The information sources considered
for determining flow directions were
(1) the existing global data from
the Dominant River Tracing (DRT)
method [Wu et al., 2011] or (2) the
built in Arc Map flow direction calcula-
tor. Although both options give simi-
lar results, however, the DRT method
was used since it has been compared
with river directions and validated
accordingly.
4.2.2. Soil Water Holding Capacity
The soil water holding capacity was
obtained from the Harmonized World
Soil Database (HWSD) which is a 30
arc-second raster database [Nachter-
gaele, 1999]. The HWSD soil water
holding capacity map was upscaled
by averaging values within our 0.258
pixels.
4.2.3. Crop Data
The crop areas were obtained from the
updated Global Cropland and Pasture

Data from 1700–2007. The cropped areas were updated using the 2009 Land cover MODIS data shown in Figure 9
[Broxton et al., 2014]. The cropping pattern and crop area fractions for major crop groups used to generate the gen-
eralized crop factor for the UBN analysis were derived from the 1992 global cropland maps [Ramankutty and Foley,
1998]. The cropping pattern were compared to crop maps of the Atlas of Agricultural Statistics 2006/2007–2010/
2011 produced by the Central Agency of Statistics (CSA) of the Federal Democratic Republic of Ethiopia (FDRE) and
the International Food Policy Research Institute (IFPRI) and the cropping density was modified accordingly.
4.2.4. Radiation Data
The National Aeronautics and Space Administration (NASA) surface Radiation budget (SRB) data set [Dar-
nell et al., 1996; Gupta et al., 1999] is used to calculate the monthly net radiation available over the UBN
basin.

Figure 9. The croplands in the upper Blue Nile basin based on the MODIS 2009 land
use data set.

Figure 10. A summary of the temporal distribution of the UBN basin water buget depths: Precipitation (P), actual evapotranspiration (ET),
basin runoff (R), and basin soil water storage (S). Shown is the mean annual cycle for the period 2002–2013.
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5. Results and Discussion

This paper describes the application of least-squares
data assimilation methods to estimate rainfall, actual
and potential evapotranspiration, soil storage, and
river-flow over the data-scarce UBN basin. The spa-
tially averaged assimilated estimates are shown in Fig-
ure 10. The assimilation model results suggest that
TRMM precipitation data and the CRU PET data are
about 12 percent larger than the least-square esti-
mates. The estimated soil water storage and the runoff
from the UBN basin agree with the observed values
from GRACE and the flow gauge station measure-
ments. The most important output of the data assimi-

lation procedure is the actual evapotranspiration estimate which is estimated to be 1036 mm (Table 3). This
estimate agrees with the global distribution of the annual-mean evaporation rate estimated by Baumgartner
and Reichel [1975]. The assimilated actual evapotranspiration exceeds the potential evaporation during the
June–October season. In the rainy season, the evaporation over the basin is energy limited due to the dense
cloud cover. However during the rainy season, the natural vegetation and crops flourish which increases
the surface roughness and enhances the transport of water vapor transportation near the surface and as a
result the evaporation of intercepted rain occurs at rates higher than potential evaporation [Shuttleworth,
1988; ElTahir and Bras, 1994]. Table 4 shows a comparison between our model basin precipitation and run-
off depth estimates and estimates by for the three seasons: the dry season `̀ Bega'' (October–February), the

Table 3. A Summary of the Long-Term Annual Water
Budget Depths for Data Sets Used as Input to the Model
and the Assimilated Water Budget Depths and the
Percentage Change of the Assimilated Depth From the
Initial Input Data for the Period (2002–2012)

Depth (mm) Data Estimate % Change

Precipitation 1359 1315 3
Evapotranspiration 656 1036 58
Runoff 276 278 0.7

aThe input data sets are: TRMM 3B43 v7 precipitation
data, WM annual actual evapotranspiration data, and flow
gauge measurements at Diem station. It should be noted
that the initial input data have a closure error of 444 mm.

Table 4. A Comparison Between Our Model Estimate of the Seasonal UBN Basin Precipitation, Runoff Depths in mm and Runoff Coeffi-
cient (%) Depth Over the Period (2002–2012) and the Seasonal Observations of the UBN Basin Precipitation, Runoff Depths in mm and
Runoff Coefficient (%) After Tesemma et al. [2010] for the period (1964–2003)

Season Pobs PModel Robs RModel RCobs RCModel

Annual 1286 1315 268 278 21 21
Dry Season (Bega: Oct–Feb) 151 148 63 63 42 42.5
Short Rainy Season (Belg: Mar–May) 218 213 7 9 3.2 4.2
Long Rainy Season (Kiremt: Jun–Sep) 916 953 198 206 21.6 21.6

Figure 11. A comparison between the spatial distribution of the ALEXI and estimated long-term average annual ET depth over the UBN
basin for the period 2002–2013.
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short rainy season `̀ Belg'' (March–May), and the long-rainy season `̀ Kiremt'' (June–September). The compar-
ison shows that our model captures the seasonal variability in the precipitation and runoff and the runoff
coefficient which is highest during the dry season and lowest during the short rainy season. This can be
explained by the saturated soil moisture of the UBN basin soil at the end of the long-rainy season which
enhances runoff during the dry season and dry basin soil at the end of the dry season significantly increases
the infiltration losses during the short-rainy season.

A comparison between the ALEXI product and the estimated actual evapotranspiration is also shown in Fig-
ure 11. ALEXI is a two-source model that estimates the surface energy balance using Thermal infrared based
observations of morning land surface temperatures (LST) rise acquired by geostationary satellites [Anderson
et al., 1997, 2007b]. Therefore, ALEXI evapotranspiration estimates are limited to clear-sky conditions when
the surface is visible to the satellite sensor to measure LST. A cloud gap-filling algorithm was developed to
improve the model output during cloudy conditions [Anderson et al., 2007a]. However, over long cloudy
periods which is the case during the rainy season over the UBN, basin ALEXI ET estimates retrievals still do
not have continuous coverage because of missing observations. Therefore ALEXI may not yield accurate actual
ET when clear-sky conditions do not apply. The comparison shows that ALEXI does a better job than the other
data products in estimating the annual actual evapotranspiration from the basin since it has the least water
budget closure error. However, ALEXI has a different spatial distribution over the basin and appears to underesti-

mate evapotranspiration during the
rainy season. Figure 11 shows the
spatial distribution of the estimated
and ALEXI annual evapotranspira-
tion depths over the UBN basin.
The data assimilation estimate has a
smoother spatial distribution but
both estimates agree to a large
extent on the spatial distribution of
the annual evapotranspiration
depth. However, in the rainy season,
they have different spatial
distributions.

In order to investigate the spatial
evapotranspiration trends over the
UBN basin, we divided the basin
into four subbasins and estimated
the incremental flows between the
gauge stations. The subbasins are
shown in Figure 8 and can be iden-
tified as: BahirDar-Kessie (BK) sub-
basin, Kessie-Karadobi (KK)
subbasin, Karadobi-Mendaya (KM)
subbasin, and Mendaya-Diem (MD)
subbasin. A summary of the annual
water budget depths of each of
these subbasins is given in Table 5.
The climatology is different in the
four subbasins. For instance, the

Table 5. Summary of the Annual Water Budget Depths for Five Subbasins

Depth (mm) BK KK KM MD

Precipitation 1019 1189 1338 1302
Evapotranspiration 779 973 1098 931
Runoff 269 202 251 357
RC % 26 17 19 27

Figure 12. A summary of the temporal distribution of the BahirDar-Kessie and Kessie-
Karadobi subbasins water buget depths: Precipitation (P), actual evapotranspiration (ET),
basin runoff (R), and basin soil water storage (S). Shown is the mean annual cycle for the
period 2002–2013.
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first and second wettest subbasins are
KM and MD with annual precipitation
depths of about 1338 and 1302 mm,
respectively. The KM subbasin has the
highest annual actual ET and conse-
quently the lowest runoff coefficient.
Figures 12 and 13 show the temporal
distribution of selected hydrologic vari-
ables for the four subbasins. The actual
ET over the KM basin exceeds the PET
in the period May through November
with a peak actual evapotranspiration
rate of about 150 mm/month extend-
ing from July through September and
then gradually decreases to about
60 mm/month in January. This tempo-
ral distribution reflects high vegetation
transpiration during and after the rainy
season. In contrast, the MD subbasin
experiences a similar peak AET from
July through September with the AET
depth decreasing more rapidly at
about 40 mm/month in January. This
highlights the lower level of vegetation
cover in this subbasin, leading to a
higher run-off coefficient. The driest
subbasin is BK with an annual precipi-
tation depth of about 1019 mm as
shown in Figure 13. However this sub-

basin has the highest runoff coefficient. The low actual evapotranspiration in this subbasin is largely due to its
location in the eastern highlands of Ethiopia where temperatures are lower and there is less vegetation cover.
We have also compared the spatial distribution of our model estimate of the actual evapotranspiration to

Figure 13. A summary of the temporal distribution of the Karadobi_Mendaya and
Mendaya Diem subbasins water buget depths: Precipitation (P), actual evapotrans-
piration (ET), basin runoff (R), and basin soil water storage (S). Shown is the mean
annual cycle for the period 2002–2013.
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Figure 14. A comparison between the flow data at stations Mendaya, Karadobi, and Bahir Dar and the model flow routing at their loca-
tions when these input data are not given into the model.

Water Resources Research 10.1002/2015WR017251

ALLAM ET AL. ESTIMATION OF EVAPORATION OVER THE UPPER BLUE NILE BASIN 12



precipitation (ET/P) ratio over the UBN basin for the period 2002–2013 to the basin land and the correspond-
ing runoff coefficient as estimated by a recently published study by Haregeweyn et al., [2015]. Our estimates
agree closely to the runoff coefficients estimated by this study where the eastern part of the basin is moder-
ately and intensively cultivated with runoff coefficient varying between 20 and 25%, respectively [Herweg and
Stillhardt, 1999; Awulachew et al.,2008; Zenebe et al.,2013] and the western part of the basin is mainly divided
between traditional, Agrosilvicultural, and Silvipastoral land use with corresponding runoff coefficients of 12,
12, and 6%, respectively [Geiger et al.,1987; California Department of Transportation, 2006]. This agrees with our
ET/P varying between 0.6 and 1.

It should be noted that the data available for Mendaya and Karadobi were found to be less reliable and
given less weights since they are filled data generated from the river flow observations at Kessie and Diem.
There was also a run where stations flow data were not given as inputs to the model to check how depend-
ent the model to these data points is. Figure 14 shows a comparison between the flow data and the model
pixel routed flow at the Karadobi, Mendaya, and BahirDar when the stations were hidden from the model.
The comparison between the data and the model flows shows that the model is not highly dependent on
Karadobi and Mendaya flow data since the change in the flow is less than 15%. On the other hand, the rout-
ing error at Lake Tana outlet (Bahir Dar) is high if the flow data were not assimilated into the model. This
shows the high contribution of the flow stations around Lake Tana in improving the flow routing in the
Tana subbasin and the reasoning behind the high concentration of stations around the Lake Tana basin.

For testing our estimates, we plotted
our model estimates of actual evapo-
transpiration against the MODIS long-
term average annual Normalized Differ-
ence Vegetation Index (NDVI) and the
long-term average annual ALEXI actual
evapotranspiration. The two products
are completely independent from our
analysis as shown in Figures 15a and
15b. Our model estimate is highly cor-
related with (NDVI) with a correlation
coefficient of about 59% and has a
lower correlation coefficient with the
ALEXI data of about 37%. Figure 15c
also shows the correlation between the
long-term average ALEXI annual evapo-
transpiration and NDVI with a signifi-
cantly lower correlation coefficient. In
order to investigate the spatial variabili-
ty of the annual evapotranspiration
over the upper Blue Nile basin, a multi-
variate regression analysis was con-
ducted with several variables such as
precipitation, radiation, NDVI, soil prop-
erties, topography, and Temperature
(see Table 6). It was found that precipi-
tation, radiation, and NDVI collectively
explain about 70% of the spatial vari-
ability in evapotranspiration over the
UBN basin.

6. Conclusions

With the rapid population growth in
Ethiopia, the demand for water is
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Figure 15. (a) The correlation between the data assimilated pixel long-term aver-
aged annual actual evapotranspiration (ET) and the MODIS long-term averaged
Normalized Difference Vegetation Index (NDVI) for the period 2002–2013. (b)
The correlation between the data assimilated pixel long-term averaged annual
actual evapotranspiration (ET) and the long-term averaged ALEXI annual actual
evapotranspiration data set for the period 2002–2013. (c) The correlation
between the pixel long-term averaged ALEXI annual actual evapotranspiration
data set and the MODIS long-term averaged Normalized Difference Vegetation
Index (NDVI) for the period 2002–2013.

Water Resources Research 10.1002/2015WR017251

ALLAM ET AL. ESTIMATION OF EVAPORATION OVER THE UPPER BLUE NILE BASIN 13



increasing and proper allocation of water resources is a critical step in developing the country. Evapotrans-
piration is a key component of the water budget. Three evapotranspiration data sets were examined over
the UBN basin and they all underestimate the actual evapotranspiration and disagree about its temporal
and spatial distributions. A better understanding of the temporal and spatial dynamics of the basin's hydrol-
ogy is crucial to properly guide decision making and planning of hydropower and agricultural development.
Previous studies have investigated the lumped hydrology of the basin but no study investigated the spatial
distribution of evapotranspiration. In this paper, we have presented a framework for understanding the
upper Blue Nile basin hydrology by integrating climatic, geographic, hydrologic, and agricultural data sets
using a one-layer soil water budget model. This framework deals with data uncertainties and yields esti-
mates that are consistent with the principles of mass and energy conservation while also fitting available
observations as closely as possible. Our data assimilation procedure estimates the annual evapotranspira-
tion from the upper Blue Nile basin to be about 1036 mm which is about 380 mm higher than the other
readily available data sets examined in this paper. We identified spatial trends of evaporation by dividing
the basin into subbasins. We observed that temperature and vegetation type play important roles in shap-
ing the evapotranspiration and runoff from the basin. This analysis can be extended to examine the interan-
nual variability of the basin's hydrology and to obtain consistent estimates of precipitation,
evapotranspiration, and runoff time series data. Moreover, the data assimilation framework described here
can be easily applied to other basins with limited data availability.
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