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Abstract 

Both energy consumption and the growth of carbon dioxide (CO2) emissions in China 

are attributed to the industrial sector. Energy conservation and CO2 emissions 

reduction in China’s industrial sector is decisive for achieving a low-carbon transition. 

We analyze the change of energy-related CO2 emissions in China’s industrial sector 

from 1991 to 2010 based on the Logarithmic Mean Divisia Index (LMDI) method. 

Results indicate that industrial activity is the major factor that contributes to the 

increase of industrial CO2 emissions while energy intensity is the major contributor to 

the decrease of CO2 emissions. Industry size shows a varying trend interchanging 

intervals of growth along the study period. Moreover, both energy mix and carbon 

intensity of energy use have negative effects on the increase of CO2 emissions. The 

cointegration method is adopted to further explore determinants of CO2 emissions in 

China’s industrial sector. Results show that there exists a long-run relationship 

between industrial CO2 emissions and affecting factors such as CO2 emissions per 

unit of energy consumption, industrial value added, labor productivity and fossil fuel 

consumption. China’s industrial CO2 emissions are mainly attributed to the 

coal-dominated energy structure. Policy suggestions are thus provided to reduce 

industrial CO2 emissions in China. 

Keywords: CO2 emissions; China’s industrial sector; Cointegration; Decomposition 

analysis. 
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1. Introduction 

1.1. Research background 

The massive fossil fuel consumption promoted by the rapid process of urbanization 

and industrialization has led to the serious problem of CO2 emissions in China. For 

example, Chinese economy has kept an average annual growth rate of about ten 

percent since the year 1978. The average annual growth rates of the primary energy 

consumption and electricity consumption were 6% and 9.2% [1], respectively. 

Notably, the growth rate of fossil-fuel CO2 emissions was consistent with the growth 

rate of the primary energy consumption [2]. Carbon dioxide emissions in China were 

highly associated with the industrial structure, energy structure and energy efficiency. 

Apparently, China’s economy was dominated by the industrial sector. The average 

proportion of industrial value added (IVA) in the gross domestic product (GDP) was 

40.2% during 1978-2012. Meanwhile, both China’s energy structure and electricity 

structure were dominated by coal, the shares of which were about 70% and 80%, 

respectively. Although energy intensity in China decreased from 362.60 tons of coal 

equivalent (tce) per hundred thousand USDs to 94.37 tce per hundred thousand USDs 

during 1978-2012 (at constant prices in 2000) [3], the efficiency of energy use in 

China was still relatively low compared to those in other developed economies. 

In November 2009, the Chinese government proposed that carbon dioxide 

emission per unit of GDP (carbon intensity) would be decreased by 40% to 45% in 

2020 compared to the year 2005 [4]. In 2010, both energy intensity target and carbon 

intensity target were included in the12th Five-Year Plan (2011-2015) for National 

Economic and Social Development, which regulated that in 2015, energy 
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consumption per unit of GDP (energy intensity) would be decreased by 16% and the 

carbon dioxide emissions per unit of GDP would be decreased by 17% compared to 

the year 2010. Needless to say, the industrial sector plays an important role in China’s 

energy conservation and emissions reduction. According to the regulation of industrial 

energy conservation during the 12th Five-Year Plan period (2011-2015), energy 

consumption per unit of value added in industrial enterprises above designated size 

(enterprises with the annual sales revenue over 806 thousand USDs) would be 

decreased by 21% in 2015 compared to the year 2010, and the expected amount of 

energy conservation would be 670 million tons of coal equivalent (Mtce) during 

2011-2015. In addition, the Chinese government also proposed targets of energy 

consumption per unit of value added in energy-intensive industrial sub-sectors such as 

iron and steel industry (ISI), nonferrous metals industry (NMI), petroleum processing 

and coking industry (PPCI), chemical industry (CI), building materials industry (BMI), 

etc. 

Industrialization is currently the major character of economic growth and energy 

consumption growth in China. During 1985 to 2011, energy consumption in the 

industrial sector accounted for about 70.3% of the national energy consumption. The 

proportion has shown an increasing trend over the last few years. On the contrary, the 

share of industrial value added (IVA) in GDP revealed a decreasing trend. In the year 

2011, value added of the industrial sector was 2918.03 billion USDs, accounting for 

39.8% of the national GDP; however, industrial energy consumption amounted to 

2464.4 Mtce, accounting for 70.8% of China’s total energy consumption, and 
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industrial electricity consumption reached 3470.7 billion kWh, accounting for 73.8% 

of China’s total electricity consumption [1]. It can be seen that the industrial sector in 

China is prominently energy-intensive. Energy conservation and emissions reduction 

in the industrial sector is the key to China’s emissions reduction and the achievement 

of low-carbon transition. 

1.2. Overview of China’s industrial sector 

China’s economic growth is dominated by the industrial sector at the 

industrialization stage. The importance of industrial sector derives from the fact that 

the sectoral employment accounts for 30 percent of China’s total employment, and 

that industrial value added accounts for nearly 40 percent of GDP, etc. China’s 

industrial sector has developed rapidly over the past three decades, which was mainly 

driven by the accelerating speed of industrialization and urbanization. The industrial 

value added (IVA) increased from 92.28 billion USDs in 1985 to 1531.80 billion 

USDs in 2010 (at constant prices in 1990) [5]. 

The importance of industrial sector also highlighted by its role in providing raw 

materials for meeting the massive infrastructure needs during urbanization process. 

As one of the most energy-intensive sub-sectors of industry, iron and steel industry of 

China (ISI) produced 683.9 million tons of crude steel in 2011 (about 6.4 times as 

much as that of Japan, and 7.9 times as much as that of the United States), which 

ranked first in the world and accounted for 45.1% of the world’s total production. 

Take the cement industry for another example. Cement production of China was 2058 

million tons in 2011 (increased by 10.6% compared to the year 2010), and ranked first 
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in the world, which was about 9.3 times as much as that of India, 31 times that of the 

United States and 37 times that of Japan.  

Similar to the rapid growth in value added and output, energy consumption of 

China’s industrial sector also increased significantly, which grew from 714.13 Mtce 

(million tons of coal equivalent) in 1991 to 2320.2 Mtce in 2011 [1]. Industrial final 

energy use, a common indicator for tracking industrial energy consumption, grew 

from 505.29 Mtce to 1478.12Mtce in China during 1991-2011, of which the average 

annual growth rate was 5.9%. The average annual growth rate of CO2 emissions from 

industrial final energy use was 5.4%. Specifically, CO2 emissions from industrial final 

energy use increased from 1185.40 Mt to 3134.92 Mt during the same period, which 

is equivalent for an increase of 164.5%. Industrial processes including cement and 

limestone manufacture also contribute to CO2 emissions of China’s industrial sector. 

Due to the massive infrastructure construction, China’s cement production increased 

rapidly from 248.32 Mt in 1991 to 1881.91 Mt in 2010, and the corresponding CO2 

emissions from cement production grew from 130.86 Mt to 991.76 Mt as a result (See 

Fig. 1). 
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Fig. 1. Energy consumption and CO2 emissions trends in China’s industrial sector 

during 1991-2010. 

Source: CEIC China Database [1]; China Energy Statistical Yearbook [3] 

 

From the perspective of carbon dioxide emissions from industrial final energy use, 

CO2 emissions was driven up by 5.4% when industrial final energy consumption 

increased by 4.9%. However, a decrease in industrial final energy use occurred during 

the “stagnancy” period of 1998-2001 and consequently there was a subsequent 

reduction in the corresponding CO2 emissions. The phenomenon was mainly because 

of the ownership restructuring in Chinese state industry. Numerous small-and 

medium-sized state-owned enterprises were converted into shareholding companies 

with mixed public and private ownership, which were sold, leased, merged or just 

allowed to go bankrupt. The growth of industrial value added thereby dropped sharply 
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from about 20% to 8% during 1998-2001. 

Coal has dominated the energy consumption structure in China’s industrial sector 

for a long time. During the study period, energy consumption related with coal 

increased by 4.5% annually. In the meantime, the sectoral demand for electricity and 

natural gas grew by 9.5% and 6.3%, respectively. Notably, the proportion of energy 

consumption related with coal decreased continuously from 87% in 1991 to 79% in 

2010. Based on the final energy consumption of China’s industrial sector, we calculate 

the corresponding CO2 emissions from different energy sources. Results demonstrate 

that raw coal and coke are the major contributors to carbon dioxide emissions of 

China’s industrial sector. Although the share of CO2 emissions from raw coal showed 

a decreasing trend from 57.5% to 37.6% during 1990-2010, the share of CO2 

emissions from coke increased from 17.9% in 1990 to 32.5% in 2010 (Fig.2). 

Particularly, carbon dioxide emissions from raw coal and coke accounted for 70% of 

industrial CO2 emissions in 2010. 
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Fig. 2. Carbon dioxide emissions from industrial final energy consumption. 

Source: China Energy Statistical Yearbook [3] 

It can be seen from Fig. 2 that carbon dioxide emissions of China’s industrial 

sector during the study period (1991-2010) were attributed to the rapid growth of 

energy demand as well as the coal-dominated energy structure. The key factors 

contributing to the decrease in carbon dioxide emissions of China’s industrial sector 

during 1998-2001 included the industrial restructuring caused by ownership change 

with a decrease in the growth of industrial value added of 20.76 percent, a decrease in 

the sectoral energy intensity of 15.23 percent. Energy diversification also helped 

reduce the share of coal in China’s industrial final energy consumption. The 

predominant share of carbon dioxide emissions of China’s industrial sector comes 

from the manufacturing industry (90 percent), with smaller shares from mining and 

quarrying industry (7 percent) and industry of electric power, gas and water 



10 

 

production supply (3 percent). Therefore, trends in China’s industrial sector emissions 

are closely tied to economic output in energy-intensive manufacturing. The 

energy-related CO2 emissions of manufacturing industry increased from 1090.38 Mt 

in 1991 to 2604.91 Mt in 2010, which is equivalent to an increase of 139%. 

It is necessary to analyze the changes as well as determinant factors of China’s 

industrial CO2 emissions. The major contributions of our study are summarized as 

follows: first, this paper provides a reference for the targets of industrial CO2 

emissions reduction by decomposing factors that affect CO2 emissions in China’s 

industrial sector and quantifying the impacts of each factor on industrial CO2 

emissions change; second, this article offers a scientific basis for China’s future 

strategies of sustainable development of the industrial sector by establishing a 

long-run equilibrium relationship between China’s industrial CO2 emissions and 

factors such as carbon dioxide emissions per unit of energy consumption, industrial 

value added, sectoral labor productivity and sectoral fossil fuel consumption; third, 

policy suggestions are provided to reduce industrial CO2 emissions in China. 

The remainder of this paper is structured as follows. Section 2 presents a brief 

literature review. Section 3 describes the methodologies and data source. Section 4 

presents the empirical results. Section 5 summarizes findings and attempts to draw 

some policy implications. 

2. Literature 

2.1. Decomposition method 

Index decomposition analysis, which has been developed since the late 1970s [6], 
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is widely used to explore the driving forces that underlie the increase of CO2 

emissions. Generally, the index decomposition method is used to measure the 

contributions of each factor based on the CO2 emission identity. Using the 

Logarithmic Mean Divisa Index (LMDI) proposed by Ang [7], numerous studies 

analyzed China’s CO2 emissions change such as Wang et al. [8], Zhang et al. [9], Zha 

et al. [10], Tan et al. [11]. The above-mentioned studies pointed out that energy 

intensity was the determinant factor contributing to the decline in China’s CO2 

emissions over different periods. Using the newly proposed three-level “perfect 

decomposition” method and provincially aggregated data, Wu et al. [12] investigated 

the evolution of energy-related CO2 emissions in China during 1985-1999 and found 

that the industry-related sector provides the strongest negative influence on the energy 

intensity effect. Using adaptive weighting divisia index, Fan et al. [13] measured the 

final energy-related carbon intensity of material production sectors and pointed out 

that greater emphasis should be given to the secondary industry. 

China’s total carbon dioxide emissions are dominated by the industrial sector. For 

the change of industrial CO2 emissions, Zhang [14] and Liu et al. [15] showed 

different research results for the role of energy intensity. By using decomposition 

analysis, several studies including Kim and Worrell [16], Steenhof [17], Xu et al. [18], 

Lin and Moubarak [19], Wang et al. [20], Tian et al. [21] explored energy related 

GHG emission trajectories, features, and driving forces of industrial sub-sectors in 

China. Table 1 summarizes a collection of the highly cited decomposition studies that 

focused on the main factors affecting CO2 emissions change of industrial sectors in 
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China. 

Table 1 Studies of contributors to the changes of industrial CO2 emissions in China. 

Reference Period Sector Contributors to the 

increase of emissions 

Contributors to the 

decline of emissions 

Kim and Worrell 

[16] 

1981-1996 Iron and steel 

industry 

Activity effect, Structural 

change in the product mix, 

Final fuel mix, Utility mix 

energy-efficiency 

Zhang [14] 1990-1997 Industrial sector Output effect Energy intensity, 

Production structure 

Steenhof [17] 1980-2002 Electricity sector Fossil fuel effect Efficiency effect 

Liu et al. [15] 1998-2005 Industrial sector Energy intensity, Final fuel 

shift 

Energy intensity 

change during 

1998-2002 

Xu et al. [18] 1990–2009 Cement industry Efficiency policies, 

Industrial standards 

Growth of cement 

output 

Lin and Moubarak 

[19] 

1986 - 

2010 

Textile industry Industrial activity, 

Industrial scale 

Energy mix, Carbon 

intensity 

Tian et al. [21] 2001-2010 Iron and steel 

industry 

Product scale effect Energy intensity effect, 

Emission factor change 

Wang et.al [20] 2005-2009 Cement industry Cement production activity, 

Clinker production activity 

Energy intensity 

2.2. The cointegration model 
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The cointegration approach has been widely adopted in energy economic studies 

because of its unique advantages [22-23]: first, it can overcome the problem of 

spurious correlation of time series; second, because of its ability to capture the 

long-term relationship among the economic variables, it has been frequently used to 

analyze the impacts of economic indicators on energy demand, CO2 emissions, the 

macroeconomy and so on. In the literature, a large number of studies over the last few 

years have discussed energy demand or carbon dioxide emissions in different 

countries using the cointegration method, such as India [24], Tunisia [25], South 

Africa [26], Greece [27], Bangladesh [28], Pakistan [29], Australia [30], Malaysia [31] 

and so on. For the case of China, several studies proved the relationship between 

energy demand and economic growth [32-34] as well as the relationship between 

carbon dioxide emissions and economic growth [35-37]. In the literature, many 

studies focus on the major factors influencing energy demand or CO2 emission in the 

industrial sector in China because of its important role and China’s current 

development stage [38-39]). Table 2 lists a series of the most highly cited studies that 

shed light on influencing factors of CO2 emissions in China based on the 

cointegration method. 

Table 2 Studies of energy consumption and CO2 emissions in China based on the 

Cointegration method. 

Reference Dependent variable Main influencing factors 

Jalil and Mahmud [32] CO2 emissions in China Energy consumption, economic growth, 

Foreign trade 
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Jalil and Feridun [33] CO2 emissions in China Economic growth, financial development 

and energy consumption 

Zhao et al. [39] CO2 emissions in Power 

industry 

The standard coal consumption rate for 

generating power (SCC), the average 

thermal power equipment utilization hour 

(EUH), the industrial added value of the 

power sector (IVA) 

Lin and Ouyang [40] Electricity intensity in 

nonmetallic mineral products 

industry 

R&D intensity, Industrial electricity price, 

Enterprise scale, Labor productivity 

 

In light of the above discussion, studies on CO2 emissions of China’s industrial 

sector are relatively few. The purpose of this paper is to analyze the contributors to 

CO2 emissions change of China’s industrial sector during 1991-2010 based on the 

decomposition analysis. Besides, in order to further explore the influencing factors of 

China’s industrial CO2 emissions, we establish the long-term relationship between 

industrial CO2 emissions and factors such as carbon dioxide emissions per unit of 

energy consumption, industrial value added, sectoral fossil-fuel use and sectoral labor 

productivity using the cointegration method. 

3. Methodology and data source 

3.1. Decomposition analysis 

The decomposition of fossil fuel CO2 emissions into related factors dates back to a 
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series of studies undertaken in the 1980s, mainly at the industry level for a single 

industrialized country. Kaya [41] proposed the Kaya Identity and decomposed the 

CO2 emissions into several affecting variables: 

* * *
GHG TOE GDP

GHG POP
TOE GDP POP

                               (1) 

where, GHG stands for greenhouse gas emissions; TOE  is the total energy 

consumption; GDP  is the gross domestic product, and POP  is the population. Eq. 

(1) establishes the relationship between greenhouse gas emissions and influencing 

factors such as greenhouse gas emissions per unit of energy consumption, energy 

consumption per unit of GDP, GDP per capita and population. 

Considering the importance of energy structure, we expand Eq. (1) as: 

* * * *
GHG EFF TOE GDP

GHG POP
EFF TOE GDP POP


                            

(2) 

where, EFF  is the fossil fuel energy consumption. The identity in Eq. (2) focuses 

on CO2 emissions from the combustion of fossil fuels (coal, oil and natural gas). Ang 

[42-43], Ang and Lee [44-45] discussed several methodological and application issues 

related to the technique of the decomposition of industrial energy consumption. 

In this paper, we use the decomposition approach to identify factors influencing 

energy consumption and energy-related CO2 emissions of China’s industrial sector: 

* * * * * * * *i i i
i i i i i i i

i i i

GHG EFF TOE IVA
GHG EPT CIE EM EI IA IS

EFF TOE IVA EPT
         (3) 

where, the subscript i  denotes the industrial sector of China; CIE  is CO2 

emissions per unit of energy consumption (carbon intensity of energy use); EM  is 

the share of fossil fuel use in the total energy consumption (energy mix, which 
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represents the level of energy diversification); EI  is energy consumption per unit of 

industrial value added (sectoral energy intensity); IA is industrial value added per 

capita (industrial activity), and EPT  is the employment of China’s industrial sector. 

Generally, an increase in employment implies the expansion of an economic sector. 

Therefore, we use this indicator to represent the industry size. Table 3 summarizes the 

definitions of variables in this paper: 

Table 3 Determinants of energy-related CO2 emissions change in China’s industrial sector. 

Variable Determinant Description Item 

iCIE  /i iGHG EFF  Carbon Intensity of Energy Use 
iGHG : carbon dioxide emitted from energy consumption 

iEM  /i iEFF TOE  Energy Mix iTOE : total energy consumption 

iEI  /iTOE IVA  Energy Intensity iEFF : fossil fuel energy consumption 

iIA  / iIVA EPT  Industrial Activity IVA : industrial value added 

iIS  iEPT  Industry Size 
iEPT : employment in China’s industrial sector 

 

The change in CO2 emissions of China’s industrial sector ( iGHG ) between a 

base year 0 and an end year T can be decomposed into the effects of the change 

in iCIE  (
iCIEGHG ), the change in iEM  (

iEMGHG ), the change in EI
i
 

(
iEIGHG ), the change in iIA  (

iIAGHG ) and the change in iIS  (
iISGHG ): 

( ) (0)

i i i i i

i i i

CIE EM EI IA IS

GHG GHG T GHG

GHG GHG GHG GHG GHG

  

     
                 (4) 

The effects, in turn, can be calculated with the following formula by using the 

LMDI method: 



17 

 

 
 

( ) (0)
*ln ( ) (0)

ln ( ) (0)i

i i
CIE i i

i i

GHG T GHG
GHG CIE T CIE

GHG T GHG


 


                  (5) 

 
 

( ) (0)
*ln ( ) (0)

ln ( ) (0)i

i i
EM i i

i i

GHG T GHG
GHG EM T EM

GHG T GHG


 


                  (6) 

 
 

( ) (0)
*ln ( ) (0)

ln ( ) (0)i

i i
EI i i

i i

GHG T GHG
GHG EI T EI

GHG T GHG


 


                    (7) 

 
 

( ) (0)
*ln ( ) (0)

ln ( ) (0)i

i i
IA i i

i i

GHG T GHG
GHG IA T IA

GHG T GHG


 


                     (8) 

 
 

( ) (0)
*ln ( ) (0)

ln ( ) (0)i

i i
IS i i

i i

GHG T GHG
GHG IS T IS

GHG T GHG


 


                     (9) 

 

The decomposition of the changes in CO2 emissions of China’s industrial sector 

can be calculated according to the equations above. We use relevant data during the 

1991-2010 period and separate the time into four time intervals for easier data 

management. 

3.2. The cointegration analysis 

The cointegration method, introduced by Engle and Granger [46], has been widely 

adopted to analyze influencing factors of carbon dioxide emissions, i.e., Narayan and 

Narayan [47], Jahangir Alam, et al. [48], Saboori and Sulaiman [49], Al-mulali et al., 

[50]. 

3.2.1. Definition of variables 

Variables in this article are defined as follows: 

Carbon dioxide emissions per unit of energy consumption (CIE): Carbon 

dioxide emissions per unit of energy consumption (carbon intensity of energy use), 

which are mainly influenced by energy structure, reflect the quality of energy because 
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of different coefficients of CO2 emissions. If the share of clean energy in energy 

structure were higher, greenhouse gas emissions per unit of energy consumption 

would be lower. However, energy consumption of China’s industrial sector is 

dominated by coal, which has the highest coefficient of CO2 emissions among fossil 

fuels. Therefore, in order to reduce CIE, China must improve energy structures of 

consumption as well as production. Moreover, CIE is also influenced by the efficiency 

of energy use. 

Industrial value added (IVA): Rapid economic growth is a major factor affecting 

China’s energy demand. Likewise, energy consumption of China’s industrial sector is 

mainly driven by the growth of industrial value added (IVA). From the historical data 

of this paper, there was a decline in energy demand when the growth of industrial 

value added slowed down during the period of China’s industrial restructuring from 

1998 to 2000. Over the last two decades, the industrial value added of China’s 

industrial sector grew rapidly from 143.38 billion USDs in 1990 to 1531.78 billion 

USDs in 2010 (both are at constant prices in 1990), which was equivalent to a growth 

of 834% [1]. To summarize, during 1991-2000, the average annual growth rate of IVA 

of China’s industrial sector was about 12.6%, and the average annual growth rate of 

industrial total energy consumption was about 6.5%, which was nearly half of the 

growth rate of IVA. 

Labor productivity (LP): The improvement of labor productivity helps reduce 

energy intensity, and thereby contributes to the reduction of carbon dioxide emissions 

of China’s industrial sector. Reasons for the decline in carbon dioxide emissions 
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include: first, the improvement of labor productivity helps reduce energy intensity 

[51], thereby helps decrease energy consumption and energy-related CO2 emissions; 

second, skilled workers might have greater knowledge in energy utilization [52], so 

that can reduce energy consumption in the production process; third, the improvement 

of labor productivity can be seen as the process of mechanization and computerization, 

which help improve efficiency of energy utilization. During 1991-2010, the average 

annual growth rate of labor productivity of China’s industrial sector was about 11%. 

Fossil fuel consumption (EFF): The main source of carbon dioxide emissions is 

the combustion of fossil fuels, followed by certain industrial processes, land-use 

changes and renewable electricity generation from biomass. New energy and other 

renewable energy including solar power, wind power and hydropower have no 

emissions footprints [53]. Therefore, increasing the supply of renewable energy is 

good way to replace carbon-intensive energy sources. However, clean energy use only 

accounted a small share in China’s industrial sector, and the increased fossil fuel 

consumption led to the increasing sectoral CO2 emissions. 

3.2.2. The cointegration model 

Based on the discussion above, we construct the function of carbon dioxide 

emissions of China’s industrial sector as follows: 

2 ( , , , )
t t t t tTCO f CIE IVA LP EFF                                    (10) 

where, 2 t
TCO is the total amount of carbon dioxide emissions from energy 

consumption; tCIE  is carbon dioxide emissions per unit of energy consumption 

(carbon intensity of energy use); tIVA  is the value added of China’s industrial sector; 

http://www.ucsusa.org/clean_energy/our-energy-choices/renewable-energy/how-biomass-energy-works.html
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tLP  is the labor productivity (industrial value added per worker); tEFF  is the fossil 

fuel consumption. All data from 1991 to 2010 are collected from CEIC China 

database [1] and China Energy Statistical Yearbook [3]. All data are calculated at 

constant prices in 1990. All variables are taken the logarithm to avoid the 

heteroscedasticity. 

The function of carbon dioxide emissions of China’s industrial sector is as follows: 

2 1 2 3 4t t t t tLnTCO LnCIE LnIVA LnLP LnEFF c                 (11) 

Before conducting the cointegration analysis, stationary tests are essential for 

identifying the stationarity of time series. A stationary linear combination of economic 

variables indicates the existence of cointegration relationship, which is a long-run 

equilibrium. The most popular testing procedures are the augmented Dickey-Fuller 

(ADF) test [54], and the Phillips-Perron (PP) test [55]. 

In order to avoid impacts of higher-order serial correlation, the ADF test includes 

the lagged difference of dependent variable 
ty in the right side of regression equation: 

0 0 1 1 1

m

t t i t i ti
y t y y     

          1 , 2 , 3 , . . . .t T                
(12) 

where, 
0  is a constant; 

0a t  is the linear trend; 
ty  is the tested variable in 

period t ; 
1ty  is

1 2t ty y  ; 2~ . . . (0, )t i i d N  (independently and identically 

distributed).
 

In order to test the null hypothesis of the presence of a unit root in
ty , we conduct 

the hypothesis testing that 
1 0   in Eq. (12). If 

1  is significantly less than zero, 

then the null hypothesis of a unit root is rejected: 
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0 1

1 1

: 0

: 0

H

H









                                                 (13) 

The PP test uses the same model as the ADF test, but it is remarkably insensitive 

to the heteroscedasticity and the autocorrelation of the residuals. Therefore, both the 

ADF test and the PP test are applied in this paper for a comprehensive assessment of 

the stationary time series. 

If the integration of each series is of the same order, then we can continue to test 

the existence of the cointegration relationship over the sample period. The 

Engle-Granger two-step procedure and Johansen-Juselius method [56-57] are the 

most commonly used methods for the cointegration test. The Engle-Granger two-step 

method is applied to the cointegration test in a single equation, while the 

Johansen-Juselius method not only can detect the existence of cointegration among 

economic variables but also can accurately determine the number of cointegration 

vectors. Therefore, we use the Johansen-Juselius trace test and the maximum 

eigenvalue test to determine the number of cointegrating vectors in our model. 

Two test statistics are included in the Johansen-Juselius test: the maximum 

eigenvalue and trace test statistics. The maximum eigenvalue statistic tests the 

assumption of the existence of r  cointegration vectors by calculating the maximum 

likelihood test statistic 
maxLR : 

max 1ln(1 )rLR T K                                               (14) 

where, T  is the number of samples; 
1rK 
 is the eigenvalue. Trace statistic tests 

the assumption that there are less than r  co-integrating vectors by calculating the 

likelihood test statistic 
traceLR : 
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1

ln(1 )
n
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i r

LR T K
 

          0 , 1 , 2 , . . . , 1r n                     (15) 

where, T  is the number of samples; 
1,...,r nK K

 is the ( )n r  smallest 

eigenvalues for estimation. The distribution of the test statistics is shown in the study 

by Osterwald-Lenum [58]. 

3.3. Data source 

This study is based on the annual data covering the period from 1991 to 2010. 

Data of industrial value added, sectoral energy consumption (standard unit of Mtce) 

and sectoral employment are collected from the China Statistical Yearbook [9]. In 

order to avoid the problem of double counting, we collect the final consumption of 

different energy sources in China’s industrial sector (the physical units such as million 

tons and cubic meters) from the China Energy Statistical Yearbook [3]. 

Carbon dioxide emissions of China’s industrial sector from fossil fuel 

consumption are calculated by: 

16 16

2 2

1 1

* * * *(44 /12)i i i i

i i

CO CO E CF CC COF
 

                            (16) 

In which, 2CO  stands for the energy-related carbon dioxide emissions; i  

represents the different energy sources including raw coal, cleaned coal, other washed 

coal, coke, coke oven gas, other gas, other coking products, crude oil, gasoline, 

kerosene, diesel oil, fuel oil, liquefied petroleum gas (LPG), refinery gas, other 

petroleum products and natural gas; iCF  is the conversion factor from the physical 

unit to kjoule (in this paper, we take Appendix Ⅳ in China Energy Statistical 

Yearbook [3] as a reference for calculation); iCC  is the coefficient of carbon content, 
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which is collected from the Intergovernmental Panel on Climate Change [59]; 

iCOF is the carbon oxidation factor, which is usually assumed to be one for the 

convenience of calculation, and 44 /12  is the conversion factor from carbon to 

carbon dioxide. In summary, * * *44 /12i i iCF CC COF , which is the coefficient of 

carbon dioxide emissions from different energy sources, is assumed to be constant 

over time. Since China’s power structure is dominated by coal (80 percent), we also 

include the energy-related CO2 emissions for electricity generation using the method 

adopted by Lin and Jiang [60]. Data of China’s power structure are collected from the 

CEIC China Database [1], and data of average annual coal consumption for power 

generation are collected from the China Electric Power Yearbook [61]. 

However, the limitations of decomposition methodology for analyzing time-series 

include the use of current values for calculating the energy content, the conversion 

rates of different energy sources from the physical unit to the unit of kjoule, and 

emissions factors in defining energy and CO2 emissions performance should also be 

noted. Although different scholars use different time intervals [62] in the analyses of 

energy use, energy intensity and energy-related CO2 emissions in China, in order to 

maintain a consistency with the time intervals in China’s Economic and Social 

Development Plan, we prefer the five-year intervals in this paper. 

4. Empirical results and analysis 

4.1. CO2 emissions change in China’s industrial sector 

Decomposition analysis can quantify the impacts of determinants on the changes 

in energy-related CO2 emissions. In our study, the contribution of each factor to CO2 
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emissions change of China’s industrial sector is analyzed by splitting the study period 

into four time intervals during 1990-2010 (Fig. 3). 

Results show that there have been significant changes of carbon dioxide emissions 

in China’s industrial sector during the last two decades. Driving forces need to be 

identified to design appropriate policies to mitigate the increasing trend of China’s 

industrial CO2 emissions. As shown in Fig. 3, industrial activity effect (IA) and 

energy intensity effect (EI) were the major driving forces of the energy-related CO2 

emissions change in China’s industrial sector. Industrial value added per worker (IA) 

was the most important factor that led to the increase in CO2 emissions, while energy 

consumption per unit of industrial value added (EI) was the most influential factor 

contributing to the decline in CO2 emissions of China’s industrial sector. Both 

industry size effect (IS) and carbon intensity of energy use effect (CIE) showed 

varying trends interchanging time intervals (increasing and decreasing) during the 

study period; however, the IS effect was the cause of the increase in industrial CO2 

emissions and the CIE effect was the cause of the decline in industrial CO2 emissions. 

The varying trend of the IS effect may be the result of changes in ownership during 

the period of China’s industrial restructuring. The varying trend of CIE effect may 

result from the accelerating industrialization and urbanization from the year 2000. 

Furthermore, the energy mix effect (EM) contributed to the reduction of the industrial 

CO2 emissions, even though the effect is quite small. 
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Fig. 3. Decomposition of changes of energy-related CO2 emissions in China’s 

industrial sector 

Notably, the contributions of changes in industrial activity effect (IA) to the 

increase in energy-related carbon dioxide emissions were the highest among the 

variables, which were 747.74 Mt during 1991-1995, 903.59 Mt during 1996-2000, 

545 Mt during 2001-2005 and 741.36 Mt during 2006-2010. Even though the impact 

of industrial activity effect (IA) was considerably reduced during 2011-2005, it was 

still the most important factor pushing up energy-related CO2 emissions in China’s 

industrial sector. On the other hand, energy intensity effect (EI) was the major 

contributor to the decline in energy-related CO2 emissions during 2001-2005. 

Particularly, the impact of energy intensity effect (EI) on the decline in energy-related 
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CO2 emissions reached 600.13 during the period of 2006-2010. Government policies 

in this area played a major role. The Chinese government committed to reduce energy 

intensity by 20 percent in 2010 compared to the year 2005. Followed by the industrial 

activity effect (IA), the effect of industry size (IS) was also a driving force 

contributing to the increase in CO2 emissions expect the period of 1996-2000. The 

impact of industry size (IS) on CO2 emissions showed an overall upward trend, and its 

contribution to the growth of CO2 emissions reached 520.85 Mt during 2005-2010. In 

order to further explore different factors contributing to the changes of industrial CO2 

emissions, we calculate the annual effect of each determinant in this paper. Results are 

shown in Fig. 4. 

 

Fig. 4. Contributors to the annual changes of energy-related CO2 emissions in China’s 

industrial sector. 
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It can be seen that CO2 emissions change in China’s industrial sector increased 

from 63.64 Mt in 1992 to 1949.52 Mt in 2010, equivalent to a growth of 2962%. The 

growth rate of CO2 emissions was the highest during the period of rapid 

industrialization. As shown in Fig. 4, the industrial activity effect (IA) was the major 

factor contributing to the increase in energy-related CO2 emissions in China’s 

industrial sector. Specifically, the contribution increased from 200.85 Mt in 1992 to 

3939.63 Mt in 2010. On the contrary, the energy intensity effect (EI) was the major 

determinant for the decline in industrial CO2 emissions, and its negative contribution 

increased from 153.46 Mt in 1992 to 2116.72 in 2010. Both energy mix effect (EM) 

and the effect of carbon intensity per unit of energy use (CIE) contributed to the 

decline in industrial CO2 emissions. The contribution of energy mix effect (EM) to the 

decline in industrial CO2 emissions increased from 2.39 Mt in 1991 to 167.72 Mt in 

2010. Similarly, the contribution of changes in carbon intensity per unit of energy use 

(CIE) to the sectoral energy-related CO2 emissions reduction increased from 12.00 Mt 

in 1992 to 244.85 Mt in 2010. However, contributions of the two effects were quite 

small compared to the effect of energy intensity (EI). Therefore, they had limited 

impacts on energy-related CO2 emissions change in China’s industrial sector. The 

effect of industry size (IS) fluctuated during the period 1998-2004 but showed an 

overall positive impact on the increase in energy-related CO2 emissions in China’s 

industrial sector. The U-shaped trend of contributions of industry size effect (IS) 

verified our deduction. As discussed before, the negative impacts on the increase in 

industrial CO2 emissions can be attributed to the industrial restructuring caused by 
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ownership change. Results demonstrate that the negative contributions of industry 

size effect (IS) to energy-related CO2 emissions change increased from 90.25 Mt in 

1998 (the beginning of industrial restructuring) to the peak 147.80 Mt in 2000, and 

then dropped to 50.81 Mt in 2004 (the end of industrial restructuring). In summary, 

the driving forces of industrial CO2 emissions change are effects of industrial activity 

(IA) and energy intensity (IE). The effect of industry size (IS) varied during the study 

period because of China’s industrial restructuring during 1998-2004, but indicated 

overall positive impacts on CO2 emissions increase. Although the impacts were quite 

small, the effects of carbon intensity of energy use (CIE) and energy mix (EM) 

contributed to industrial carbon dioxide emissions decrease. 

4.2. Factors affecting China’s industrial CO2 emissions 

4.2.1. Tests and results 

Before proceeding to the cointegration analysis, we should test the unit root for the 

stationarity of time series. 

1. Unit root test 

In this article, we adopt the ADF test and PP test simultaneously to test the 

existence of unit root. Results of unit root test are shown in Table 4. All variables are 

stable at the 1% significance level with the second difference. Therefore, time series 

are considered stable with the second difference, which satisfies the necessary 

conditions for the construction of the cointegration equation. 
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Table 4 Unit root test. 

Series Level First difference Second difference 

ADF PP ADF PP ADF PP 

LnGHG 0.216947 0.370449 -2.761565* -3.376542** -7.123797*** -7.123797*** 

LnCI -1.427550 -1.192163 -6.425172*** -6.575105*** -9.461870*** -29.75722*** 

LnIVA -1.289392 -2.251391 -4.090982*** -1.697991 -2.244858 -4.653348*** 

LnLP -2.028839 -4.367619*** -4.444809*** -1.920054 -6.449129*** -13.78485*** 

LnEFF -0.024238 0.248056 -2.424200 -2.918669 -5.306580*** -7.844329*** 

Note: [1] We carry out the tests using EViews8; [2] ***, **, and * indicate that 

variables are significant at the 1%, 5% and 10% levels, respectively; [3] The 

hypothesis is that the test equation contains only the intercept. 

 

2. Selection of lag intervals for the VAR model 

In order to determine the optimal lag order k of each variable, the AIC (Akaike 

information criterion), SC (Schwarz information criterion), sequential modified LR 

test statistic LR (Likelihood Ratio), FPE (Final prediction error), and HQ 

(Hannan–Quinn) information criterion are used in this paper. Table 5 shows the lag 

order of the VAR model based on various selection criteria. 

Table 5 VAR Lag Order Selection Criteria. 

 Lag LogL LR FPE AIC SC HQ 

0 112.7299 N.A.  8.18e-12 -11.3399 -11.0915 -11.2979 

1 241.8422 176.6800* 1.59e-16 -22.2992 -20.8080 -22.0468 
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2 285.1438 36.4646 4.70e-17* -24.2257* -21.4918* -23.7630* 

Note: [1] Endogenous variables include LNTCO2, LNCIE, LNIVA, LNLP, and 

LNEFF, and exogenous variable includes C; [2] * indicates the lag order selected by 

the criterion. 

 

3. Johansen cointegration test 

If the integration of each series is of the same order, we can further test the 

existence of the cointegration relationship over the sample period. The most 

commonly used methods are the Engle-Granger two-step procedure provided by 

Engle and Granger [46] and Johansen-Juselius method proposed by Johansen and 

Juselius [56] and Johansen [57]. The Engle-Granger two-step method is applied to the 

co-integration test in a single equation, while the Johansen-Juselius method not only 

can detect the existence of co-integration between the variables, but also can 

accurately determine the number of cointegration vectors. Therefore, based on the fact 

that a multitude of variables are used in this paper, we use the Johansen-Juselius 

method to study the co-integration relationship among economic variables. Results 

are presented in Table 6. 

Table 6 Johansen cointegration test. 

Hypothesized No. 

of CE(s) 

Eigenvalue Trace 

Statistic 

0.05 Critical 

Value 

Prob.** 

None * 0.973073 154.9458 76.97277 0.0000 
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At most 1 * 0.880622 86.26776 54.07904 0.0000 

At most 2 * 0.794411 45.88395 35.19275 0.0025 

At most 3 0.466458 15.82827 20.26184 0.1826 

At most 4 0.185230 3.892133 9.164546 0.4284 

Hypothesized No. 

of CE(s) 

Eigenvalue Max-Eigen 

Statistic 

0.05 Critical 

Value 

Prob.** 

None * 0.973073 68.67800 34.80587 0.0000 

At most 1* 0.880622 40.38381 28.58808 0.0010 

At most 2 * 0.794411 30.05569 22.29962 0.0034 

At most 3 0.466458 11.93613 15.89210 0.1897 

At most 4 0.185230 3.892133 9.164546 0.4284 

Note: [1] The tests are carried out using EViews8; [2] Trace test indicates 3 

cointegrating eqn(s) at the 0.05 level and the Max-eigenvalue test indicates 3 

cointegrating eqn(s) at the 0.05 level of significance; [3] * denotes rejection of the 

hypothesis at the 0.05 significance level; ** denotes the MacKinnon-Haug-Michelis 

[63] p-values. 

 

Table 6 shows that the null hypothesis - there is no cointegration equation is 

rejected at the 5% significance level. Therefore, there exists a long-term equilibrium 

relationship among variables. 

4. Stability test 

It should be noted that in the prediction of the VAR model, a small sample size and 
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the low freedom degree would affect the validity of parameter estimation in the model. 

Therefore, it is highly necessary to test the robustness of the VAR model. In this paper, 

we use inverse roots of AR characteristic polynomial to test the stability of the model. 
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Fig. 5. Inverse Roots of AR Characteristic Polynomial. 

 

As shown in Fig. 5, all the eigenvalues of adjoint matrix are smaller than one 

except those unit roots assumed by the VECM model itself, which means that there 

isn’t any characteristic root outside the unit circle and the model in this paper satisfies 

the stability condition. 

4.2.2. The cointegration relationship 

We choose the cointegrating vector that meets the priori expectations, and drop 

other cointegrating vectors based on the statistical insignificance and inconformity of 

the coefficients. The selected and normalized cointegration vector is shown in Table 7. 

Table 7 Long-run estimation results. 
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Regressor Coefficient Standard error 

LNCIE 0.5457 0.0753 

LNY 0.3270 0.0364 

LNLP -0.0365 0.0259 

LNEFF 0.6573 0.0307 

C 0.4163 0.0966 

Note: Log likelihood 242.01. 

As shown in Table 7, all coefficients are in line with expectation. Carbon intensity 

of energy use (CIE), industrial value added (IVA) and fossil fuel consumption (EFF) 

are the driving forces of the growth of energy-related CO2 emissions in China’s 

industrial sector. Based on the above analysis, the improvement of labor productivity 

(LP) helps reduce the energy-related CO2 emissions from industry. However, the 

estimated coefficient is quite small in our model. Major reasons include: first, the 

industrial growth is extensive during China’s rapid industrialization process, and most 

employees are not well-skilled because of the shortage of talents and the relatively 

low educational level; second, there are a large number of backward production 

facilities that need to be closed down in China’s industrial sector, and there is very 

little substitutability between capital and labor. 

Elasticity coefficients show that a 1 percent increase in carbon intensity of energy 

use (CIE), industrial value added (IVA) and fossil fuel consumption (EFF) will result 

in a 0.546 percent, 0.327 percent and 0.657 percent increase of energy-related carbon 

dioxide emissions from industry, respectively. Furthermore, the impact of fossil fuel 



34 

 

use (EFF) on energy-related CO2 emissions is the largest, followed by carbon 

intensity of energy use (CIE) and industrial value added (IVA). 

Historical data were substituted into the estimated equation to examine the 

prediction accuracy of the model. Results are illustrated in Fig. 6. It can be seen that 

the model fits the historical data of LNTCO2 well (the average relative error is 

0.0045), thus providing the evidence that the cointegration equation has good 

prediction accuracy. 

 

Fig. 6. True value and fitted value of energy-related carbon dioxide emissions in 

China’s industrial sector. 

5. Conclusions and policy suggestions 

The purpose of this paper is to investigate the changes as well as the driving forces 

of energy-related carbon dioxide emissions in the China’s industrial sector. 

Application of decomposition analysis was based on the Logarithmic Mean Divisia 

Index (LMDI) that provided a quantitative analysis on how effects of carbon intensity 
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of energy use (CIE), energy mix (EM), energy intensity (EI), industrial activity (IA) 

and industry size (IS) influenced the sectoral energy-related carbon dioxide emissions 

from 1991 to 2010. Results show that the industrial activity effect (IA) and energy 

intensity effect (EI) were the major driving forces of the changes in energy-related 

CO2 emissions in China’s industrial sector. The industrial activity effect (IA) 

contributed to the significant increase of the sectoral CO2 emissions. On the contrary, 

the energy intensity effect (IE) was the major contributor to the reduction of CO2 

emissions. The effect of industry size (IS) varied during 1998-2004 but showed an 

overall positive impact on the sectoral CO2 emissions increase. Moreover, the impacts 

of fuel diversification (energy mix effect) and carbon intensity of energy use (CIE) 

were more prominent in the aspect of reducing energy-related CO2 emissions. Results 

in this paper are consistent with the previous studies such as Liu et al. [15], Lin and 

Moubarak [19], etc. 

In order to further explore the determinants of energy-related CO2 emissions in 

China’s industrial sector, we establish a long-run equilibrium relationship between the 

sectoral energy-related CO2 emissions and factors such as carbon intensity of energy 

use (CIE), industrial value added (IVA), labor productivity (LP) and the fossil fuel use 

(EFF) based on the cointegration model. Factors including carbon intensity of energy 

use (CIE), industrial value added (IVA) and fossil fuel use (EFF) have positive 

impacts on the energy-related CO2 emissions increase in China’s industrial sector, 

while the improvement of labor productivity (LP) is conducive to reducing the 

industrial CO2 emissions. Elasticity coefficients show that a 1 percent increase in 



36 

 

carbon intensity of energy use (CIE), industrial value added (IVA) and fossil fuel 

consumption (EFF) will result in a 0.546 percent, 0.327 percentand 0.657 percent of 

increase in the sectoral energy-related CO2 emissions, respectively. 

Policy implications and measures for mitigating the energy-relatedCO2 emissions 

increase in China’s industrial sector are suggested. 

Reducing energy intensity is the major strategy for CO2 emissions reduction in 

China’s industrial sector. Firstly, the policy of total energy consumption control, 

which is the most powerful impetus to limit industrial energy intensity, will directly 

promote energy efficiency improvement and make energy saving measures more 

specific in China’s industrial sector. For example, according to the notice of 

“Decomposition of the Key Tasks of Clean Air Action Plan (2013-2017) in Beijing”, 

all coal-fired power plants are required to be disabled in 2016. Secondly, 

energy-saving technologies can effectively improve the efficiency of energy use, and 

thereby save a sizeable amount of electric energy, emissions and utility bill in the 

industrial sector [64]. For instance, Hasanbeigi et al. [65] and Hasanbeigi and Price 

[66] indicated that development of new energy-efficiency and CO2 emission-reduction 

technologies and their deployment in the market would be key for energy intensive 

industries’ mid-and long-term climate change mitigation strategies. Therefore, China’s 

industrial sector should promote the application of advanced energy efficient and 

low-carbon technologies to reduce energy/carbon intensity [67]. The effectiveness of 

government policies to facilitate the adoption of those technologies is also highly 

important. Thirdly, phase-out of low efficient production capacity also helps reduce 
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energy consumption in the industrial sector. The backward capacities are still 

substantial in China’s energy-intensive industries such as the iron and steel industry, 

building materials industry, chemical industry, nonferrous metals industry, etc. In 

2013, Tianjin city claimed that it would no longer approve the new capacity expansion 

projects of energy-intensive industries including steel, cement and non-ferrous metals, 

and the construction of coal projects would be implemented the policy of “coal 

consumption reduction and replacement”. In conclusion, future policies should focus 

on industrial upgrading accompanied by reducing backward production capacity and 

the growth of energy-intensive industries. Meanwhile, industrial energy intensity can 

be reduced by setting better reduction targets supplemented with a scientific and 

effective management system [68].The long-term approach is to increase the research 

and development (R&D) investments in energy conservation technologies. 

Considering the investment risks and the external benefits of energy efficient 

technologies, the government should support the development of energy conservation 

and low-carbon technologies by providing subsidies, favorable financing or tax 

exemptions. 

Energy diversification and energy structure adjustment is crucial for mitigating 

energy-related CO2 emissions in China’s industrial sector. The share of coal in the 

primary energy use structure must be reduced as much as possible to mitigate the 

sectoral energy-related CO2 emissions. However, changing industrial energy structure 

will inevitably lead to higher cost of energy, which would reduce the speed of 

industrial growth. In the short term, because of the shortage of oil and gas, the price 
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differences between oil, gas and coal, as well as the safety concerns of nuclear power, 

coal is difficult to be substituted substantially. Therefore, using coal in a more 

efficient and clearer way is an important solution. Specifically, the government 

measures should focus on encouraging and strengthening the supervision and 

punishment for both the demand side and the supply side. On the demand side, 

increasing energy costs to make energy prices reflect the externalities of energy - the 

cost of scarcity and the environmental cost, which makes energy conservation and 

emissions reduction meaningful to individual sectors in the aspect of finance, and 

promotes energy efficiency and energy conservation by market forces. Policy 

instruments such as enacting and implementing more strict technical standards of 

industries, building standards and pollution emission standards to encourage energy 

efficiency improvement. The establishments of appropriate funding mechanisms by 

green loans and the adoption of special policies ensure technological and capital 

investment on energy conservation and emissions reduction. On the supply side, the 

government can develop effective strategic planning for clean energy, and encourage 

the development of new technology, new energy through policy measures. In the 

meantime, the market competitiveness of clean energy could be improved by 

increasing the cost of fossil fuels, which could reserve a space for renewable energy 

development [69-70], adjust energy structure from the supply side, and gradually get 

rid of the dependence on traditional fossil fuels. 

Energy price reform is a fundamental mitigation strategy for energy-related CO2 

emissions in China’s industrial sector. It should be noted that energy efficiency 
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improvement alone does not necessarily reduce the total energy consumption. If 

energy prices remain unchanged, the decline in costs of products or energy services 

resulted from energy conservation will lead to a rebound in energy demand, that is, 

the "excessive" consumption problem that resulted from the policies of low-cost 

energy [71]. The long-term mechanism of increasing energy costs (energy pricing 

reforms) is an effective means of promoting energy efficiency and reducing energy 

intensity in the long term. Rising in energy prices will reduce energy demand in 

China’s industrial sector. If energy becomes more expensive compared to other 

production factors, the producers would seek alternatives or choose more 

energy-efficient technologies to promote the decline in energy intensity. 
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