
HAL Id: hal-01543396
https://hal.archives-ouvertes.fr/hal-01543396

Submitted on 26 Jun 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

CLOS Efficiency: Instantiation
Didier Verna

To cite this version:
Didier Verna. CLOS Efficiency: Instantiation: On the Behavior and Performance of Lisp, Part 2.1.
International Lisp Conference ILC 2009, Mar 2009, Cambridge, United States. �hal-01543396�

https://hal.archives-ouvertes.fr/hal-01543396
https://hal.archives-ouvertes.fr

CLOS Efficiency: Instantiation
On the Behavior and Performance of LISP, Part 2.1

Didier Verna
EPITA Research and Development Laboratory

14–16 rue Voltaire, 94276 Le Kremlin-Bicêtre, France
didier@lrde.epita.fr

Abstract
This article reports the results of an ongoing experimen-
tal research on the behavior and performance of CLOS, the
COMMON-LISP Object System. Our purpose is to evalu-
ate the behavior and performance of the 3 most important
characteristics of any dynamic object-oriented system: class
instantiation, slot access and dynamic dispatch. This pa-
per describes the results of our experiments on instantia-
tion. We evaluate the efficiency of the instantiation process
in both C++ and LISP under a combination of parameters
such as slot types or classes hierarchy. We show that in a
non-optimized configuration where safety is given priority
on speed, the behavior of C++ and LISP instantiation can
be quite different, which is also the case amongst differ-
ent LISP compilers. On the other hand, we demonstrate that
when compilation is tuned for speed, instantiation in LISP
becomes faster than in C++.

Keywords C++, LISP, Object Orientation, Performance,
Instantiation

1. Introduction
More than 15 years after the standardization process of
COMMON-LISP (Steele, 1990; ANSI, 1994), and more than
20 years after people really started to care about performance
(Gabriel, 1985; Fateman et al., 1995; Reid, 1996), LISP still
suffers from the legend that it is a slow language.

As a matter of fact, it is too rare to find efficiency demand-
ing applications written in LISP. To take a single example
from a scientific numerical calculus application domain, im-
age processing libraries are mostly written in C (Froment,
2000) or in C++ with various degrees of genericity (Duret-
Lutz, 2000). Most of the time, programmers are simply un-

aware of LISP, and in the best case, they falsely believe that
sacrificing expressiveness will get them better performance.

We must admit however that this point of view is not to-
tally unjustified. Recent studies (Neuss, 2003; Quam, 2005)
on various numerical computation algorithms find that LISP
code compiled with CMU-CL can run at 60% of the speed of
equivalent C code. People having already made the choice
of LISP for other reasons might call this “reasonable per-
formance” (Boreczky and Rowe, 1994), but people coming
from C or C++ will not: if you consider an image processing
chain that requires 12 hours to complete (and this is a real
case), running at a 60% speed means that you have just lost
a day. This is unacceptable.

Hence, we have to do better: we have to show people that
they would lose nothing in performance by using LISP, the
corollary being that they would gain a lot in expressiveness.

This article is the second one in a series of experimen-
tal studies on the behavior and performance of LISP. In
the first part (Verna, 2006), we provided a series of micro-
benchmarks on several simple image processing algorithms,
in order to evaluate the performance of pixel access and
arithmetic operations in both C and LISP. We demonstrated
that the behavior of equivalent LISP and C code is similar
with respect to the choice of data structures and types, and
also to external parameters such as hardware optimization.
We further demonstrated that properly typed and optimized
LISP code runs as fast as the equivalent C code, or even faster
in some cases.

The second step in our experiments deals with CLOS
(Keene, 1989), the object-oriented layer of COMMON-LISP.
Our purpose is to evaluate the behavior and efficiency of in-
stantiation, slot access and generic dispatch in general. This
paper describes the results of our experiments on instanti-
ation. Studies on both C++ via GCC and COMMON-LISP
via 3 different compilers are presented, along with cross-
comparisons of interesting configurations.

2. General Overview
This section gives a general overview of the conducted ex-
periments. Although the terminology varies a great deal be-

tween languages, we choose to stick to the LISP jargon and
only mention once each equivalent term used by the C++
community.

2.1 Protocol
The main purpose of our experiments is to test the behavior
and performance of instantiation in as many configurations
as possible. This has lead us to consider a number of param-
eters described below. Some of these parameters were not
expected to have a major impact on performance a priori,
but despite the combinatorial explosion of the test cases, we
tried to remain neutral and avoid filtering out some of them
based only on presumption.

2.1.1 Involved Parameters
Class Size Our experiments use 3 kinds of classes, contain-

ing respectively 1, 7 and 49 slots (rather called data mem-
bers in C++). In addition, when the slots are not initial-
ized (see below), an empty class is also used for timing
reference.

Class Hierarchy For each class size N , the actual class(es)
are constructed in 3 different ways, defined as follows.
• Plain: A single class containing all the N slots.
• Vertical: A hierarchy of N + 1 classes containing 1

slot each, and inheriting from one upper class at a
time, the toplevel class being a class with no slot.

• Horizontal: A set of N simple classes containing 1
slot each, and a final class with no slot, inheriting
(via multiple inheritance) directly from these N upper
classes.

Slot Type Although we restricted to homogeneous classes
(all slots are always of the same type), we tested both int
/ float slots in the C++ case, and fixnum / single-float
ones in the LISP case.

Slot Allocation The experiments have been conducted with
both kinds of slot allocation: local (instance-wide) and
shared (class-wide) slots, rather called “static members”
in C++.

Slot Initialization The configurations above are further de-
coupled according to whether we provide an initialization
value for the slots, or whether we leave them uninitial-
ized. See also section 2.1.2 for additional information.

Optimization Level Depending on the situation, our exper-
iments are conducted in 2 or 3 possible optimization
modes, called “Safe”, “Optimized” and “Inline” respec-
tively. The precise meaning of these modes will be de-
scribed later.

Some additional parameters are involved in the LISP case
only. We will describe them in the corresponding section.
The combination of all these parameters amounts to more
than 1300 individual test cases. The main difficulty of this
work is not in generating the tests (as this can largely be

automated), but in finding the interesting cross-comparison
configurations. In this paper, we present only comparative
results where we think there is a point to be made.

2.1.2 Notes on Slots Initialization
Slot initialization in CLOS can occur in different ways, in-
cluding via :initform expressions (given at class defi-
nition time) and :initarg keyword arguments passed to
make-instance. Keyword arguments processing is not spe-
cific to CLOS: it is a general feature of COMMON-LISP that
can be very convenient but also quite time-consuming, espe-
cially in the case of make-instance. Since we are not in-
terested in benchmarking this process, we chose to use only
initforms for slot initialization.

The COMMON-LISP standard (ANSI, 1994) requires that
an initform be evaluated every time it is used to initialize a
slot, so the semantic equivalent in C++ is to provide a default
constructor (with no argument) performing the initialization,
which we did.

As far as shared slots are concerned, a C++ compiler is
able to handle initialization at compile-time (provided, of
course, that the value is known at compile-time) because
static members are implemented as variables static to a com-
pilation unit. In LISP, the situation is somewhat more com-
plex: initforms are handled at run-time, but an efficient im-
plementation may handle shared slots at class finalization
time, or when the first instance of the class is created. Conse-
quently, this semantic difference between the two languages
shouldn’t have any impact on the resulting measurements.

In our experiments, initializing a shared slot is done with
a constant known at compile-time, although this constant is
different for every slot. Until now, we did not experiment
with initializing shared slots dynamically (at object instan-
tiation time) and we currently don’t know if there would be
something to learn from that situation.

2.1.3 Note on Memory Management
Benchmarking millions of instantiations involves a great
deal of memory management. It makes little sense, however,
to include memory management timings in our benchmarks,
because:

• this process is manual in C++ and automatic in LISP,
thanks to garbage collection (GC),

• different LISP implementations have different garbage
collectors, and thus can behave quite differently.

So again, we want to focus our study exclusively on the
object-oriented layer. To this aim, the LISP timings reported
in this paper include user and system run-time, but do not
include GC time. All tested LISP implementations provide
more or less convenient way to get that information via
the standard time function. Some LISP implementations
(ACL notably) have a very verbose garbage collector by
default. Since we weren’t sure of the impact of this on the
benchmarks, care has also been taken to turn off GC output.

Note that excluding GC time from the benchmarks still
leaves memory allocation in. Along with the same lines, our
C++ code instantiates objects with the new operator (instead
of putting them on the stack), and never free’s them. Our
experiments on the C++ side have been preliminary cali-
brated to avoid filling up the whole memory, hence avoiding
any swapping side-effect.

2.2 Experimental Conditions
The benchmarks have been generated on a Debian GNU/Linux
system running a packaged 2.6.26-1-686 kernel version
on an i686 Dual Core CPU, at 2.13GHz, with 2GB RAM and
2MB level 2 cache.

In order to avoid non deterministic operating system,
hardware or program initialization side-effects as much as
possible, the following precautions have been taken.

• The PC was rebooted in single-user mode, right before
benchmarking.

• Each experiment was calibrated to take at least one or two
seconds, and the results were normalized afterwards, for
comparison purposes.

Given the inherent fuzzy and non-deterministic nature of
the art of benchmarking, we are reluctant to provide precise
numerical values. However such values are not really needed
since the global shape of the comparative charts presented
in this paper are usually more than sufficient to make some
behavior perfectly clear. Nevertheless, people interested in
the precise benchmarks we obtained can find the complete
source code and results of our experiments at the author’s
website1. The reader should be aware that during the devel-
opment phase of our experiments, several consecutive trial
runs have demonstrated that timing differences of less than
10% are not really significant of anything.

3. C++ Object Instantiation
In this section, we establish the ground for comparison by
studying the behavior and performance of object instantia-
tion in C++.

3.1 C++ Specific Details
Some additional information on the C++ experiments are
given below.

3.1.1 Compiler and Optimization Modes
For benchmarking the C++ programs, we used the GNU C++
compiler, GCC version 4.3.2 (Debian package version 4.3.2-
1). Optimized mode is obtained with the -O3 and -DNDEBUG
flags.

3.1.2 struct vs. class
C++ provides both structures and classes. However, the only
difference between the two lies in the member access poli-

1 http://www.lrde.epita.fr/~didier/research/publis.php

cies: slots are public by default in structures and private in
classes etc. Since these issues are resolved at compile-time,
there is no point in studying both structures and classes. Con-
sequently, the benchmarks presented below apply to both.

3.2 Experiments
3.2.1 Local Slots
Chart 1 presents the timing for the instantiation of 5,000,000
objects composed of local slots only. Timings are grouped
by class or object size, as will be the case in all subsequents
charts in this paper. Each group is further split by class
hierarchy (plain, vertical and horizontal), and then by slot
type (uninitialized, initialized int and float slots). This
decomposition is recalled in the chart, on top of the first
group for convenience. Timings in safe and optimized mode
are superimposed.

no slot 1 slot 7 slots 49 slots
0s

1s

2s

3s

4s

pl
ai

n
cl

as
s

ve
rt.

 h
ie

ra
rc

hy
ho

rz
. h

ie
ra

rc
hy

in
t p

la
in

 c
la

ss
in

t v
er

t.
hi

er
ar

ch
y

in
t h

or
z.

 h
ie

ra
rc

hy

flo
at

 p
la

in
 c

la
ss

flo
at

 v
er

t.
hi

er
ar

ch
y

flo
at

 h
or

z.
 h

ie
ra

rc
hy

Safe
Optimized

Chart 1. C++ class instantiation / 5,000,000 objects / local
slots

Impact of slot type The first thing to notice is that regard-
less of the optimization mode, the performance seems to be
immune to the slot type. This is not surprising from a weakly
typed language in which native representations are always
used. However, it is reasonable to expect something different
from the Lisp side, where tagging / boxing might interfere.

Safe mode In safe mode, a remark must be made in rela-
tion to the size of the objects and the slot initialization pol-
icy. Starting at the 7 slots case, we begin to notice the impact
of slot initialization on performance: horizontal and vertical
hierarchies take about 70% more time to perform when ini-
tialized. In the 49 slots case, and by order of degradation,
the cost of initialization is of 60% for plain classes, 180%
for horizontal hierarchies and 290% for vertical ones.

Not only initialization has a cost, but this cost is different
between the hierarchies themselves: in the 49 slots case,
initializing an horizontal hierarchy takes about 180% of the
time it takes to initialize a plain class, and this ratio amounts
to 250% for vertical hierarchies.

A possible explanation for this behavior is as follows. Ini-
tializing slots in a plain class requires calling the only con-

http://www.lrde.epita.fr/~didier/research/publis.php

structor which will initialize the slots sequentially, without
consuming much stack. In the case of multiple inheritance
(the horizontal hierarchy), the constructor has to call all the
superclasses constructors, so this leads to more calls, but this
still happens sequentially. In the case of a vertical hierarchy
however, we end up with a recursive chain of constructors,
each one of them calling the upper one, from the direct su-
perclass. This is a stack consuming process and is likely to
involve more work from the MMU.

At the time of this writing, we did not objectively con-
firmed this hypothesis, although it is the most likely expla-
nation.

Optimized mode In optimized mode, we get a much more
uniform shape. The cost of instantiation increases with the
object size (it roughly doubles between the 7 and the 49 slots
cases), but this cost depends neither on the slot type, nor on
the class hierarchy. Besides, even for big objects (the 49 slots
case), the cost of initialization is just about 10%, which is not
very important.

In all, this demonstrates that when the code is optimized,
the cost of instantiation depends almost only on the object
size, hence on memory management issues. In particular, the
chain of constructor calls involved in the slots initialization
process is likely to be completely flattened, explaining why
there is no more difference across different hierarchies.

Cross-comparison The superimposition of safe and opti-
mized charts demonstrates that there is little to be gained by
optimizing on small classes, and that, as a matter of fact,
optimization deals mostly with initialization. Even for big
objects, the gain is null for uninitialized slots. On the other
hand, it can reach 70% in the case of an initialized vertical
hierarchy.

The fact that there is little to be gained by optimizing
on small classes is further proof that memory management
is the most time-consuming aspect of instantiation, and at
the same time, that it is the least subject to optimization.
When there are only a few slots to initialize, optimization
still occurs, but the initialization time is negligible in front
of memory allocation, so the effect of that optimization is
completely invisible.

3.2.2 Shared Slots
Chart 2 presents the timings for the instantiation of 5,000,000
objects composed of shared slots only this time. This chart
is organized in the same way as the previous one.

This chart has very little to tell, if anything at all. All
our experimental parameters typically boil down to the same
performance, optimization still having a very small impact
(too small to be really conclusive). This result comes as
no surprise, because the previous chart demonstrated that
optimization occurs mostly on slot initialization, and shared
slots are initialized at compile-time in our experiments.

Perhaps the only merit of this chart is to confirm that
objects in C++ are represented “sensibly”, meaning that the

no slot 1 slot 7 slots 49 slots
0s

0.1s

0.2s

0.3s

0.4s

0.5s

0.6s

pl
ai

n
cl

as
s

ve
rt.

 h
ie

ra
rc

hy
ho

rz
. h

ie
ra

rc
hy

in
t p

la
in

 c
la

ss
in

t v
er

t.
hi

er
ar

ch
y

in
t h

or
z.

 h
ie

ra
rc

hy

flo
at

 p
la

in
 c

la
ss

flo
at

 v
er

t.
hi

er
ar

ch
y

flo
at

 h
or

z.
 h

ie
ra

rc
hy

Safe
Optimized

Chart 2. C++ class instantiation / 5,000,000 objects /
shared slots

amount of shared information does not affect their size: the
instantiation time is here a constant, regardless of the number
of shared slots in the class.

3.2.3 Optimized Mode
One final cross-comparison for C++ is presented in chart 3.
This time, benchmarks for both local and shared slots in
optimized mode are superimposed. A similar chart exists for
the safe mode but it is not presented here.

no slot 1 slot 7 slots 49 slots
0s

1s

2s

3s

pl
ai

n
cl

as
s

ve
rt.

 h
ie

ra
rc

hy
ho

rz
. h

ie
ra

rc
hy

in
t p

la
in

 c
la

ss
in

t v
er

t.
hi

er
ar

ch
y

in
t h

or
z.

 h
ie

ra
rc

hy

flo
at

 p
la

in
 c

la
ss

flo
at

 v
er

t.
hi

er
ar

ch
y

flo
at

 h
or

z.
 h

ie
ra

rc
hy

local slots
shared slots

Chart 3. C++ class instantiation / 15,000,000 objects / op-
timized mode

This chart does not contain any new information in itself,
but instead gives us a clearer view on the overall cost of
instantiation: it shows that in our experiments, we could
expect the creation of at most 15,000,000 objects per second,
and around 5,000,000 for our bigger classes.

3.3 Intermediate Conclusion
We can summarize what we have learned so far as follows:

• The slot type has no impact on the performance of object
instantiation.

• In safe mode, both initialization and class hierarchy can
have an important cost.

• In optimized mode, slot initialization still has a cost (al-
though greatly reduced), but the class hierarchy does not
count anymore.

• Optimization deals mainly with slot initialization and can
have a non negligible impact on performance.

• Not much can be done in terms of optimization on the
memory allocation part of the instantiation process.

Given all these observations, from now on we will drop
the use of different slot types when referring to the C++
benchmarks, and only use float slots. In addition, we will
also drop the use of different class hierarchies in the context
of optimization, and stick to plain classes.

4. LISP

In this section, we study the behavior and performance of
object instantiation in LISP, and establish a number of com-
parisons with the C++ experiments described in the previous
section.

4.1 LISP Specific Details
Some additional information on the LISP experiments are
given below.

4.1.1 Compilers
When benchmarking the LISP programs, we took the oppor-
tunity to try several different compilers. We tested CMU-CL
(version 19d as packaged in the Debian unstable distribu-
tion), SBCL (version 1.0.22.17) and ACL (Allegro 8.1 ex-
press edition). Our desire to add LispWorks to the bench-
marks was foiled by the fact that the personal edition lacks
the usual load and eval command line options used with
the other compilers to automate the tests.

4.1.2 Optimization Modes
For the reader unfamiliar with LISP, it should be mentioned
that requesting optimization is not achieved by passing flags
to the compiler as in C++, but by “annotating” the source
code directly with so-called declarations, specifying the ex-
pected type of variables, the required level optimization, and
even compiler-specific information.

Contrary to our previous experiments (Verna, 2006),
type declarations are localized around slot definitions in
the code because all we do is typically benchmark calls to
make-instance. The optimize declaration has also its
importance: safe mode is obtained with (safety 3) and all
other qualities set to 0, while optimized mode is obtained
with (speed 3).

In addition to the safe and optimized modes (that we
also used in the C++ experiments), there is the opportunity
for another one in LISP. While instantiation is a syntactic
construct in C++, it involves a function call in LISP, in which
the class to instantiate can be parametrized or not. As a
consequence, in optimized mode, we use parametrized calls
to make-instance, as in:

(make-instance var)

where var in turn contains a symbol naming the class to
instantiate. We also define a new optimization mode, called
“Inline”, which still has a maximum speed quality, and in
which the class to instantiate is directly inlined into the call
to make-instance, like this:

(make-instance ’myclass)

Until now, we did not experiment with the “hybrid”
mode consisting of safe quality settings and inline calls
to make-instance, and we currently don’t know if there
would be something to learn from that situation.

Note that the names we use when referring to our differ-
ent optimization levels are directly inspired from the LISP
optimization qualities. They should not be taken too seri-
ously however. As we will see later on, when it comes to
type checking, the “safe” mode is not particularly safe. . .

4.1.3 Additional Parameters
In the LISP case, our experiments have been further com-
bined with the following 2 additional parameters.

Structure vs. class Contrary to the C++ case, it is inter-
esting to benchmark both structure and class instantiation.
COMMON-LISP structures provide a restricted form of ob-
ject orientation (limited inheritance capabilities etc.) and be-
cause of these limitations, can usually be implemented more
efficiently than CLOS objects (typically as vectors). If one
does not need the full capabilities of CLOS, it is a good idea
to use structures instead, and consequently, it is interesting
to know exactly what to expect in terms of performance.

Our LISP experiments will thus start with structures, and
will then continue with classes.

Meta-class vs. standard class Another difference with
the case of C++ is that CLOS itself may be architectured
according to a Meta Object Protocol, simply known as
the CLOS MOP Paepcke (1993); Kiczales et al. (1991).
Although not part of the ANSI specification, the CLOS
MOP is a de facto standard, supported to various degrees
by many COMMON-LISP implementations. Through the
MOP, CLOS elements are themselves modeled in an object-
oriented fashion (one begins to perceive here the reflexive
nature of CLOS). For instance, classes (the result of calling
defclass) are CLOS (meta-)objects that are instances of
other (meta-)classes. By default, new classes are instances of
the class standard-class, but the programmer can change
that.

Since it might be interesting to study the impact of the
class definition itself on the performance of instantiation,
we provide benchmarks for instantiating standard classes as
well as classes based on a user-defined meta-class.

4.2 Structures
In this section, we report the results of instantiating COMMON-
LISP structures. The number of experimental parameters is

less important on structures than on classes for the following
3 reasons.

• Firstly, structures support only a limited form of single
inheritance (they can inherit from only one other super-
structure at a time), so our experiments involve only plain
structures and vertical hierarchies.

• Secondly, structures do not support the notion of shared
slot. All structure slots are hence local to each instance.

• Thirdly, defining a structure in COMMON-LISP involves
the creation of a constructor function make-<struct>
which is already specific to the structure in question. In
other words, there is no equivalent of make-instance
for structures, in which the structure name would be
parametrized. Consequently, we only have 2 optimization
modes: safe and inline.

4.2.1 SBCL

Chart 4 presents the timing for the instantiation of 10,000,000
objects in SBCL. The organization of this chart is the same
as before, and is recalled directly on top of the first group of
benchmarks for convenience.

no slot 1 slot 7 slots 49 slots
0s

1s

2s

3s

pl
ai

n
st

ru
ct

hi
er

ar
ch

y
fix

nu
m

 p
la

in
 st

ru
ct

fix
nu

m
 h

ie
ra

rc
hy

si
ng

le
-f

lo
at

 p
la

in
 st

ru
ct

si
ng

le
-f

lo
at

 h
ie

ra
rc

hy

Safe
Inline

Chart 4. SBCL structure instantiation / 10,000,000 objects

Impact of slot type The first thing to remark here is that
contrary to the C++ case (chart 1 on page 3), the perfor-
mance depends on the slot type, which is particularly explicit
in the 49 slots case: instantiating single-float rather than
fixnum structures takes between 40 and 60% more time ac-
cording to the optimization mode. A possible explanation
for this behavior is that SBCL stores fixnums as-is in struc-
tures, but uses a specialized representation for single floats.
Fixnums are already tagged, immediate objects so storing
them in structures does not require any internal representa-
tion format modification. On the other, initializing a slot with
a single-float would require unboxing it. This hypothe-
sis has no been verified yet.

Impact of slot initialization Other than the case of single
floats, another difference with the C++ case is striking: there

is no difference between initializing fixnum slots and leav-
ing the slots uninitialized. This is even true in both safe and
inline mode. The explanation for this lies in the fact that in
all tested LISP implementations, an uninitialized slot is ac-
tually initialized to nil, which has the same cost as using a
constant fixnum value. Technically, this behavior is not re-
quired by the standard, which specifies that accessing an oth-
erwise uninitialized slot has undefined consequences. How-
ever, the practical consequence here is that structure slots are
always initialized to something.

Impact of structure hierarchy Either in optimized or in-
line mode, it is clear on chart 4 that using a plain structure or
a vertical hierarchy has no impact on the performance what-
soever. This is not surprising because under the general as-
sumption that structures behave like vectors, the initial struc-
ture definition(s) should not have an impact on their final
representation: once a structure is defined, there is no trace
left of the inheritance property used in its definition. As we
saw in section 3.2.1 on page 3, this result is again different
from the case of C++.

Impact of optimization One last difference with the C++
case is the impact of optimization on small objects. Whereas
this impact was null in the C++ case, even on LISP struc-
tures as small as with only one slot, optimization more than
doubles the performance.

As usual in LISP, a difference of performance can come
from both directions: either something is done in optimized
mode to improve the performance, or something is done in
safe mode that actually slows things down. In that case, a
probable contributor to the timing difference is that SBCL
performs type checking on slot initial values in safe mode.
Again, note that this is not required by the standard, but this
is a general policy of this compiler. On the other hand, in in-
line mode, SBCL will trust the type declarations, effectively
bypassing type checking.

Impact of structure size A final remark, more in line with
the behavior of C++ this time, is that the impact of opti-
mization decreases as the size of the instantiated objects
increases. While this gain is around 200% for small struc-
tures, it hardly reaches 20% in the 49 single-float slots
case (it is practically null for fixnum slots). Again, this
demonstrates that memory management is the most time-
consuming aspect of instantiation, and at the same time, that
it is the least subject to optimization.

4.2.2 CMU-CL

Chart 5 on the facing page is the equivalent of chart 4 for
CMU-CL. As in the case of SBCL, we see that there is not
much difference between uninitialized slots and initialized
fixnum ones, and that using single-float slots gives a
different shape to the timings.

The behavior of CMU-CL differs from that of SBCL in
two important ways however:

no slot 1 slot 7 slots 49 slots
0s

1s

2s

3s

4s

5s

pl
ai

n
st

ru
ct

hi
er

ar
ch

y
fix

nu
m

 p
la

in
 st

ru
ct

fix
nu

m
 h

ie
ra

rc
hy

si
ng

le
-f

lo
at

 p
la

in
 st

ru
ct

si
ng

le
-f

lo
at

 h
ie

ra
rc

hy

Safe
Inline

Chart 5. CMU-CL structure instantiation / 10,000,000 ob-
jects

• Particularly for small structures and single-float
slots, it is visible that the impact of optimization is less
important in CMU-CL than in SBCL. This can be ex-
plained by the fact that CMU-CL happens to perform type
checking on the slot initialization values all the time, re-
gardless of the optimization mode. So in inline mode, it
does more than SBCL.

• In the 49 slots case however, we see that the instantiation
of single-float structures is actually more efficient,
in both optimization modes, than instantiating fixnum
ones. This behavior, opposite to that of SBCL, is very
surprising and currently unexplained. In fact, it is all the
more surprising that we later discovered that CMU-CL ac-
tually does not perform type checking on fixnum slots.
We consider this as an inconsistency in CMU-CL’s behav-
ior, and we have reported it to the development team (a
fix is underway). The most probable explanation for this
is that contrary to single-float slots, fixnum slots do
not have a specialized representation in structures, so the
need for type checking may not be as critical as for ob-
jects requiring (un)boxing.

4.2.3 ACL

Chart 6 is the equivalent of charts 4 on the preceding page
and 5 for ACL.

There is not much news to deduce from this chart, apart
from a couple of remarks:

• For big structures, ACL (as CMU-CL) seems to be slightly
sensitive to the hierarchy: plain structures perform a bit
faster. However, the difference in performance is defi-
nitely too small to be conclusive.

• Contrary to both SBCL and CMU-CL, there is absolutely
no gain in using optimized compilation settings. As a
matter of fact, it turns out that ACL does not perform
any type checking on the slot initialization values at all
(a behavior that is perfectly conformant to the standard).

no slot 1 slot 7 slots 49 slots
0s

1s

2s

3s

4s

pl
ai

n
st

ru
ct

hi
er

ar
ch

y
fix

nu
m

 p
la

in
 st

ru
ct

fix
nu

m
 h

ie
ra

rc
hy

si
ng

le
-f

lo
at

 p
la

in
 st

ru
ct

si
ng

le
-f

lo
at

 h
ie

ra
rc

hy

Safe
Inline

Chart 6. ACL structure instantiation / 10,000,000 objects

Consequently, and this is confirmed by one of the ACL
maintainers, it is not the case that nothing is done to
optimize structures. It is rather the case that even in safe
mode, structures are already considerably optimized.

4.2.4 Cross-Implementation Comparisons
We end our study on structures by providing a cross-
comparison of the 3 tested COMMON-LISP implementa-
tions. Charts 7 and 8 on the following page regroup the
timings of all 3 compilers respectively for safe and inline
mode.

pl
ai

n
st

ru
ct

hi
er

ar
ch

y
fi

xn
um

 p
la

in
 s

tr
uc

t
fi

xn
um

 h
ie

ra
rc

hy
si

ng
le

-f
lo

at
 p

la
in

 s
tr

uc
t

si
ng

le
-f

lo
at

 h
ie

ra
rc

hy

no slot 1 slot 7 slots 49 slots
0s

1s

2s

3s

4s
CMU-CL
ACL
SBCL

Chart 7. LISP structure instantiation / 10,000,000 objects,
safe mode

In safe mode, the performance differs more and more as
the size of the instantiated objects increases: for small struc-
tures, all 3 implementations are relatively close to each other,
apart maybe from the handling of single-float slots by
CMU-CL. For large structures, SBCL runs noticeably faster
than the 2 other ones, especially in the cases of uninitial-
ized and initialized fixnum slots: the gain is around 30%
compared to ACL and 70% compared to CMU-CL. This per-
formance is all the more commendable that SBCL is the only
one to perform type checking in that situation.

pl
ai

n
st

ru
ct

hi
er

ar
ch

y
fi

xn
um

 p
la

in
 s

tr
uc

t
fi

xn
um

 h
ie

ra
rc

hy
si

ng
le

-f
lo

at
 p

la
in

 s
tr

uc
t

si
ng

le
-f

lo
at

 h
ie

ra
rc

hy

no slot 1 slot 7 slots 49 slots
0s

1s

2s

3s

4s

CMUCL
ACL
SBCL

Chart 8. LISP structure instantiation / 10,000,000 objects,
inline mode

In inline mode, we get roughly the same shape and so the
same comments still apply, with the additional remark that
the performance of SBCL becomes noticeably better even on
smaller structures: it runs roughly twice as fast than both
ACL and CMU-CL.

4.2.5 Intermediate Conclusion
We can summarize what we have learned so far as follows:

• Contrary to the C++ case, the slot type has an impact
on the performance, both in safe and inline mode, and
this impact becomes more and more important as the
number of slots in the objects increases. This result is not
surprising, although CMU-CL displays a counter-intuitive
behavior that remains to be explained.

• Contrary to the C++ case, all tested implementations do
initialize structure slots to something (be it nil or a
user provided value), something that is not required by
the standard. The consequence is that there is no tim-
ing difference between uninitialized slots and initialized
fixnum slots.

• Contrary to the C++ case, the structure hierarchy has little
or no impact on performance.

• Our experiments also lead us to discover that these 3
LISP implementations exhibit very different behaviors
with respect to type checking of slot initialization val-
ues: SBCL honors his traditional philosophy of perform-
ing type checks in safe mode and treating type declara-
tions as assertions in optimized mode; CMU-CL always
perform type checking, with the notable and somewhat
inconsistent exception of fixnum slots; ACL never per-
forms any form of type checking on structure slots.

Given all these observations, from now on we will refer
to LISP structure instantiation benchmarks as restricted to
plain ones and drop the use of a vertical hierarchy. We will
on the other hand continue to present both fixnum and
single-float slot types.

4.3 Classes
In this section, we report the results of instantiating COMMON-
LISP classes with the full set of parameters described in
sections 2 on page 1 and 4.1 on page 5.

4.3.1 SBCL

Chart 9 presents the timings for the instantiation of
5,000,000 objects in SBCL. These timings correspond to
standard-class based classes containing local slots only.
The organization of the other parameters on this chart is the
same as before, and is recalled directly on top of the first
group of benchmarks for convenience. This time, the 3 opti-
mization modes do exist and are superimposed. Beware that
we use a logarithmic scale on this chart.

no slot 1 slot 7 slots 49 slots
0.1s

1s

10s

100s

pl
ai

n
cl

as
s

ve
rt.

 h
ie

ra
rc

hy
ho

rz
. h

ie
ra

rc
hy

fix
nu

m
 p

la
in

 c
la

ss

fix
nu

m
 v

er
t.

hi
er

ar
ch

y

fix
nu

m
 h

or
z.

 h
ie

ra
rc

hy

flo
at

 p
la

in
 c

la
ss

flo
at

 v
er

t.
hi

er
ar

ch
y

flo
at

 h
or

z.
 h

ie
ra

rc
hy

Safe
Optimized
Inline

Chart 9. SBCL class instantiation / 5,000,000 objects, stan-
dard class, local slots

Impact of slot type and class hierarchy The first result
deducible from this chart is that neither the slot type nor the
class hierarchy have an impact on the performance. This can
be explained by the facts that

• given the dynamic capabilities of CLOS, slots are un-
likely to benefit from a specialized representation (they
are typically stored in a simple vector),

• and similarly, accessing a slot from an instance vector
completely blurs the original class hierarchy.

Impact of slot initialization It should be noted that as for
structures (but this time this is a requirement), a slot left
uninitialized by the programmer will actually be initialized
to the “unbound value” by a conformant LISP implementa-
tion. So slot initialization does occur every time. Despite this
fact, we can see that in both safe and optimized mode, user-
level slot initialization has a considerable impact on perfor-
mance. In the 7 slots case, initializing the slots doubles the
instantiation time, and in the 49 slots case, instantiation is
typically 3 times slower. We saw earlier that type check-
ing can amount to a certain part of instantiation time, but
that this time becomes negligible compared to memory allo-
cation and reference on big objects. Besides, we know that

SBCL does not perform type checking on class slots in op-
timized mode. So type checking cannot explain our current
observation. The real explanation is that in order to initialize
a slot, one has to access it; and it happens that slot access is
not optimized at all in either safe or optimized mode. This
explanation is further confirmed by the next observation be-
low.

Impact of optimization modes Going from safe to opti-
mized mode does bring a bit to the performance of instantia-
tion, but does not change the overall shape of our diagrams.
Although the gain in question is null when slots are left
uninitialized, we save 20% of the time in the 7 slots case, and
up to 30% in the 49 slots case. An important part of this gain
can be attributed to the fact that slot initform type checking
is turned off by SBCL in optimized mode. In itself, this is
already a non negligible achievement, but nothing compared
to what we gain in inline mode.

There, the situation is completely different. First of all,
the improvement is extremely important. Even on an empty
class, instantiation already performs about 15 times faster
in inline mode than in safe mode. In the 49 slots case,
instantiation performs almost 100 times faster.

The second remark with inline mode is that there is no
more difference of performance according to whether the
slots are initialized or not. The cost of initialization is com-
pletely gone. This comes as a confirmation to what we said
in the previous paragraph: as soon as the class to instantiate
is known, or at least can be inferred at compile-time, a great
deal of optimization becomes possible, in particular with re-
spect to slot access, and this in turn renders the cost of ini-
tialization negligible.

Shared slots Chart 10 presents timings similar to those
in chart 9 on the preceding page, but for shared slots this
time. As we can see, going from safe to optimized mode
has practically no impact on performance. Compared to the
equivalent C++ chart (chart 2 on page 4) however, this chart
presents two surprising differences.

no slot 1 slot 7 slots 49 slots
0.1s

1s

10s

pl
ai

n
cl

as
s

ve
rt.

 h
ie

ra
rc

hy
ho

rz
. h

ie
ra

rc
hy

fix
nu

m
 p

la
in

 c
la

ss

fix
nu

m
 v

er
t.

hi
er

ar
ch

y

fix
nu

m
 h

or
z.

 h
ie

ra
rc

hy

flo
at

 p
la

in
 c

la
ss

flo
at

 v
er

t.
hi

er
ar

ch
y

flo
at

 h
or

z.
 h

ie
ra

rc
hy

Safe
Optimized
Inlined

Chart 10. SBCL class instantiation / 5,000,000 objects,
standard class, shared slots

• Firstly, the number of slots has a noticeable impact on
performance, even though they are all shared. Instantiat-
ing a 49 shared slots class can be up to 10 times slower
than instantiating an empty or 1 shared slot class.

• Secondly, it is visible that initializing shared slots actu-
ally improves the performance of instantiation. In the 49
slots case, leaving the slots uninitialized leads of a per-
formance loss of 30%.

These results are both counter-intuitive and a sign that
something is wrong in the instantiation process. A possible
explanation, suggested by one of the SBCL maintainers, is
an incorrect behavior of shared-initialize, attempting
to pointlessly initialize unbound shared slots from the init-
form. This issue is normally fixed in version 1.0.23.36 of
SBCL, although we didn’t have time to confirm the hypoth-
esis yet. Our attempt to analyze this odd behavior also lead
us to discover that SBCL did not perform type checking on
shared slots initforms, even in safe mode. Although this is
not technically required by the standard, this is definitely an
inconsistency with respect to SBCL’s own policy with re-
spect to type checking, and this has also been fixed recently.

As far as inline mode is concerned, we get a much more
coherent and expected result: as with the C++ case, the per-
formance of instantiation basically remains the same what-
ever the configuration, and the inlined version can run up to
150 times faster than the safe one in the 49 slots case.

Impact of a meta-class We have generated diagrams sim-
ilar to those presented in charts 9 on the preceding page
and 10 in the case where the instantiated classes are provided
with a user-defined meta-class through the :metaclass
option to defclass. The timings are rigorously equiva-
lent so they are not presented here. We were (maybe a bit
naively) expecting a different outcome, so it is now envi-
sioned that our specific meta-class (an empty class inheriting
from standard-class) was perhaps too simple to demon-
strate anything. On the other hand, such a simple setting
might still have a noticeable impact on slot access, if not on
class instantiation. This will be investigated in future work.

Cross-comparison So far, we are able to drop the use of
3 parameters previously taken into account in the case of
SBCL, because we have seen that they have no impact on
performance. These parameters are: slot type, class hierar-
chy and the use of a user-defined meta-class. From now on,
we will only present plain classes with single-float slots,
either initialized or not. A final cross-comparison of all these
SBCL cases is provided in chart 11 on the next page.

This chart has the merit of letting us visually summarize
what we have seen so far as having an impact on perfor-
mance:

• User-level slot initialization has a considerable impact
on performance. In the 7 slots case, initializing the slots
doubles the instantiation time, and in the 49 slots case,
instantiation is typically 3 times slower.

1 slot 7 slots 49 slots

0.5s

5s

50s
lo

ca
l s

lo
ts

sh
ar

ed
 s

lo
ts

si
ng

le
-f

lo
at

 lo
ca

l s
lo

ts
si

ng
le

-f
lo

at
 s

ha
re

d
sl

ot
sSafe

Optimized
Inline

Chart 11. SBCL class instantiation / 5,000,000 objects

• Going from safe to optimized mode has a reasonable
impact on performance when the slots are local, and none
when they are shared. On local slots, we save 20% of the
time in the 7 slots case, and up to 30% in the 49 slots case.
This gain can be attributed to the fact that slot initform
type checking is turned off by SBCL in optimized mode.

• Going from optimized to inline mode has a tremen-
dous impact on performance for local slots as well as
for shared ones. An empty class will be instantiated 15
times faster, and in the 49 slots cases, this can be a hun-
dred times faster. Besides, the impact of slot initialization
completely disappears.

4.3.2 CMU-CL

Chart 12 presents the timings for the instantiation of
5,000,000 objects in CMU-CL. These timings correspond to
standard-class based classes containing local slots only.

no slot 1 slot 7 slots 49 slots
0.1s

1s

10s

100s

pl
ai

n
cl

as
s

ve
rt.

 h
ie

ra
rc

hy
ho

rz
. h

ie
ra

rc
hy

fix
nu

m
 p

la
in

 c
la

ss

fix
nu

m
 v

er
t.

hi
er

ar
ch

y

fix
nu

m
 h

or
z.

 h
ie

ra
rc

hy

flo
at

 p
la

in
 c

la
ss

flo
at

 v
er

t.
hi

er
ar

ch
y

flo
at

 h
or

z.
 h

ie
ra

rc
hy

Safe
Optimized
Inlined

Chart 12. CMU-CL class instantiation / 5,000,000 objects,
standard class, local slots

This chart is almost exactly identical to that of SBCL
(chart 9 on page 8) so the same remarks apply and we will
not reiterate them here. Only one small difference should be
emphasized however: contrary to the case of SBCL going
from safe to optimized mode does not bring any improve-

ment to the performance. Remember that for SBCL, we ob-
served a gain ranging from 20 to 30% when instantiating
classes for slot initforms. This gain was attributed to SBCL
turning off initform slot type checking in optimized mode,
which the case of CMU-CL helps confirming. Indeed, our
investigation lead us to discover that contrary to what the
manual says, CMU-CL does not perform initform slot type
checking in safe mode. As a result, there is nothing different
in its behavior from safe to optimized mode. Again, this be-
havior is authorized by the standard, but still considered at
least as an inconsistency, and a fix is currently underway.

The other diagrams for CMU-CL are so close to the SBCL
ones that it is not worth putting them here. All our previous
observations still apply. We will instead directly jump to the
cross-comparison (chart 13), which this time has something
new to offer.

1 slot 7 slots 49 slots

0.5s

5s

50s

lo
ca

l s
lo

ts
, s

tn
d

cl
as

s
lo

ca
l s

lo
ts

,
m

et
a

cl
as

s

sh
ar

ed
 s

lo
ts

, s
tn

d
cl

as
s

sh
ar

ed
 s

lo
ts

, m
et

a
cl

as
s

in
it’

ed
 lo

ca
l s

lo
ts

,s
tn

d
cl

as
s

in
it’

ed
 lo

ca
l s

lo
ts

,m
et

a
cl

as
s

in
it’

ed
 s

ha
re

d
sl

ot
s,

st
nd

 c
la

ss

in
it’

ed
 s

ha
re

d
sl

ot
s,

m
et

a
cl

as
s

Safe
Optimized
Inline

Chart 13. CMU-CL class instantiation / 5,000,000 objects

This chart shows that, contrary to the case of SBCL the
use of a custom meta-class (be it an empty one) has some
impact on the performance in both safe and optimized mode
(but remember that there is no real difference in CMU-CL
between these two modes). For instance, in the 49 slots
cases, using a custom meta-class leads to a degradation in
performance varying between 30 and 50%. The reason for
this behavior is currently unknown.

In further charts, CMU-CL timings will be filtered as
SBCL ones, except for the fact that we will retain the cases
with and without a custom meta-class.

4.3.3 ACL

Chart 14 on the next page presents the timings for the in-
stantiation of 5,000,000 objects in ACL. These timings cor-
respond to standard-class based classes containing local
slots only.

This chart looks pretty similar to that of SBCL (chart 9 on
page 8) and CMU-CL (chart 12). In particular, as for CMU-
CL, we can observe that there is no difference between the
performance of safe and optimized modes. It turns out that
ACL never performs slot initform type checking, even in safe
mode. Although in CMU-CL, that was considered a bug or at

no slot 1 slot 7 slots 49 slots
0.1s

1s

10s

100s
pl

ai
n

cl
as

s
ve

rt.
 h

ie
ra

rc
hy

ho
rz

. h
ie

ra
rc

hy

fix
nu

m
 p

la
in

 c
la

ss

fix
nu

m
 v

er
t.

hi
er

ar
ch

y

fix
nu

m
 h

or
z.

 h
ie

ra
rc

hy

flo
at

 p
la

in
 c

la
ss

flo
at

 v
er

t.
hi

er
ar

ch
y

flo
at

 h
or

z.
 h

ie
ra

rc
hy

Safe
Optimized
Inlined

Chart 14. ACL class instantiation / 5,000,000 objects, stan-
dard class, local slots

least an inconsistency, let us repeat that the standard leaves
much freedom to the implementation in that matter.

Some differences with the other implementations are
worth mentioning however.

• In safe and/or optimized mode, the cost of initialization
seems to be higher than in SBCL or CMU-CL. In the 49
slots case, instantiation was 3 times slower with SBCL,
1.5 times slower with CMU-CL, but 5 times slower here.
Given the fact that neither CMU-CL nor ACL perform
initform slot type checking, the difference is striking and
might be grounded into very different schemes for slot
access.

• In inline mode, there is something specific to ACL to
observe: slot initialization seems to actually improve the
performance by a small factor: 10% in the 7 slots case
and 20% in the 49 slots one. It is possible that ACL has a
better optimized way to assign an explicit value from an
initform than from the secret “unbound” value, although
that hypothesis remains to be confirmed.

• On last remark, of less importance, is that the timings for
inline instantiation look a bit fluctuating, especially for
smaller classes. This might suggest some impact of the
class hierarchy on performance, but the actual numbers
are too small to be conclusive.

Shared slots Chart 15 presents timings similar to those in
chart 14, but for shared slots this time. This chart is the ACL
counterpart of char 10 on page 9 for SBCL, and exhibits a
quite different behavior.

• In safe and optimized mode (which unsurprisingly con-
tinue to perform equally), initializing the slots degrades
the performance by an important factor (3.5 in the 49
slots case).

• In inline mode, initializing the slots now improves the
performance by a non negligible factor as well (more than
2 in the 49 slots case).

no slot 1 slot 7 slots 49 slots
0.1s

1s

10s

100s

pl
ai

n
cl

as
s

ve
rt.

 h
ie

ra
rc

hy
ho

rz
. h

ie
ra

rc
hy

fix
nu

m
 p

la
in

 c
la

ss

fix
nu

m
 v

er
t.

hi
er

ar
ch

y

fix
nu

m
 h

or
z.

 h
ie

ra
rc

hy

flo
at

 p
la

in
 c

la
ss

flo
at

 v
er

t.
hi

er
ar

ch
y

flo
at

 h
or

z.
 h

ie
ra

rc
hy

Safe
Optimized
Inlined

Chart 15. ACL class instantiation / 5,000,000 objects, stan-
dard class, shared slots

• Finally, and contrary to the 2 other implementations that
we tested, the number of slots has a very important im-
pact on the performance of instantiation, even in inline
mode. From the no slot to the 49 slots case, the perfor-
mance degrades by more than a factor of 10.

Given the fact that shared slots are (or at least can be) nor-
mally handled only once (at class finalization time or when
the first instance of the class is created), these observations
are quite surprising. A possibly explanation will arise from
the next chart.

Cross-comparison Just before introducing this new chart,
let us mention that the other diagrams for ACL, not displayed
in this paper, exhibit a behavior very similar to the other
2 compilers. Most notably, ACL seems immune to the slot
type, the class hierarchy or the presence of a custom meta-
class. From now on, we will thus drop these parameters and
keep plain, standard classes with single-float slots.

1 slot 7 slots 49 slots

0.5s

5s

50s

lo
ca

l s
lo

ts
sh

ar
ed

 s
lo

ts
si

ng
le

-f
lo

at
 lo

ca
l s

lo
ts

si
ng

le
-f

lo
at

 s
ha

re
d

sl
ot

s

Safe
Optimized
Inline

Chart 16. ACL class instantiation / 5,000,000 objects

A final cross-comparison of all the interesting ACL cases
is provided in chart 16. This chart, although similar to the
SBCL equivalent (chart 11 on the facing page) exhibits one
striking difference. In inline mode, instantiating shared slots

do not perform faster (and at a constant speed) than instan-
tiating local slots. It even performs noticeably slower with
uninitialized slots in the 7 and 49 slots cases.

One strong hypothesis arises from this, and might as well
explain the oddities we mentioned in the previous section.
It is highly probable that nothing special is done in ACL to
optimize the handling of shared slots at all. If confirmed,
this would actually not be very surprising because the use of
shared slots in real applications is probably quite marginal,
so nobody really cares about their performance. In addition,
it is our experience with ACL that improvements to the
compiler are mostly driven by customer demands.

4.4 Cross-Implementation Comparison
In this section, we present a cross-comparison of the perfor-
mance of instantiation with the 3 tested implementations of
COMMON-LISP. Because of the combinatorial explosion of
the parameters involved, a complete diagram would be un-
readable. Instead, we recall here the parameters that we were
able to drop because their influence on the performance is ei-
ther null, or negligible, and we present “filtered” charts only.

For structures:

• The slot type has some influence, so we keep both the
fixnum and single-float cases.

• However, leaving structure slots uninitialized takes the
same time as initializing them with fixnum values, so
we will drop the case of uninitialized structures.

• The structure hierarchy never has any impact, so we will
stick to plain structures and drop the vertical hierarchy.

For classes:

• Performance is immune to the slot type, so we will stick
to single-float ones.

• Performance is immune to the class hierarchy and to the
use of a custom meta-class (still, with small exceptions
in the cases of CMU-CL and ACL), so we will stick to
standard, plain classes.

• On the other hand, we preserve both the cases of initial-
ized / uninitialized slots, and local / shared slot storage.

4.4.1 Safe Mode
Chart 17 presents the filtered representation described above
in safe mode. We see that all tested implementations present
a similar shape, although some performance variations are
to be expected. Structure instantiation performs faster than
class instantiation. According to the object size, the gain may
vary from a factor of 1.7 up to a factor of 30. Note that the
performance of SBCL is commendable because it is the only
one (at least in the tested versions) to perform type checking
on fixnum local slot initforms.

1 slot 7 slots 49 slots
0.012s

0.12s

1.2s

12s

fi
xn

um
 s

tr
uc

t
fl

oa
t s

tr
uc

t
lo

ca
l s

lo
ts

sh
ar

ed
 s

lo
ts

in
it’

ed
 lo

ca
l s

lo
ts

in
it’

ed
 s

ha
re

d
sl

ot
sACL

CMU-CL
SBCL

Chart 17. LISP instantiation / 500,000 objects / safe mode

4.4.2 Inline Mode
As we saw at different places in this paper, optimized mode
does not bring much to performance, so we will skip the
corresponding chart and directly switch to the inline mode,
as displayed by chart 18.

1 slot 7 slots 49 slots
0s

0.5s

1s

1.5s

2s

2.5s

3s
fi

xn
um

 s
tr

uc
t

fl
oa

t s
tr

uc
t

lo
ca

l s
lo

ts
sh

ar
ed

 s
lo

ts
in

it’
ed

 lo
ca

l s
lo

ts
in

it’
ed

 s
ha

re
d

sl
ot

s

ACL
CMU-CL
SBCL

Chart 18. LISP instantiation / 5,000,000 objects / inline
mode

With the notable exception of one-slot structures, SBCL
and CMU-CL exhibit pretty similar shapes, which is perhaps
not surprising given the fact that they both come from the
same original compiler (MacLachlan, 1992). As already ob-
served in (Verna, 2006), SBCL is still the best candidate in
terms of performance. Compared to CMU-CL and depend-
ing on the actual parameters configuration, SBCL can per-
form between 1.6 and 2.6 times faster. Apart from the no-
table exception of shared slots handling, ACL is usually but
not always faster than CMU-CL.

Perhaps the most interesting remark that can be made
out of this chart is the comparative performance of struc-
ture vs. class instantiation. If we consider the case of SBCL,
we can observe that the timing difference decreases when
the object grows in size. In the 7 slots case, instantiating
a single-float class takes twice the time needed for an
equivalent structure. In the 49 slots case, instantiating the

structure becomes slower, by a factor of 1.2. As for the 2
other compilers, which perform a bit less efficiently, these
differences are even more flattened. With CMU-CL for in-
stance, the timing difference between structures and classes
instantiation do not differ by more than a factor of 1.2.

Given the additional expressiveness that CLOS has to
offer compared to structures, we consider it a considerable
achievement from all tested compilers that the timings for
class instantiation can be so close to the ones for structures.

5. Cross-Language Comparison
We now end our study by providing a cross-language com-
parison of the instantiation process in all interesting cases.
Given the fact that we are targeting our experiments on per-
formance issues, we skip the cross-comparisons of safe and
optimized mode, and switch directly to inline mode. It would
not make any sense to present comparisons of timings in safe
mode anyway, since the behavior in both languages is so dif-
ferent in that case.

In the C++ case, we use plain classes with float slots.
This choice is legitimate because we know that the slot type
and class hierarchy does not influence the performances in
optimized mode.

In the LISP case, we use the same filters as before, that is,
we retain fixnum and single-float plain structures, and
single-float plain classes. The LISP timings are those of
SBCL because it is the most efficient. Since single-float
handling has been observed to be slower in some cases,
one can consider that we are using the “worst of the best”
scenario from the LISP side.

1 slot 7 slots 49 slots
0

2.5

5

7.5

10

12.5

L
is

p
st

ru
ct

 (
fi

xn
um

)
L

is
p

st
ru

ct
 (

si
ng

le
-f

lo
at

)
C

++
 c

la
ss

C
++

 c
la

ss
 in

it’
ed

L
is

p
cl

as
s

L
is

p
cl

as
s

in
it’

ed

Local slots
Shared slots

Chart 19. Object Instantiation / 5,000,000 objects / inline
mode

Chart 19 regroups all the timings described above and
comes with good news for the LISP community. In all con-
sidered cases, object instantiation in LISP is faster than in
C++.

The comparison of LISP structures with C++ is admit-
tedly not a fair one, because LISP structures typically behave
as vectors. However, since they provide a restricted form of

object orientation, it is legitimate to consider them as an ad-
ditional tool, some sort of “lightweight” object system, that
C++ does not provide. For small objects, we see that struc-
ture instantiation performs between 4 and 5 times faster than
class instantiation (both languages altogether). In the 7 slots
case, this ratio downgrades to 2, and in the 49 slots case, to
1.2, with the additional divergence according to the slot type.

When it comes to classes, we see that the difference be-
tween LISP and C++ is negligible for small objects, and
amounts to a factor of 1.2 in all other situations. LISP out-
performs C++ even more when shared slots are involved.
In such a case, the gain amount to 30%. These results are
clearly more than we originally expected.

6. Conclusion
In this paper, we reported the results of an ongoing ex-
perimental research on the behavior and performance of
CLOS, the COMMON-LISP object system. We tested the ef-
ficiency of the instantiation process in both C++ and LISP,
and we also took the opportunity to examine 3 different LISP
compilers. With this study, we demonstrated the following
points.

• When safety is privileged over speed, the behavior of in-
stantiation is very different from one language to another.
C++ is very sensitive to the inheritance hierarchy and not
at all to the slot type. LISP on the other hand, is prac-
tically immune to the inheritance hierarchy (with very
small exceptions in the case of CMU-CL and ACL), but
in the case of structures, sensitive to the slot type.

• When optimization is turned on, the effect of our exper-
imental parameters tend to dissipate and both languages
come closer to each other, both in terms of behavior and
in terms of performance. While turning on optimization
in C++ leads to a reasonable improvement, the effect is
tremendous in LISP. As soon as the class to instantiate is
known or can be inferred at compile-time, we have seen
that the instantiation time can be divided by a factor up to
one hundred in some cases, and to the point that instanti-
ating in LISP becomes actually faster than in C++.

• We should also emphasize on the fact that these perfor-
mance results are obtained without intimate knowledge
of either the languages or the compilers: only standard
and / or portable optimization settings were used.

To be fair, we should mention that with micro-benchmarks
consisting simply in instantiating objects, we are comparing
compilers performance as well as languages performance,
but compiler performance is a critical part of the produc-
tion chain anyway. Moreover, to be even fairer, we should
also mention that when we speak of “equivalent C++ and
LISP” code, this is actually quite inaccurate. For instance,
we are comparing a C++ operator (new) with a LISP func-
tion (make-instance). We are comparing the instantiation
of classes which are compile-time constructs in C++ but are

dynamic (meta-)objects created at run-time in LISP. This
means that it is actually impossible to compare exclusively
either language, or compiler performance. This also means
that given the inherent expressiveness of LISP and CLOS in
particular, compilers have to be even smarter to reach the
efficiency level of C++, and this is really good news for the
LISP community.

One dark point remains on the LISP side though. Our
study exhibited extremely divergent behaviors with respect
to slot initform type checking (and probably slot type check-
ing in general), in particular when safety is (supposed to be)
preferred over speed. Some compilers never perform any
type checking, some always do (even in optimized mode),
but then, on structures and not on classes, some others adhere
to a consistent principle, except when bugs come and contra-
dict those principles. We think it is a pity that the COMMON-
LISP standard leaves so much freedom to the implementa-
tion, as it leads to very different behaviors across implemen-
tations, and even inconsistencies within a particular imple-
mentation. Admittedly, if one considers a class mainly as a
storage facility (which is reasonable, given the fact that be-
havior is not encapsulated in classes in CLOS), type check-
ing is not a critical feature because type errors will be caught
later on, at the time a slot’s value is actually used. Never-
theless, it would not hurt to be informed sooner of a typing
error, and would make debugging easier.

7. Perspectives
The perspectives of this work are numerous. We would like
to emphasize on the ones we think are the most important.

7.1 Further Investigation
The research described in this paper is still ongoing. In par-
ticular, we have outlined several oddities or surprising be-
haviors in some particular aspects of the instantiation pro-
cess. Some of these oddities have been reported to the con-
cerned maintainers; some of them have even already been
fixed or are being worked on right now. Some others should
be further analyzed, as they probably would reveal room for
improvement in the compilers.

7.2 Structures as classes
Although not part of the ANSI COMMON-LISP standard,
some implementations provide a certain degree of unifica-
tion between structures and CLOS (for instance, accessing
structure slots with slot-value). These features have not
been tested at all, but it should be interesting to see how they
behave.

7.3 Memory Management
GC timings were intentionally left out of this study because
our focus was on the object-oriented layer. When compar-
ing so different languages however, it is difficult to avoid
taking into account the differences of expressiveness, and in

that particular matter, the fact that memory management is
automatic on one side, and manual on the other side. Even
within the LISP side, it would be interesting to include GC
timings in the benchmarks, simply because GC is part of the
language design, and also because different compilers use
different GC techniques which adds even more parameters
to the overall efficiency of one’s application.

7.4 Benchmarking other compilers / architectures
The benchmarks presented in this paper were obtained on
a specific platform, with specific compilers. It would be in-
teresting to measure the behavior and performance of the
same code on other platforms, and also with other compil-
ers. The automated benchmarking infrastructure provided in
the source code should make this process easier for people
willing to do so.

This is also the place where it would be interesting to
measure the impact of compiler-specific optimization capa-
bilities, including architecture-aware ones like the presence
of SIMD (Single Instruction, Multiple Data) instruction sets.
One should note however that this leads to comparing com-
pilers more than languages, and that the performance gain
from such optimizations would be very dependent on the al-
gorithms under experimentation (thus, it would be difficult
to draw a general conclusion).

7.5 From dedication to genericity
In Verna (2006), we provided a series of micro-benchmarks
on several simple image processing algorithms, in order to
evaluate the performance of pixel access and arithmetic op-
erations in both C and LISP. We demonstrated that the be-
havior of equivalent LISP and C code is similar with respect
to the choice of data structures and types, and also to ex-
ternal parameters such as hardware optimization. We further
demonstrated that properly typed and optimized LISP code
runs as fast as the equivalent C code, or even faster in some
cases. That work was the first step in order to get C or C++
people’s attention. However, most image treaters want some
degree of genericity: genericity on the image types (RGB,
Gray level etc.), image representation (integers, unsigned,
floats, 16bits, 32bits etc.), and why not on the algorithms
themselves. To this aim, the object oriented approach is a
natural way to go. Image processing libraries with a variable
degree of genericity exist both in C++ and in LISP, using
CLOS. The research presented in this paper is the first step
in evaluating the efficiency of the COMMON-LISP object-
oriented layer. The next two steps will be to respectively
evaluate the performance of slot access, and then generic
dispatch in general. Given the optimistic note on which this
paper ends, we are eager to discover how LISP will compare
to C++ in those matters.

7.6 From dynamic to static genericity
Even in the C++ community, some people feel that the cost
of dynamic genericity is too high. Provided with enough ex-

pertise on the template system and on meta-programming,
it is now possible to write image processing algorithms in
an object-oriented fashion, but in such a way that all generic
dispatches are resolved at compile time (Burrus et al., 2003).
Reaching this level of expressiveness in C++ is a very costly
task, however, because template programming is cumber-
some (awkward syntax, obfuscated compiler error messages
etc.). There, the situation is expected to turn dramatically in
favor of LISP. Indeed, given the power of the LISP macro
system (the whole language is available in macros), the abil-
ity to generate function code and compile it on-the-fly, we
should be able to automatically produce dedicated hence op-
timal code in a much easier way. There, the level of expres-
siveness of each language becomes of a capital importance.

Finally, it should be noted that one important aspect of
static generic programming is that the cost of abstraction re-
sides in the compilation process; not in the execution any-
more. In other words, it will be interesting to compare the
performances of LISP and C++ not in terms of execution
times, but compilation times this time.

Acknowledgments
The author would like to thank Roland Levillain, and sev-
eral LISP implementers for their useful feedback on their re-
spective LISP compilers, most notably Nikodemus Siivola,
Duane Rettig and Raymond Toy.

References
Boreczky, J. and Rowe, L. A. (1994). Building

COMMON-LISP applications with reasonable perfor-
mance. http://bmrc.berkeley.edu/research/
publications/1993/125/Lisp.html.

Burrus, N., Duret-Lutz, A., Géraud, T., Lesage, D., and
Poss, R. (2003). A static C++ object-oriented program-
ming (SCOOP) paradigm mixing benefits of traditional
OOP and generic programming. In Proceedings of the
Workshop on Multiple Paradigm with OO Languages
(MPOOL), Anaheim, CA, USA.

Duret-Lutz, A. (2000). Olena: a component-based platform
for image processing, mixing generic, generative and OO,
programming. In Proceedings of the 2nd International
Symposium on Generative and Component-Based Soft-
ware Engineering (GCSE)—-Young Researchers Work-
shop; published in “Net.ObjectDays2000”, pages 653–
659, Erfurt, Germany. http://olena.lrde.epita.fr.

Fateman, R. J., Broughan, K. A., Willcock, D. K., and
Rettig, D. (1995). Fast floating-point processing
in COMMON-LISP. ACM Transactions on Mathe-
matical Software, 21(1):26–62. Downloadable ver-
sion at http://openmap.bbn.com/~kanderso/
performance/postscript/lispfloat.ps.

Froment, J. (2000). MegaWave2 System Library. CMLA,
École Normale Supérieure de Cachan, Cachan, France.

http://www.cmla.ens-cachan.fr/Cmla/Megawave.

Gabriel, R. P. (1985). Performance and Evaluation of LISP
Systems. MIT Press.

Keene, S. E. (1989). Object-Oriented Programming
in COMMON-LISP: a Programmer’s Guide to CLOS.
Addison-Wesley.

Kiczales, G. J., des Rivières, J., and Bobrow, D. G. (1991).
The Art of the Metaobject Protocol. MIT Press, Cam-
bridge, MA.

MacLachlan, R. A. (1992). The python compiler for CMU-
CL. In ACM Conference on LISP and Functional Pro-
gramming, pages 235–246. Downloadable version at
http://www-2.cs.cmu.edu/~ram/pub/lfp.ps.

Neuss, N. (2003). On using COMMON-LISP for
scientific computing. In CISC Conference,
LNCSE. Springer-Verlag. Downloadable version at
http://www.iwr.uni-heidelberg.de/groups/
techsim/people/neuss/publications.html.

Paepcke, A. (1993). User-level language crafting – intro-
ducing the CLOS metaobject protocol. In Paepcke, A.,
editor, Object-Oriented Programming: The CLOS Per-
spective, chapter 3, pages 65–99. MIT Press. Down-
loadable version at http://infolab.stanford.edu/
~paepcke/shared-documents/mopintro.ps.

Quam, L. H. (2005). Performance beyond expectations.
In International LISP Conference, pages 305–315, Stan-
ford University, Stanford, CA. The Association of LISP
Users. Downloadable version at http://www.ai.sri.
com/~quam/Public/papers/ILC2005/.

Reid, J. (1996). Remark on “fast floating-point processing in
COMMON-LISP”. In ACM Transactions on Mathematical
Software, volume 22, pages 496–497. ACM Press.

Steele, G. L. (1990). COMMON-LISP the Language, 2nd
edition. Digital Press. Online and downloadable version
at http://www.cs.cmu.edu/Groups/AI/html/cltl/
cltl2.html.

ANSI (1994). American National Standard: Program-
ming Language – COMMON-LISP. ANSI X3.226:1994
(R1999).

Verna, D. (2006). Beating C in scientific computing appli-
cations. In Third European LISP Workshop at ECOOP,
Nantes, France.

http://bmrc.berkeley.edu/research/publications/1993/125/Lisp.html
http://bmrc.berkeley.edu/research/publications/1993/125/Lisp.html
http://olena.lrde.epita.fr
http://openmap.bbn.com/~kanderso/performance/postscript/lispfloat.ps
http://openmap.bbn.com/~kanderso/performance/postscript/lispfloat.ps
http://www.cmla.ens-cachan.fr/Cmla/Megawave
http://www-2.cs.cmu.edu/~ram/pub/lfp.ps
http://www.iwr.uni-heidelberg.de/groups/techsim/people/neuss/publications.html
http://www.iwr.uni-heidelberg.de/groups/techsim/people/neuss/publications.html
http://infolab.stanford.edu/~paepcke/shared-documents/mopintro.ps
http://infolab.stanford.edu/~paepcke/shared-documents/mopintro.ps
http://www.ai.sri.com/~quam/Public/papers/ILC2005/
http://www.ai.sri.com/~quam/Public/papers/ILC2005/
http://www.cs.cmu.edu/Groups/AI/html/cltl/cltl2.html
http://www.cs.cmu.edu/Groups/AI/html/cltl/cltl2.html
http://lisp-ecoop06.bknr.net/home
http://www.emn.fr/x-info/ecoop2006

	Introduction
	General Overview
	Protocol
	Involved Parameters
	Notes on Slots Initialization
	Note on Memory Management

	Experimental Conditions

	C++ Object Instantiation
	C++ Specific Details
	Compiler and Optimization Modes
	struct vs. class

	Experiments
	Local Slots
	Shared Slots
	Optimized Mode

	Intermediate Conclusion

	Lisp
	Lisp Specific Details
	Compilers
	Optimization Modes
	Additional Parameters

	Structures
	Sbcl
	Cmu-cl
	Acl
	Cross-Implementation Comparisons
	Intermediate Conclusion

	Classes
	Sbcl
	Cmu-cl
	Acl

	Cross-Implementation Comparison
	Safe Mode
	Inline Mode

	Cross-Language Comparison
	Conclusion
	Perspectives
	Further Investigation
	Structures as classes
	Memory Management
	Benchmarking other compilers / architectures
	From dedication to genericity
	From dynamic to static genericity

