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Outline

• Earth-Moon Libration Point System
• Halo Orbit Families & Geometries
• Libration Point Transfer Options 
• Transfer Option Performance Example (∆V, time)

o Direct
o Lunar Flyby
o Low Energy (Manifold)

• L2 Halo Orbit Special Considerations
o Orbit Maintenance
o Communication
o Rendezvous
o Launch Opportunities
o Aborts
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Earth-Moon Libration Points

Moon’s Orbital 
Motion

Leading Equilateral Point
(L4)

(L5)
Trailing Equilateral Point

Trans-Lunar 
Libration 

Point
(L2)

Cis-Lunar 
Libration Point

(L1)

Trans-Earth
Libration Point
(L3)

Earth-to-Moon – 384,400 km
L1 – 57,731 km from Moon
L2 – 64,166 km from Moon
L3 – 381,327 km from Earth
L4 & L5 – 384,400 km from 

Earth and Moon

Libration Points are Equilibrium Points in a 2-body 
system (Earth-Moon, Sun-Earth, Sun-Mars, etc.)
- Collinear points (L1, L2, L3), “unstable”
- Equilateral points (L4, L5), “stable”
- Station-keeping – very small ∆V (<10 m/s/yr)
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Halo Orbit Families and Geometry
Near 

Rectilinear 
Halo Orbit

Earth 
view

Side view

Earth-Moon 
Orbital Plane 

view

3D view

Halo 
Orbit

Halo Orbit:
- A periodic, 3-D orbit 

near the L1, L2, L3
Lagrange Pt. 

- Spacecraft travels in a 
closed, repeating path 
near the Lagrange 
point

- Not technically orbiting 
the Lagrange point

- Tend to be unstable, 
station keeping is 
required

Rule of thumb: 
- Period of halo is ~1/2 

of the period of the 
primaries

- In the Earth-Moon 
system, a halo period 
is ~14 days

Presenter
Presentation Notes
--We cannot freely select the shape of the halo orbit. Only some parameters can be selected (e.g. Ax or Az but not both at the same time)
-The period of the orbit for a Halo orbit is around ½ of the period of the primaries. For example, in the Earth-Moon system it is 14days. For near-rectilinear halo orbits this does not apply. See Figure.
-Near-rectilinear halo orbits have close flybys of the Moon. The can be used to explore the north or south regions of the Moon
--Each halo orbit has a north and a south version (North and South Families)



Earth/Moon-L2 Halo South Family

 Halo amplitudes range 
from approximately 0 to 
30,000 km (north) and up 
to 80,000 km (south)

 As the Z-amplitude (Az) of 
the halo is increased, 
there is a transition to a 
near rectilinear halo with 
a 6-7 day period.

 Near rectilinear halos are 
less unstable and require 
less orbit maintenance*

 Lower Az halos are more 
unstable*, but more 
amenable to transition to 
and from weak stability 
boundary manifold 
trajectories
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Halo 
Period
(days)* Multibody Orbit Architectures for Lunar South Pole 

Coverage.  D. Grebow, M. Ozimek, and K. Howell
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• L2 or L2 Halo Orbit selection 
dependent on various parameters 
besides transportation

o Environmental considerations 
in L2 halo orbits

– Thermal, Radiation, 
MMOD

o Orbit maintenance costs
o Best halo for Earth 

communication and visibility
o Best halo for Lunar South 

Pole visibility
o Science considerations in L2 

Halo Orbits
o Excursions to LLO or 

alternate Halo Orbits

L2 Halo Selection Considerations

3D view



LEO to Earth-Moon L2 
Direct and Flyby – Example Cases
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Earth

L2

L1

Moon

Destination L2 L2 Halo
Mission Type direct flyby direct flyby

LEO DV (km/s) 3.149 3.134 3.151 3.133
Lunar Periapsis DV (km/s) 0.000 0.186 0.000 0.175

Capture DV  (km/s) 1.107 0.148 0.957 0.109
Total DV (km/s) 4.256 3.468 4.108 3.416

Transfer Time (days) 6.14 8.53 6.29 8.35

LEO inclination: 28.5 deg

L2 Halo orbit:
Max. Amplitude in x-axis: 11,904 km
Max. Amplitude in y-axis: 34,672 km
Max. Amplitude in z-axis: 10,000 km
Orbit Period: 14 days

Direct
With Flyby

Halo

Earth-Moon Rotating Frame

test_9_flyby_for_plot.ideck



LEO to Earth-Moon L2 
Direct and Flyby – Example Cases

June 15, 2017 JSC/EG5/Flight Mechanics and Trajectory Design Branch 8

Earth

Moon’s Orbit

Destination L2 L2 Halo
Mission Type direct flyby direct flyby

LEO DV (km/s) 3.149 3.134 3.151 3.133
Lunar Periapsis DV (km/s) 0.000 0.186 0.000 0.175

Capture DV  (km/s) 1.107 0.148 0.957 0.109
Total DV (km/s) 4.256 3.468 4.108 3.416

Transfer Time (days) 6.14 8.53 6.29 8.35

LEO inclination: 28.5 deg

L2 Halo orbit:
Max. Amplitude in x-axis: 11,904 km
Max. Amplitude in y-axis: 34,672 km
Max. Amplitude in z-axis: 10,000 km
Orbit Period: 14 days

Direct

With Flyby

L2 Halos

test_9_flyby_for_plot.ideck

Earth Centered Ecliptic Frame



Example Case-Low Energy Trajectory Design
Performance
• Earth departure       ∆V = 3195 m/s
• Manifold insertion    ∆V =       1 m/s
• Total flight time  = 103 days

Flight Profile
• After Earth launch, depart from a 28.5°,   

185 km circular altitude LEO parking orbit,      
(∆V = 3195 m/s)

• Achieve energy (C3) to reach the L2 Halo 
manifold insertion point

• Reach manifold insertion point (Earth 
departure + 10 days)

• Insert onto manifold (∆V = 1 m/s)
• Coast on a trajectory taking the s/c 1-2 

million km where the Sun’s gravity field 
guides the trajectory to the L2 Halo arrival 
point

• Reach L2 Halo arrival (Earth departure + 
103 days)

Comments
• Other low energy trajectory types (lunar 

flyby, lunar/earth flyby)

Earth Orbit to EM-L2 – Minimized Arrival ∆V
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Manifold

L2 Halo arrival
∆V = 0 m/s

Lunar Orbit

Earth Departure
∆V = 3195 m/s

Earth

Manifold insertion
∆V = 1 m/s



Low Energy Trajectory Design Example
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Low Energy Transfer Option 
• Invariant manifolds (stable and 

unstable) lead into and out of L1 
& L2

• Connect manifolds to construct 
low energy transfers to halo or 
other periodic orbits

• Can use this technique to 
generate trajectories from Earth 
to halo orbits in the Earth-Moon 
(as well as Sun-Earth) system 
with an extremely small arrival ∆V 
requirement

• Earth departure ∆V can be 
slightly higher than crewed direct 
or lunar flyby trajectory

• Opens selection to low ∆V 
capability buses

• Longer trip time – uncrewed
flights only

• May be limited opportunities



June 15, 2017 JSC/EG5/Flight Mechanics and Trajectory Design Branch 11

Orbit Maintenance for Halo Orbit Families

Values are representative

• Station keeping at L2 for 1 year 
can be as low as <5-10 m/s/year –
Near-rectilinear halo orbit

• Type of Halo Orbit impacts costs –
can increase to <25-30 m/s/year

Presenter
Presentation Notes
--We cannot freely select the shape of the halo orbit. Only some parameters can be selected (e.g. Ax or Az but not both at the same time)
-The period of the orbit for a Halo orbit is around ½ of the period of the primaries. For example, in the Earth-Moon system it is 14days. For near-rectilinear halo orbits this does not apply. See Figure.
-Near-rectilinear halo orbits have close flybys of the Moon. The can be used to explore the north or south regions of the Moon
--Each halo orbit has a north and a south version (North and South Families)



Orbit Maintenance ∆V Cost In EM-L2 Halo

 Station keep ∆V 
depends upon:
 Control law
 Maneuver 

execution error
 Navigation Orbit 

Determination (OD)
With a good 

control law, 
navigation 
accuracy and 
execution 
precision will 
dominate the 
station keeping ∆V 
cost
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Courtesy:  Jeff Parker, JPL

Artemis
capability

 Assumptions
 24 maneuvers over 12 revs (~2 maneuvers / 

rev)
 Reference EM-L2 halo z-amplitude = 10 km

Maneuver Execution Error per Axis 1-sigma (mm/s)



Earth-Moon L2 Halo Orbit Rendezvous 

 The EM-L2 Halo rendezvous mission 
begins at Earth launch.

 The MPCV can be launched daily to target 
the EM-L2 halo itself

 There exists an optimal LEO to EM-L2 
halo insertion location that occurs once 
during the halo period (around 14 days).

 Launching at a time designed to insert the 
MPCV onto the halo at this time will 
provide a minimum ∆V requirement.

 Launching at a time away from this optimal 
time will incur additional MPCV ∆V cost.

 MPCV inserts onto EM-L2 halo at a 
selected offset distance.

 MPCV later performs maneuver(s) to close 
this distance, ultimately docking with the 
Waypoint Spacecraft (WSC)
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Earth

Moon

Halo
insertion

Insertion
offset

distance



Earth-Moon L2 Halo Orbit Rendezvous 
– Example Methodology –
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Assumptions
• Target s/c in halo orbit about L2
• Chaser s/c inserts onto (target) halo, trailing by 10 km
• Chaser executes a 2-manuever sequence to close the distance
• Chaser burn 1 maneuver closes distance between Chaser and 

target over a selected duration

Rendezvous ∆V (m/sec) vs Time (hrs)

Time from Burn1 to Burn2 (hrs)
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Effect of Launch Delays on MPCV ∆V Requirement
Introduction/Methodology

Vary the departure epoch (Earth departure 
maneuver is delayed) from the nominal 
(minimum Δv) mission.

For the nominal mission, the WSC is at the 
optimal insertion offset point at the optimal 
(minimum DV) MPCV insertion time.
 The nominal mission assumes zero launch delay.

Rendezvous occurs at a new location to 
minimize Δv and limit the flight time to 9 days.

The x-axis in the plots are days past the 
nominal TLI.
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Effect of Launch Delays on MPCV ∆V Requirement 
Results
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Nominal 
Departure



Effect of Launch Delays on MPCV ∆V Requirement 
Results
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Nominal 
Departure

* Sum of all Δv’s performed by the MPCV after Earth-departure

* Earth-Departure Maneuver performed in LEO



x
α

L2

Effect of Launch Delays on MPCV ∆V Requirement
Results

18

 In this plot, τ is really (180 – α), since we are using 
real (not osculating) halo orbits.

 α is the insertion right ascension (in the Earth-Moon 
rotating frame, centered at the L2 point).

Nominal Transfer



Effect of Launch Delays on MPCV ∆V Requirement 
Summary
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 It turns out that freeing the Moon flyby altitude and flyby 
maneuver true anomaly constraints result in significant 
savings for the worst off-nominal cases.
• About 75 m/s for the +4 day case
• The worst-case additional ΔV cost is 165 m/s (for a 6-day delay)

 This analysis does not account for delays in LEO after 
launch (it is assumed that TLI is always performed in the 
optimal LEO for the departure epoch).

 There may be cases where a multiple-maneuver insertion 
sequence may reduce the cost [haven’t looked at this yet].

 This analysis also assumes that the WSC is a totally 
passive vehicle.  A further study could assume that it is 
capable of also performing maneuvers to produce a more 
favorable alignment.



Aborts
 Earth Entry Interface (EI) Target:

• Altitude: 121.9 km
• Flight path angle: -5.86

 Total return time ≤ 11 days
 Best of single-impulse and two-impulse (flyby) modes
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t=0 days
Δv=450 m/s

t=5 days
Δv=318 m/s

t=10 days
Δv=536 m/s

t=15 days
Δv=494 m/s

t=20 days
Δv=743 m/s

t=25 days
Δv=627m/s

t=30 days
Δv=654 m/s

t=34 days
Δv=605 m/s

t=36 days
Δv=832 m/s

t=42 days
Δv=387 m/s

t=47 days
Δv=375m/s

Moon

Start of 
Excursion

End of 
Excursion

To 
Earth

Axis hash marks at 10,000 
km



Aborts

 For most cases, the flyby departure will be cheaper 
(but there are cases where a direct return is cheaper).

21

Direct

Flyby



Maneuver between L2 and L1 Halo orbits
– ARTEMIS Mission Example –

ARTEMIS Mission
• Spacecraft “P1” reached 

vicinity of L2 Aug. 2010, “P2” 
reached L1 Oct. 2010

• Frequent orbit maintenance 
(every week) required, but 
maneuvers were small -
equivalent to <100 m/s/year

• P1 maneuvered from L2 to 
L1 Jan 2011 – ΔV negligible,  
10-day transfer

• P1 maneuvered (90 m/s) 
from L1 “lissajous” to lunar 
orbit June 2011, P2 joined it 
in July (120 m/s) Time at L2 L2-L1 Transfer Time at L1

P1 131 days 10 days 154 days

P2 - - 255 days



END PRESENTATION
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BACKUP
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L2 TO MARS
Earth-Moon Libration Point Mission Design and Performance

25



Earth-Moon L2 to Phobos Orbit Insertion

Earth_to_Mars_with_Lunar_flyby_v6.ideck

3-Burn Escape: 
ΔvL2       = 144 m/s
ΔvMoon = 195 m/s
ΔvEarth = 445 m/s
ΔvMars = 2.135 km/s
ΔvTotal = 2.921 km/s

784 m/s Ecliptic Plane

From Earth

Δv

To Mars

L2 Moon Flyby Earth Flyby

Example Trajectory
Transfer time: 209 days

Phobos Insertion



Earth-Moon L2 to Phobos Orbit Insertion

Compare to direct transfer from L2
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L2

Moon Flyby
Earth Flyby

Direct Transfer

To Mars

To Mars

ΔvEscape = 784 m/s
ΔvMars = 2.135 km/s
ΔvTotal = 2.921 km/s

ΔvEscape = 2.228 km/s
ΔvMars = 2.282 km/s
ΔvTotal = 4.511 km/s

Earth_to_Mars_with_Lunar_flyby_v6+direct.ideck

Flyby Transfer Rotating Frame
Of Reference



Natural Environments at Earth-Moon L2
Ionizing Radiation

• Major sources of radiation
o Galactic Cosmic Rays
o Solar Particle Events
o Magnetosphere

• Shielding Strategy required to protect crew.
o Mission duration and shielding strategy determine risk
o Short Duration free space missions (<30 days) can be 

conducted within current NASA Standards and risk 
models

• Spacecraft hardware assessment required to 
ensure surface charging and ionizing radiation 
levels at L2 are within existing hardware 
certification levels.



Natural Environments at Earth-Moon L2
Thermal & Micro-Meteoroid

Radiator sink temperature at 
L2 is invariant. It can 
either be very cold due to 
deep space or at a 
constant sink of 230 
Kelvin (1 sun)

• Thermal
o Thermal environment ranges from 70 - 230 Kelvin depending on exposure to the sun
o Thermal environment not considered an architectural driver for L2 missions

• MMOD
o Man made orbital debris not a major factor at L2 / L2 Halos, tends to “wash out” of 

location / orbit
o Meteoroid risk is influenced by Earth focusing (gravitational) factor and Earth 

shadowing while in Earth orbit
- Meteoroid risk far from Earth is typically less compared to meteoroid risk in LEO

o MMOD environment not considered an architectural driver for L2 missions.



Earth-Moon L2 Halo Orbit Rendezvous 
– Example Methodology –
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Target

Chaser

Burn2 –
Rendezvous 

complete

Burn1 –
Rendezvous 
initiation

Assumptions
• Target s/c in halo orbit about L2
• Chaser s/c inserts onto (target) halo, trailing by 10 km
• Chaser executes a 2-manuever sequence to close the distance
• Chaser burn 1 maneuver closes distance between Chaser and 

target over a selected duration

Rendezvous ∆V (m/sec) vs Time (hrs)

Time from Burn1 to Burn2 (hrs)
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Earth Visibility from Halo Orbit
– Communications –
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Assumptions
• Visibility based on ability to 

view at least one of three 
DSN sites from the 
spacecraft on the halo

• There are North and South 
halo orbit families

Observations
• Visibility to Earth is 

affected by halo orbit 
amplitude (94%+)

• Visibility to Earth is 
essentially independent of 
distance from the Earth

Visibility from Earth vs. EML2 Halo Orbit Az amplitude (South)

Halo Orbit Az Amplitude (km)

Visibility from Earth vs. EML2 Halo Orbit Az amplitude (North)

Halo Orbit Az Amplitude (km)

Halo Orbit Distance From Earth vs. EML2 Halo Orbit Az amplitude (North)

Halo Orbit Az Amplitude (km)



Earth-Moon L2 Halo Orbit Rendezvous 
– Example Methodology –
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Target

Chaser

Burn2 –
Rendezvous 

complete

Burn1 –
Rendezvous 
initiation

Assumptions
• Target s/c in halo orbit about L2
• Chaser s/c inserts onto (target) halo, trailing by 10 km
• Chaser executes a 2-manuever sequence to close the distance
• Chaser burn 1 maneuver closes distance between Chaser and 

target over a selected duration

Rendezvous ∆V (m/sec) vs Time (hrs)

Time from Burn1 to Burn2 (hrs)
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Effect of Launch Delays on MPCV ∆V Requirement
Results
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Optimal



t=0 days
Δv=690 m/s

t=5 days
Δv=318 m/s

t=10 days
Δv=537 m/s

t=15 days
Δv=512 m/s

t=20 days
Δv=776 m/s

t=25 days
Δv=691 m/s

t=30 days
Δv=717 m/s

t=34 days
Δv=605 m/s

t=36 days
Δv=833 m/s

t=42 days
Δv=468 m/s

t=47 days
Δv=381 m/s

Moon

Start of 
Excursion

End of 
Excursion

To Earth

Axis hash marks at 10,000 km

Abort Assessments

 Earth Entry Interface (EI) Target:
• Altitude: 121.9 km
• Flight path angle: -5.86

 Total return time ≤ 11 days
 Best of single-impulse and two-impulse (flyby) modes
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Abort Assessments

For most cases, the flyby abort will be 
cheaper (but there are cases where a direct 
return is cheaper).
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Direct

Flyby



LEO to Earth-Moon L1 & L2 
Direct and Flyby – Example Cases
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Earth

L2

L1

Moon

LEO inclination: 28.5 deg

L1 Halo orbit:
Max. Amplitude in x-axis: 6,537 km
Max. Amplitude in y-axis: 23,445 km
Max. Amplitude in z-axis: 10,000 km
Orbit Period: 12 days

L2 Halo orbit:
Max. Amplitude in x-axis: 11,904 km
Max. Amplitude in y-axis: 34,672 km
Max. Amplitude in z-axis: 10,000 km
Orbit Period: 14 days

Direct

With Flyby

L2 Halo

Earth-Moon Rotating Frame

test_9_flyby_for_plot.ideck

L1 Halotest_13_flyby__for_plot.ideck

Destination L1 L1 Halo L2 L2 Halo
Mission Type direct flyby direct flyby direct flyby direct flyby

LEO DV (km/s) 3.116 3.154 3.118 3.155 3.149 3.134 3.151 3.133
Lunar Periapsis DV (km/s) 0.000 0.298 0.000 0.274 0.000 0.186 0.000 0.175

Capture DV (km/s) 0.716 0.411 0.605 0.287 1.107 0.148 0.957 0.109
Total DV (km/s) 3.832 3.863 3.723 3.716 4.256 3.468 4.108 3.416

Transfer Time (days) 3.76 4.38 3.94 4.83 6.14 8.53 6.29 8.35
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Overview of Slides

1. DRO Tutorial

2. MPCV Transfer Example Cases

3. Overview of Trade Studies to Assess 
MPCV Accessibility to the Asteroid 
Targets
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DRO Tutorial



Background
 A Distant Retrograde Orbit (DRO) 

is another family of stable orbits 
found in the circular restricted 
three-body problem (CRTBP).

 In the Earth-Moon rotating 
frame, they look like circular to 
elliptical orbits around the Moon 
(with the Moon at the center of 
the orbit).

 DROs orbit the moon in a 
retrograde direction from moon’s 
orbit/rotation.

 Some DROs are very stable over 
long periods of time (>100 years) 
with no orbit maintenance, even 
with a “real” force model.
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To
Earth

Moon’s
Motion

L2

L1

50,000 km

100k

70k
60k

Az=30k
Az=20k

Az=10k

Halo Orbits

DROs

Earth-Moon Rotating Frame
(Circular Restricted Three-Body Problem)

Moon

Top View

Side View

figures.ideck



DROs In The CR3BP
 DRO shapes transition with 

increases in altitude
– Nearly circular near the 

Moon
– Transitioning to an 

elliptical shape
– Then becomes more 

kidney-shaped
– Then becomes more 

cardioid shaped
 In a “real” system, 50,000 

to 70,000 km altitudes are 
stable for > 100 years
– Additional work required 

to determine stability of 
higher altitudes
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100k

200k

300k

400k

MoonEarth

DROs

Earth-Moon Rotating Frame
(Circular Restricted Three-Body Problem)

100,000 kmfigures2.ideck

Presenter
Presentation Notes
Higher altitudes may be stable, but we may not be able to find them yet.



Example DRO’s (Real Force Model)
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Earth-Moon Rotating Frame
test_3.ideck

60,000 km

L2

L1

30,000 km

 Classified by x-axis crossing radius (b) - like a semi-minor 
axis:   10,000 – 60,000 km shown here

 Stable for long periods (300 days shown here)
 DROs are periodic in Circular Restricted Three Body 

Problem (CRTBP)
 DROs are quasi-periodic in the real force model
 Increasing period with increasing altitude above Moon

Moon

Earth

11.4 day 
period

9 day

4.6 day

2.6 day

1 day

X

Y

X

Y

MOON



Example DRO’s: Inertial Frame (Moon-Centered)
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Earth’s Orbit

Moon

test_3.ideck

J2000 Inertial Frame (Moon-Centered)

X

10,000 km

Y

20,000 km
30,000 km

50,000 km
60,000 km

 This DRO set lies in 
the Earth-Moon plane

 DROs currently being 
pursued by JPL for 
ARM storage orbit



Example DRO’s: Inertial Frame (Earth-Centered)

 From an Earth perspective, a DRO will reside in the general vicinity of the 
moon and so a spacecraft in a DRO will orbit Earth about every 28 days

 A spacecraft in a DRO will have the same approximate position, rotational 
velocity, and inclination as that of the moon
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Moon’s Orbit

Earth

1 Period of Each 
Orbit Shown

test_5.ideck

J2000 Inertial Frame (Earth-Centered)

Earth

Moon’s Orbit

300 days

J2000 Inertial Frame (Earth-Centered)



Summary
 “Lunar” DROs cycle in the vicinity of the moon with a 

range of altitudes
 DROs are generally stable (particularly lower altitude 

DROs)
 They can propagate for many years (some cases > 100 

years) without maintenance
 In an Earth-Moon rotating frame, DROs are a quasi-

periodic orbit (circle, ellipse, kidney – shaped)
 From Earth perspective, DROs approximately follow 

the lunar orbit motion
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Round-Trip 
MPCV Mission 
TO DRO 
(Example 
Cases)



Overview

 This assessment contains a round-trip MPCV mission 
to a distant retrograde orbit (DRO) around the Moon.
– In support of a rendezvous mission with a pre-

emplaced asteroid
 This is a feasibility assessment (i.e. just a single case) 

and not a trade study.
– It is not a best or worst case.
– Mission performance requirements and 

opportunities would be better revealed by trade 
studies

12



Assumptions
 Impulsive (Δv) maneuvers (optimized)
 DRO size (x-axis crossing distance) = 62,000 km
 Outbound:

– iCPS MECO state (see next slide)
– iCPS Capability: 

• Total Δv: 2,900 m/s
• 40.77 m/s used for the PRM (raises perigee from 40.7 to 185 km, with an 1806 km apogee)
• Estimate about 80 m/s gravity for losses, 
• So, the impulsive limit for TLI is 2,779.23 m/s

– iCPS Earth departure maneuver, followed 30 seconds later by an MPCV departure 
maneuver (if necessary to complete TLI)

– Powered lunar flyby (minimum 100 km altitude)

 Inbound:
– Direct return (no flyby)
– EI Altitude: 121.92 km
– EI FPA: -5.86 deg

 Total mission duration ≤ 21 days (optimized)
 At least one day stay in the DRO (optimized)

13



Assumptions: MECO State
 MECO State (EPM_OF_DATE Frame, Earth-centered)

• Radius magnitude (km): 6535.55695654
• Longitude (deg): -66.5737779
• Geocentric latitude (deg): 27.5046213
• Velocity magnitude (km/s): 8.20892236
• Geocentric azimuth (deg): 97.76124785
• Geocentric flight path angle (deg): 3.46249997

14

Source: 080212 Mass properties for the L2 Waypoint analysis_Gutkowski.xlsx



Assumptions: Earth Departure

15

MECO

Periapsis Raise 
Maneuver
(Δv = 40.8 m/s)

Earth Departure Finite 
Burn Maneuver

(~ 20 min)

To Moon

• Fixed flight time from MECO to 
apoapsis (44 min).

• Fixed maneuver to raise periapsis to 
185 km altitude (40.8 m/s).

• The 185 km periapsis is the actual 
propagated value (not 
osculating).

• 8x8 GGM02C Earth gravity model
• Optimized coast to the Earth 

departure maneuver.
• Finite Burn Earth departure maneuver 

with optimized control law and burn 
duration:

• VUW Frame
• SOC control law

Propagate to Apoapsis (00:44:05)

ββαα  ,,,

Coast to TLI

Example: MECO at 2017-Dec-12 08:14:14 TDB
hybrid_8x8_20171122_240030_base.ideck



Results (Impulsive Only)

16

 MECO Epoch: 2021-Jul-19 
15:59:17 TDB

 iCPS Departure: 2,779.23 m/s
 MPCV Departure: 60.36 m/s
 Flyby : 179.1 m/s
 Outbound Flight Time: 9.38 days
 DRO Arrival: 124.6 m/s
 Stay Time: 2.49 days
 DRO Departure: 577.4 m/s
 Return Flight Time: 6.61 days
 Entry velocity: 11.00 km/s

 Total iCPS Δv: 2,779.23 m/s
 Total MPCV Δv: 941.5 m/s
 Total Mission Duration: 18.49 days

Orion_MECO_to_DRO_flyby_direct_3.ideck

Earth-Moon Rotating-Pulsating FrameLEO Departure

DRO Arrival

Flyby

DRO

DRO Departure

EI

Copernicus Screenshot

Stay 
in 
DRO



Phasing
 Assume the asteroid is at the location of the optimal insertion on previous slide (the 

2021-Jul-19 departure epoch).
 Subsequent opportunity (next month) will have a higher cost due to the non-

optimal phasing (assuming the asteroid cannot be moved once placed in orbit)
 Trade studies will be necessary to assess asteroid accessibility over time for 

different sized DROs and asteroid insertion phase.

17

Departure Epoch
MPCV 
Cost
(m/s)

Stay Time
(days)

Total Mission 
Time

(days)

2021-Jul-19 
15:59:17 941.5 2.49 18.49

2021-Aug-14 
12:01:35 1,209.7 4.94 16.58

Asteroid 
at arrival

Asteroid 
at arrival



Delayed DRO Departure

 Using the nominal case (MECO Epoch: 2021-Jul-19), delay the departure 
from the asteroid and re-optimized the Earth return.

– Direct return.
– The EI constraint remains altitude and flight path angle only.

18

Delayed DRO Departure

Nominal 
Departure

Nominal 
Departure

MPCV 4-Crew Limit

MPCV Δv Limit



Orion Performance to Asteroid 
Rendezvous Targets



Asteroid Storage Orbits
 Currently monitoring JPL assessment of possible asteroid storage orbits

20

Reference:  Strange, N., 
“Lunar Storage Orbits”, 
JPL Presentation, 
1/25/13

Current JPL 
primary ARM 
Earth return 
target:
 DRO
 TBD altitude 

> 60,000 km

Secondary JPL 
ARM Target:
 Earth-Moon 

L2



Trade Space – Performance
 DRO Performance

– Parameters*:
• Epoch range:  2021 - 2025
• DRO Altitude

– 60,000, 70,000, 80,000 km  
– Based on orbit lifetime.  Shorter lifetimes not considered, currently.

• Mission time
– 84 total crew days available
– Assess mission times for crews of 2, 3, 4

• Stay time at the asteroid
• Direct vs LGA, Outbound/Inbound

– Current study:  LGA outbound with Direct inbound
• Earth return targets:  Altitude/FPA vs Entry Target-line

21

* Parameter sets are similar for lunar orbit and libration point targets.  For an EML2H target, the “altitude” 
variation can be substituted with an “amplitude” of the halo.  



Trade Space – Performance
 DRO Abort Performance

– Assessment of Earth return performance cost along outbound (Earth to 
Asteroid orbit) trajectory
• Possibility of inclusion of a free-return on outbound 

– Assess aborts for Direct vs LGA (outbound and inbound) combinations

 Assess MPCV mission opportunities
– Matching DRO orbit to resonate with lunar orbit

• MPCV performance to DRO; Orbit lifetime

22



Trade Space – DRO Performance Output
 Mission DV/propellant
 Frequency of opportunities
 Increased opportunities for reduced crew
 Launch windows 
 Aborts
 Cargo missions?
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Future Work
 Conduct MPCV Trades

– Performance cost for varying DRO characteristics
– Mission opportunities to DRO
– Mission duration vs. cost (for > 21 day max MPCV active life)
– Launch window for DRO mission

 Develop MPCV DRO rendezvous
– Far-field (and proximity operations)

 Orbit lifetime 
 Aborts
 Continue to assess MPCV performance to alternative 

asteroid storage orbits
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Acronyms
 DRO Distant Retrograde Orbits
 FPA Flight Path Angle
 FPR Flight Performance Reserve
 iCPS interim Cryogenic Propulsion Stage
 LGA Lunar Gravity Assist
 MPCV Multi-Purpose Crew Vehicle
 OM Orbit Maintenance
 PRM Perigee Raise Maneuver
 TCM Trajectory Correction Maneuver
 SLS Space Launch System

25



Backup
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Round-Trip 
MPCV Mission 
To Libration
Point 
(Example 
Cases)



1.  EM-L2 Halo  EM-L2 Halo 
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MPCV
• LEO Orbit: 185x1806 km, Incl. = 

28.5 deg
• Earth Departure Δv: 2741 m/s
• Earth to L2 Halo transfer time: 8.6 

days
• Flyby Δv: 228 m/s
• L2 Halo insertion Δv: 112 m/s
• L2 halo orbit Az: 10,000 km
• Rendezvous = 1.5 days
WSC+MPCV
• Stay in L2 Halo orbit:  2.3 days
• Transfer from L2 halo  to L2 halo 

4.7 days
• Transfer Δv: 16 m/s
• L2 halo orbit Az: 12,000 km
• Stay in L2 Halo orbit: 5.7 days
MPCV
• Earth return Δv: 944 m/s
• Return time: 5.9 days (direct)

Earth-Moon Rotating-Pulsating Frame

Insertion into EML2 Halo 
Az=10,000 km

Earth

Moon

Rendezvous =1.5 days  

Halo to halo
transfer

Insertion into EML2 Halo 
Az=12,000 km 

MPCV direct return 
maneuver

Earth-centered 
inertial Frame

Earth

Rendezvous

EML2 Halo
Az=12,000 km 

EML2 Halo 
Az=10,000 km Total MPCV Δv: 1284 m/s

Total MPCV flight time:  16.0 days
Total WSC Δv: 16 m/s
Total WSC flight time: 12.7 days

Summary



Libration Point Orbit–MPCV Performance:  L1, L2
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General Vehicle Assumptions
 MPCV

– Mass = 24092.6 kg
– Usable propellant (after removal of FPR, TCM, ACS, OMs, Sep. mnvrs) = 8086 kg
– Isp = 315.1 sec
– Thrust = 6,000 lb (26,689.3 newton)
– Delta-V capability  = 1340 m/s  (usable, translational)
– T/Winitial = 0.113

 iCPS (Current Configuration)
– MassMECO = 55,773 kg (includes 24,092.6 kg MPCV)
– MassEarth_Departure = 54,649.4 kg  (includes 24,092.6 kg MPCV)
– Usable propellantEarth_Departure+PRM = 25,902.6 kg
– Isp = 460.296 sec
– ThrustEarth_Departure = 110,897.4 N (24,930.7 lb.)
– Earth Departure delta-V = 2859 m/s (2900 iCPS DV – 41 m/s PRM)
– T/Winitial = 0.207

 iCPS (18” Extension - Stretched Configuration)
– MassMECO = 58,313.3 kg (includes 24,092.6 kg MPCV)
– MassEarth_Departure+PRM = 57,170.3 kg (includes 24,092.6 kg MPCV)
– Isp = 462.746 sec
– ThrustEarth_Departure = 110,173.6 N (24,768 lb.)
– Earth Departure delta-V =2890 m/s
– T/Winitial = 0.198

30



Two-Body Energy vs. DRO Size
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Presentation Notes
Range of periods goes from 1 day to almost a month.  Orbits become more chaotic as they get larger, but still stay moon centered.
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Example DRO’s: Inertial Frame (Earth-Centered)
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Moon’s Orbit

Earth

1 Period of Each 
Orbit Shown

test_5.ideck

J2000 Inertial Frame (Earth-Centered)

Presenter
Presentation Notes
Unlike halo orbits, DROs move in front of and behind the moon, from an earth view.



Example DRO’s: Inertial Frame (Earth-Centered)
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Earth

Moon’s 
Orbit

300 days

J2000 Inertial Frame (Earth-Centered)



Example Mission – Performance Summary
Example cases only – not for vehicle sizing

 Departure epoch:  August 15, 2021
 DRO altitude = 60,000 km
 Halo orbit amplitudes are optimized
 Flight times are optimized

34

 LEO altitude = 185 x 185 km
 All impulsive solutions



DRO Mission Design and Performance
 DROs are stable; No orbit maintenance required 
 “Lunar” DROs cycle in the vicinity of the moon with a range of altitudes
 Visibility from Earth can be designed such that it doesn’t cross disc of moon
 Possible short solar eclipsing 
 DROs, being stable, do require a delta-V for insertion and departure (19 –

801 m/s in the examples provided).  No manifold for insertion/departure.
 Current orbit maintenance delta-V budget for Gateway mission is 20 

m/s/year
– Note:  Artemis robotic mission in a Lissajous orbit used ~7 m/s/year

 Performance (note: based on single cases, single epochs)
– Cost from LEO to DRO appears similar to LEO to EML2H w/ flyby ~350 m/s range
– Cost from LEO to DRO appears a bit cheaper than LEO to EML2H direct 

• DRO:  801 m/s (direct);    EML2H: 957 m/s (direct) 

 Higher cost to go to moon’s orbit (parabolic approach vs. EM-L2)
– ~761 m/s DRO (~60,000 km) vs ~640 m/s EML2

• DRO DVs:  108 m/s departure, 653 m/s LLO arrival
• Note:  DROs are stable, so will always have departure ∆v, unlike EML2H

35



Discussion / Recommendations

 Possible use as a “holding pen”
– For example: They could serve as a long term stable 

holding area for a returning Mars sample return (to 
address back contamination issues)

 Recommendation:  With a reasonably small 
orbit maintenance delta-V, there appears to be 
no significant benefit to DRO for Gateway type 
missions
– Further, the stability of the DROs can result in 

additional mission delta-V cost.
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Example Trajectories
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Example Transfers

 A few example transfers to and from a 
DRO are shown here.
 Selected a 60,000 km DRO (which passes 

near both the Earth-Moon L1 and L2 
libration points).
 Epoch is in the vicinity of August 15, 2021.
 Not meant to be a comprehensive 

performance study.

38



Example LEO to DRO Transfer (Direct)

39

Earth-Moon Rotating-Pulsating Frame  bDRO = 60,000 km
 LEO Departure epoch: Aug-15-2021
 LEO Departure orbit: 185 km, 

circular, 28.5 deg inclination 
(optimized RAAN and TA)

 Optimized flight times and 
maneuvers

 LEO Departure: 3,152 m/s
 DRO Arrival: 702 m/s
 Flight Time: 9.25 days

LEO Departure

DRO Arrival

leo_to_dro_direct_2.ideck

DRO

J2000 Inertial Frame



Example LEO to DRO Transfer (Direct)
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Earth-Moon Rotating-Pulsating Frame

J2000 Inertial Frame

 bDRO = 60,000 km
 LEO Departure epoch: Aug-15-2021
 LEO Departure orbit: 185 km, 

circular, 28.5 deg inclination 
(optimized RAAN and TA)

 Optimized flight times and 
maneuvers

 LEO Departure: 3,161 m/s
 DRO Arrival: 801 m/s
 Flight Time: 11.8 days

LEO Departure

DRO Arrivalleo_to_dro_direct.ideck

DRO



Example LEO to DRO Transfer (Flyby)
 bDRO = 60,000 km
 LEO Departure epoch: Aug-15-2021
 LEO Departure orbit: 185 km, circular, 

28.5 deg inclination (optimized RAAN 
and TA)

 Powered lunar flyby (minimum 100 km 
altitude)

 Optimized flight times and maneuvers

 LEO Departure: 3,134 m/s
 Flyby : 182 m/s
 DRO Arrival: 167 m/s
 Flight Time: 8.05 days
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leo_to_dro_2.ideck

Earth-Moon Rotating-Pulsating Frame

LEO Departure

DRO Arrival

FlybyDRO

Total: 349 m/s

J2000 Inertial Frame



Example LEO to DRO Transfer (Flyby)
 bDRO = 60,000 km
 LEO Departure epoch: Aug-15-2021
 LEO Departure orbit: 185 km, circular, 

28.5 deg inclination (optimized RAAN 
and TA)

 Powered lunar flyby (minimum 100 km 
altitude)

 Optimized flight times and maneuvers

 LEO Departure: 3,134 m/s
 Flyby : 188 m/s
 DRO Arrival: 171 m/s
 Flight Time: 8.0 days
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leo_to_dro.ideck

Earth-Moon Rotating-Pulsating Frame

LEO Departure

DRO Arrival

FlybyDRO

J2000 Inertial Frame

Total: 359 m/s



Example DRO to LLO Transfer
 bDRO = 60,000 km
 LLO Arrival epoch: Aug-15-2021
 100 km altitude circular LLO
 Optimized LLO Inc, RAAN, Ta
 Optimized flight time
 Two-impulse transfer

 DRO Departure: 108 m/s
 LLO Arrival: 653 m/s
 Flight Time: 5.52 days
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dro_to_llo.ideck

Earth-Moon Rotating Frame

DRO Departure

LLO Arrival

DRO

J2000 Inertial Frame



Example L2 Halo to DRO Transfer (Flyby)
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Earth-Moon Rotating-Pulsating Frame
DRO Arrival

L2

Halo

DRO

Halo 
Departure

Moon Flyby

l2halo_to_dro_flyby.ideck

 bDRO = 60,000 km
 Halo departure epoch: 

Aug-15-2021
 Optimized flight time
 Optimized halo amplitude
 Three-impulse transfer

 Halo Departure: 14 m/s
 Flyby: 41 m/s
 DRO Arrival: 112 m/s
 Flight Time: 21.5 days
 Halo Az = 2,000 km

Total: 
168 
m/s

J2000 Inertial Frame



Example DRO to L2 Halo Transfer (Direct)
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Earth-Moon Rotating-Pulsating Frame

 bDRO = 60,000 km
 Halo arrival epoch: Aug-15-2021
 Two impulse transfer
 Optimized halo amplitude
 Optimized flight times and 

maneuvers

 DRO Departure: 19 m/s
 Halo Arrival: 358 m/s
 Flight Time: 5.3 days
 Halo Az = 2,000 km

J2000 Inertial Frame

DRO Departure

Halo Arrival

L2

Halo
DRO

Total: 
377 m/s

dro_to_l2halo.ideck



Example DRO to L2 Halo Transfer (Flyby)
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Earth-Moon Rotating Frame

dro_to_l2halo_flyby_2.ideck

DRO Departure

Halo

DRO

Halo Arrival

Moon Flyby

 bDRO = 60,000 km
 DRO departure epoch: ~ 

Aug-15-2021
 Optimized flight time
 Optimized halo amplitude
 Three-impulse transfer

 DRO Departure: 90 m/s
 Flyby: 146 m/s
 Halo Arrival: 6.9 m/s
 Flight Time: 41.6 days
 Halo Az = 2,000 km

Total: 
244 
m/s

J2000 Inertial Frame



Example DRO to EI (Direct)
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Earth-Moon Rotating-Pulsating Frame

dro_to_ei_free_az.ideck

DRO Departure

DRO

EI

 bDRO = 60,000 km
 DRO departure epoch: ~ 

Aug-15-2021
 EI Altitude: 121.9 km
 EI FPA: -5.86 deg

 DRO Departure: 631 m/s
 Flight Time: 5.7 days
 Entry velocity: 10.99 km/s

J2000 Inertial Frame



 bDRO = 60,000 km
 DRO departure epoch: ~ 

Aug-15-2021
 EI Altitude: 121.9 km
 EI FPA: -5.86 deg

 DRO Departure: 94 m/s
 Moon Flyby: 171 m/s
 Flight Time: 32 days
 Entry velocity: 10.98 km/s

Example DRO to EI (Flyby)
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Earth-Moon Rotating Frame

DRO Departure

DRO

EI

Moon Flyby

J2000 Inertial Frame

dro_to_ei_free_az_flyby.ideck

Total: 
265 
m/s



Families of Periodic Orbits
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From: R.A. Broucke, “Periodic Orbits in the Restricted Three-Body Problem 
with Earth-Moon Masses”, JPL Technical Report 32-1168, 1968.

DRO

L2 Halo

Earth Moon

Earth Moon



Computing DRO’s
 Only considering planar-DRO’s here (in the Earth-Moon plane)
 Using Copernicus (latest development build)

• Force Model: Earth, Moon, Sun
• SNOPT optimizer
• DDEABM (Adams) integration method (1e-11 tolerance)

 Optimization Problem
• Optimization variables: Δt and vy

• rx coordinate specified (“semiminor axis” b) 
• Target vx=0 at next x-axis crossing (ry=0) [repeat for a couple periods]
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x

y

vy

b

Earth-Moon Rotating Frame
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Introduction

 On January 14, 2004, President Bush announced a 
new vision for NASA

 Extend human presence across the solar system, starting 
with a human return to the Moon by the year 2020, in 
preparation for human exploration of Mars and other 
destinations;

 Key Elements of New Space Policy
 Begin robotic missions to the Moon by 2008, followed by a 

period of evaluating lunar resources and technologies for 
exploration.  

 Begin human expeditions to the Moon in the 2015 – 2020 
timeframe.
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Approach

This presentation provides a tutorial of lunar 
astrodynamic characteristics

It addresses orbital mechanics as it applies to a 
human lunar mission design
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Outline:  Part I - Lunar Orbit Mechanics

Earth-Moon System
 Lunar Inclination
 Lunar Libration
 Earth to Moon (Outbound)

• Geocentric Characteristics
• Selenocentric Characteristics

 Lunar Orbit
 Moon to Earth (Inbound)
 Libration Points
 Environment
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Earth-Moon System
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Moon and Earth Facts

Comparison Moon Earth % of Earth

Mass (kg) 7.3483x1022 5.9742x1024 1.23
Volume (km3) 2.1958x1010 1.0832x1012 2.03

Equatorial radius (km) 1738.1 6378.1 27.25
Polar radius (km) 1736.0 6356.8 27.31

Ellipticity (Flattening) 0.0012 0.00335 36.0
Mean density (kg/m3) 3350 5515 60.7
Surface gravity (m/s2) 1.62 9.80 16.5
Escape velocity (km/s) 2.38 11.2 21.3

Gravitational Parameter (km3/s2) 4.902x103 3.986x105 1.23
J2 (effects of nonspherical/homogenous body) 202.7x10-6 1082.63x10-6 18.7



April 10, 2014 JSC/EG5/Advanced Mission Design Branch 8

Parameter Moon

Semimajor axis (km) 384,400

Perigee (km) 363,300

Apogee (km) 405,500

Revolution Period (days) 27.3217

Synodic Period (days) 29.53

Mean Orbital Velocity (km/s) 1.023

Max. Orbital Velocity (km/s) 1.076

Min. Orbital Velocity (km/s) 0.964

Inclination to Ecliptic (deg) 5.145

Inclination to Equator (deg) 18.28-28.58

Orbit Eccentricity 0.0549

Sidereal Rotation Period (days) 27.32

Obliquity to orbit (deg) 6.68

Recession rate from Earth (cm/yr) 3.8

Mean Values

Distance from Earth (km) 384,467

Apparent diameter (seconds of arc) 1,864.2

Apparent visual magnitude -12.74

Moon Facts
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Moon Landings
Apollo

Surveyor

Luna
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Lunar Mission History
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Tidal Locking

 The Moon pulls on Earth with a force that varies from point to 
point, thereby causing tidal bulges that follow the terrestrial 
sublunar point and its antipode.  In the very long term, the friction 
caused by the attendant flow of ocean water slows the Earth’s 
rotation rate.

 Similarly, Earth pulling on the Moon over many millennia caused 
a tidal bulge that has become frozen in place while concurrently 
putting the Moon into a state of gravity-gradient stabilization.  This 
keeps it “tidally locked” so that it rotates at the same rate at which 
it revolves, showing the Earth only one face.
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Lunar Inclination
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18 Year Lunar Inclination Cycle

 Lunar inclination (with respect to the Earth equator) varies 
from minimum of 18.3 to a maximum 28.6 over a period 
of about 18.6 years

 The next maximum inclination:  June 2006

 The next minimum inclination:  October 2015

 The lunar inclination affects the geocentric lunar transfer 
orbit inclination, hence propulsion costs
 Dependent upon launch scenario

• Ground launched to immediate departure phasing orbit
• Fixed Earth orbit departure
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 The Moon’s orbit rotates about the ecliptic north 360°
about every 18.6 years

23.4o

Ecliptic

Sun

N

S

 The Earth’s equator is tilted 23.4 from the ecliptic plane

• In 2006, this results in a 28.5 lunar inclination to the Earth equator
• In 2015, this results in an 18.3 lunar inclination to the Earth equator

 The Moon’s orbit is tilted 5.1 from the ecliptic plane

28.5°
5.1°

2006

5.1°
18.3°

2015

Lunar Inclination

Ecliptic North

28.5°
5.1°

2006
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18 Year Lunar Inclination Cycle
Lunar Inclination wrt Earth Equator vs Date
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Lunar Libration
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Lunar Libration

Lunar libration causes a variation in the lunar 
surface that faces Earth

Up to 59% of the lunar surface is visible from 
Earth (about 50% without libration)

Libration occurs in both longitude (±8°) and 
latitude (±6.7°)

Note:  Lunar libration can cause points on the 
lunar surface to rotate in and out of view from 
Earth



Lunar Libration and Phases



April 10, 2014 JSC/EG5/Advanced Mission Design Branch 19

28.5°
5.1°

5.1°

18.3°

Moon

Moon

 The Moon ‘faces the Earth’ as it rotates about the Earth 
 The Moon maintains a 5.1° inclination to the ecliptic
 The Moon’s rotational axis is inclined:

 1.6° from the ecliptic north
 6.7° from the angular momentum vector of the lunar orbit plane

 This results in an apparent latitude movement of about 6.7° (up and down) 
as viewed from Earth

Lunar Libration - Latitude

23.4oN

S

Ecliptic

Sun

N

S

Ecliptic
North

Moon Rotational Axis 
tilted towards Earth

1.6°
5.1°

Moon Rotational Axis 
tilted away from Earth

5.1°
1.6°
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Lunar Libration -- Latitude

View from Earth

Ecliptic

Earth

Ecliptic
North

5.1°

Moon
Equator

1.6°

5.1°

1.6°
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Lunar Libration - Longitude

 The Moon 'turns the same face to the Earth', so that 
its rotation about its axis is equal in period to the time 
for one orbit around the Earth

 The Moon's speed of rotation about its axis remains 
essentially constant as a consequence of the 
conservation of angular momentum

 The Moon has an elliptical orbit about the Earth, so 
the Moon speeds up near perigee and slows down 
near apogee in accordance with Kepler's laws

 The differences between the lunar rotation rate and 
the rotation rate of the Moon’s velocity vector create 
an apparent back and forth (east-west) nodding of 
the Moon.
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Earth

Lunar Libration - Longitude

 The differences between the lunar rotation rate and 
the rotation rate of the Moon’s velocity vector create 
an apparent back and forth (east-west) nodding of 
the Moon.

View from Earth
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Moon View From Earth
Percentage Viewing Over One Lunar Rotation

Minimum 0° Mask Angle at Moon
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Moon View From Earth
Percentage Viewing Over One Lunar Rotation

Minimum 5° Elevation Mask Angle at Moon
Mar-2011
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Moon View From Earth
Percentage Viewing Over One Lunar Rotation

Minimum 10° Elevation Mask Angle at Moon
Mar-2011
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Moon View From Earth
Percentage Viewing Over One Lunar Rotation

Minimum 15° Elevation Mask Angle at Moon
Mar-2011
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Moon View From Earth
Percentage Viewing Over One Lunar Rotation

Minimum 0° Elevation Mask Angle at Moon
Mar-2011
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Moon View From Earth
Percentage Viewing Over One Lunar Rotation

Minimum 5° Elevation Mask Angle at Moon
Mar-2011
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Moon View From Earth
Percentage Viewing Over One Lunar Rotation

Minimum 10° Elevation Mask Angle at Moon
Mar-2011
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Moon View From Earth
Percentage Viewing Over One Lunar Rotation

Minimum 15° Elevation Mask Angle at Moon
Mar-2011
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Lunar Libration - Summary

 Up to 59% of the lunar surface is visible from Earth (about 50% 
without libration)

 Libration occurs in both longitude (±8°) and latitude (±6.7°)
 Landing sites near the limb of the Moon (e.g., north and south 

poles and east and west limbs) may nod in and out of Earth 
view periodically with lunar rotation about Earth
 Surface crew out of Earth communication (without bent-pipe 

satellite aid)
 Lunar terrain may exacerbate the Earth-viewing problem 

 A polar landing site in a valley would have Earth viewing further 
reduced

 A polar landing site on a high hill may have continuous Earth view
 Better lunar terrain models are needed*

* Currently, proposals exist to provide high-resolution lunar gravity mapping and improved lunar terrain models.



April 10, 2014 JSC/EG5/Advanced Mission Design Branch 32

Geocentric Transfer 
Characteristics
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Earth to Moon Transfer

High thrust Earth-
Moon transfer 
consists of two 
primary maneuvers:  
Earth orbit departure 
(EOD) and Lunar 
Orbit Insertion (LOI)

The V cost for EOD 
and LOI is about 
3100 m/s and 900 
m/s, respectively

V1

V2

LEO

Moon
Orbit
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Earth to Moon – V Cost
Earth Parking Orbit to Lunar Parking Orbit ∆V Cost vs. Flight Time
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Two Burn Sequence:
Earth Orbit Departure:  V = ~3100-3500 m/s
Lunar Orbit Insertion (LOI)

VEOD = ~3080 m/s

VEOD = ~3490 m/s
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Earth-Moon Transfer

 Earth orbit departure (EOD)
 Tangential EOD

• Non-coplanar, non-tangential thrusting has severe 
performance penalties

Departure Options:
1. EOD after ground launch to a low Earth orbit (LEO) 

phasing orbit
• Selectable departure plane 
• Daily launch/EOD opportunities

2. EOD from pre-established LEO parking orbit (e.g., ISS, 
28.5° construction orbit)
• Fixed departure plane
• EOD opportunities average every 9-10 days*

*The combination of the Moon’s orbital motion (~13°/day) plus ISS nodal regression of ~5°/day results in ~18°/day relative 
movement between orbit plane and Moon or a coplanar EOD opportunity averaging about every 10 days.  For a 28.5° orbit, 
EOD opportunities occur on the average about every 9 days.
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MOON AT 
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18 Year Lunar Cycle
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18 Year Lunar Inclination Cycle
Example:  Departure from Fixed (ISS) Parking Orbit
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18 Year Lunar Inclination Cycle
Example:  Departure from Fixed (28.5) Parking Orbit
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Geocentric Wedge Angle

Lunar Inclination                 
(w.r.t. Earth Equator)

18.3o    

(Minimum)
28.6o 

(Maximum)
18.3o    

(Minimum)
28.6o 

(Maximum)
Worst-Case Geocentric Wedge 

Angle between Earth-Moon Transfer 
Orbit and Lunar Orbit Plane

46.8o 57.1o 69.9o 80.2o

Best-Case Geocentric Wedge Angle 
between Earth-Moon Transfer Orbit 

and Lunar Orbit Plane
10.2o 0.0o 33.3o 23.0o

28.5o Departure Orbit 51.6o (ISS) Departure Orbit

Best and worst case geocentric wedge angle as a function of 
maximum and minimum lunar orbit inclination
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Ground Launch Delta-V Cost

 Earth Launch
 100% Earth gravity; largest drag velocity losses

Mars Launch
 38% Earth gravity; reduced drag velocity losses

Moon Launch
 17% Earth gravity; no drag velocity losses

Increasing 
Planetary

Atmosphere 
Density

--------------
More 

Lofted
Trajectory

Earth Launch

Mars Launch

Moon Launch

V = 9330 m/s
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V = 1850 m/s
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--------------
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Mars Launch

Moon Launch
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Delta-V vs Geocentric Inclination for Earth 
to Moon Transfer

Earth Parking Orbit to Lunar Parking Orbit Transfer ∆V vs. 
Geocentric Inclination w.r.t. Moon's Orbit Plane
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Earth Orbit Departure:  V = ~3070 m/s
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28.5° LEO
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28.5° LEO
28.6° (max) Lunar Inclination
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Earth-Moon Transfer Summary

Ground launched lunar missions provide daily 
opportunities

Lunar missions departing from an existing 
fixed orbit provide opportunities only about 
every 9 days for a 28.5° parking orbit or every 
10 days for 51.6°

The general V cost for lunar missions is 
about 3100 m/s for Earth Orbit Departure and 
about 900 for Lunar Orbit Insertion 
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Selenocentric 
Characteristics
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Minimum Energy Orbital Transfer

A high thrust orbital transfer between the Earth and the Moon with the least 
fuel requirement traverses a central angle of 180° and has a tangential 
departure and arrival.  This is known as a Hohmann Transfer.

V1Vcirc_initial

V2 Vapogee

Initial 
Orbit

Final 
Orbit

Initial orbit:  Spacecraft (S/C) in circular orbit    
Vcirc_initial

Vcirc_final

Vperigee

Transfer orbit:  S/C at perigee of elliptical orbit
Vperigee =  Vcirc_initial + V1

Hohmann Transfer

Transfer orbit:  S/C at apogee of elliptical orbit
Vapogee

Final orbit:  Spacecraft in circular orbit
Vcirc_final =  Vapogee + V2

OUTBOUND
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Minimum Energy Orbital Transfer

V2Vcirc_final

V1 Vapogee

Final 
Orbit

Initial 
Orbit

Initial orbit:  Spacecraft (S/C) in circular orbit    
Vcirc_initial

Vcirc_initial

Vperigee

Transfer orbit:  S/C at apogee of elliptical orbit
Vapogee =  Vcirc_initial - V1

Transfer orbit:  S/C at perigee of elliptical orbit
Vperigee

Final orbit:  Spacecraft in circular orbit
Vcirc_final =  Vperigee - V2

Hohmann Transfer

INBOUND
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Earth to Moon Transfer

 In the geocentric reference frame, a delta-velocity 
maneuver (V1) in low Earth orbit establishes a Moon 
intercept transfer ellipse trajectory

 After coasting from perigee to apogee (at lunar 
altitude) on the transfer ellipse, the spacecraft (s/c) 
encounters the Moon (Vapogee)

 Since the apogee velocity of the transfer ellipse is 
slower than the circular lunar orbit velocity (Vmoon), 
the Moon overtakes the s/c

 The difference between Vmoon and Vapogee (of the 
transfer ellipse) is the lunar approach vector known 
as V

 The V is a measure of the energy per unit mass of a 
lunar approach hyperbolic trajectory
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Vmoon

Earth to Moon Transfer

V1Vcirc_initial

Vapogee

LEO

Moon
Orbit

Vmoon

Vperigee

Geocentric Reference Frame Selenocentric Reference Frame
Faster moving Moon (Vmoon) overtakes 
slower moving spacecraft (Vapogee) at lunar 
encounter.

From the perspective of the lunar surface, 
the spacecraft appears to be approaching 
from the opposite direction of the Moon’s 
motion at a velocity which is the 
difference between the Moon’s velocity 
and the spacecraft velocity at the apogee 
of its transfer orbit.

V = Vmoon – Vapogee

The spacecraft approaches the Moon on a hyperbolic 
trajectory*.

*Without a propulsive capture maneuver, the spacecraft 
will fly by the Moon into geocentric or heliocentric 
space, depending on the location of the lunar flyby.

Tutorial on V
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LOI:  2-D Seleocentric View

The incoming hyperbola (V) can be adjusted at Earth departure 
(for a negligible V cost) to poise the arriving spacecraft to 

perform lunar orbit insertion (LOI) into a posigrade or retrograde 
lunar parking orbit.

Minimum V LOI occurs at the closest approach to the planet (the 
periapse radius of the incoming hyperbola, Rper)

Vmoon

V

Retrograde Parking Orbit

Arrival Hyperbola

LOI 

Rper Vmoon

V

Posigrade Parking Orbit
Arrival Hyperbola

LOI 

Rper



April 10, 2014 JSC/EG5/Advanced Mission Design Branch 50

Earth to Moon Transfer

 In general, the hyperbolic V approach vector is the 
vector difference between the geocentric velocity of 
the spacecraft and Moon’s geocentric velocity at the 
lunar encounter

 The V vector can be adjusted at Earth orbit 
departure, for a negligible V cost, to allow a 
coplanar LOI to any inclination (greater than or equal 
to the declination of the incoming V vector 
asymptote)
 Inclinations lower than the declination of the lunar approach 

V vector can also be achieved, but with a required out-of-
plane maneuver
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MOON AT 
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ARRIVAL 
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Earth to Moon Transfer

Radii of closest approach 
of incoming hyperbola

______________ 

Lunar orbit insertion 
maneuver locations

*at arrival
time
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Lunar Parking 
Orbits
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Lunar Parking Orbit Inclination

 The magnitude of the lunar parking orbit inclination establishes 
a band of landing site latitudes (equal to the magnitude of the 
inclination)
 Within this latitude band, coplanar descent and ascent are possible, 

given that the rendezvous orbit contains the landing site
 For landing site latitude magnitudes greater than that of the 

rendezvous orbit inclination, the descent and ascent are non-
coplanar 

 For a given landing site within the latitude band, there are two 
ascent opportunities every lunar rotation cycle (about 27.3 days)
 Exception:  There is only one opportunity about every 27.3 days 

when the magnitude of the latitude of the landing site equals that of 
the rendezvous orbit inclination
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Lunar Parking Orbit Inclination

Parking Orbit 
Inclination

Lunar inclination establishes a band of landing 
sites achievable with coplanar descent

Rendezvous 
orbit remains 
nearly fixed, 

inertially

Region of landing 
sites achievable only 

by non-coplanar 
descent

Parking Orbit 
Inclination

At least one in-plane lunar ascent & 
rendezvous available about every 27 days

Region of landing 
sites achievable by 
coplanar descent

Region of landing 
sites achievable 

only by non-
coplanar descent

Parking Orbit 
Inclination
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Lunar Powered Descent and Landing/Ascent
Unplanned Ascent

 For a given lunar orbit inclination, a coplanar descent/ascent 
can be achieved to/from any landing site latitude magnitude that 
is equal to or less than that of the rendezvous orbit inclination
 Landing can be achieved outside this range, but will be subject to a 

plane change penalty (i.e., non-coplanar descent or ascent)
 In general, nominal lunar descent and ascent are coplanar 

maneuvers
 Upon nominal landing, the spacecraft moves at a rate equal to 

the lunar rotation rate (about 360°/27.3 days)
 An unplanned ascent would require a plane change

 The magnitude of the plane change will be dependent upon the 
time of the ascent



April 10, 2014 JSC/EG5/Advanced Mission Design Branch 56



April 10, 2014 JSC/EG5/Advanced Mission Design Branch 57

Landing Site 
Latitude

(deg) 0 15 30 45 60 75 90
0 0 15 30 45 60 75 90

15 15 30 45 60 75 90 75
30 30 45 60 75 90 75 60
45 45 60 75 90 75 60 45
60 60 75 90 75 60 45 30
75 75 90 75 60 45 30 15
90 90 75 60 45 30 15 0

Lunar Parking Orbit Inclination (deg)

Worst-Case Descent/Ascent Plane Change for Global Lunar Surface Access

Landing Site 
Latitude

(deg) 0 15 30 45 60 75 90
0 0 426 845 1250 1633 1988 2309

15 426 845 1250 1633 1988 2309 1988
30 845 1250 1633 1988 2309 1988 1633
45 1250 1633 1988 2309 1988 1633 1250
60 1633 1988 2309 1988 1633 1250 845
75 1988 2309 1988 1633 1250 845 426
90 2309 1988 1633 1250 845 426 0

Worst-Case Descent/Ascent V Cost for Global Lunar Surface Access

Plane Change V  (m/s)

Worst Case Lunar Plane Change Cost
Lunar Rendezvous Altitude = 100x100 km

For any lunar orbit inclination, global lunar access dictates that there 
is a lunar landing site where a 90° plane change could be required

Reference
Coplanar Lunar 

Ascent Cost

V = 1850 m/s

Target
100x100 km 

Low Lunar Orbit

Note:  The V cost of a 
90° plane change is 
greater than the cost 
of a coplanar transfer 
from the lunar surface 
to a 100x100 km 
parking orbit.
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Lunar Orbit Stability

 Low (circular) lunar orbit 
altitudes (<~1000 km) are 
less stable
 Perturbations to orbit due to 

non-uniform seleno-potential

 Higher (circular) lunar orbit 
altitudes (>~5000 km) are 
less stable
 Perturbations to orbit due to 

Earth and Sun gravity

 Lunar orbit altitudes in the 
~1000 – 5000 km altitude 
range are more stable

< 1000 km
~1000-5000 km

>-5000 km

NOT TO SCALE More …



Earth Return
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Earth Return and Landing Site Options

 Major influences on the Moon to Earth trajectory design
 Lunar departure date
 Moon to Earth flight time
 Inclination of the transfer orbit from the Moon to Earth

 Earth Return Options
 Direct Entry

• Lighting conditions at landing depends on the Lunar departure date
• Limited range of accessible latitudes varies with the departure date
• Range of accessible longitudes varies with the Moon to Earth flight time

 Intermediate Low Earth Orbit
• Insert into orbit using either propulsion or aerobrake
• Plane change may be required to insert into a specific orbit
• Orbit inclination is greater than or equal to the landing site latitude
• Loitering in orbit may be required to target a landing site

 Landing Site Location
 Land landing

• Requires both primary and alternate sites
• Sites at various latitudes will be required for the direct entry option

 Water landing
• Requires ship fleet(s)
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Earth Return

MOON AT 
LUNAR ORBIT 

ARRIVAL 

SELECTABLE 
ARRIVAL 
PARKING 

ORBIT
----------------
Oriented for 
tangential 

arrival
AERO-ENTRY 

INBOUND
MOON-TO-EARTH 

A direct (to surface) return as well as a return to a selectable LEO parking 
orbit is always available given adequate lunar departure capability 

Return to a fixed Earth parking orbit requires proper orientation of that orbit 

FIXED ARRIVAL 
PARKING ORBIT

-------------------
Not currently 

aligned for 
tangential S/C 

arrival
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Earth Return:  Fixed Orbit Arrival

Modified from original.  Original courtesy K. Joosten.

EARTH ORBIT 
INSERTION

MOON AT 
TRANS-EARTH 
INJECTION

EARTH PARKING 
ORBIT

~13 /DAY

-60
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-20
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DECLINATION OF MOON W.R.T. SPACE STATION ORBIT

DAYS

INJECTION WINDOW EVERY 3-12 DAYS

Earth Orbit Departure (EOD) 
plane determined by Moon at
departure (EOD) and orbit target
Position (e.g., ISS) at arrival

A return to a fixed parking orbit is 
available (on average) about every 
9 or 10 days for return to a LEO 
parking orbit inclination of 28.5° or 
51.6°, respectively
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Effect of Lunar Parking Orbit Inclination on Lunar 
Transfer Opportunities –> Moon to Earth Transfer

Equatorial Orbit

Polar Orbit

Coplanar Equatorial Orbit 
Departure Opportunity
-------------------------
Coplanar Polar Orbit 
Departure Opportunity

LOD V

Coplanar Equatorial Orbit 
Departure Opportunity
-------------------------
Coplanar Polar Orbit 
Departure Opportunity

Moon to Earth Transfer

Polar Orbit 
Departure Opportunity

LOD V

LOD V

LOD V

Coplanar Equatorial Orbit Departure Opportunity
Non-coplanar (90 Plane Change) Polar Orbit Departure Opportunity

Coplanar Equatorial Orbit Departure Opportunity
Non-coplanar (90 Plane Change) Polar Orbit Departure Opportunity
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Earth Return:  Trip Time vs Arrival Location

For a given inbound (Earth return) trajectory, a variation in trip time 
provides some movement of the Earth arrival perigee location 
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Earth Return:  Earth Arrival

The time of lunar departure determines the 
location of the Moon’s antipode

For a given trip time with a negligibly small 
V adjustment at lunar departure, the 
incoming (Moon to Earth) entry interface 
and landing points can be rotated about the 
Moon’s antipode 

Moon’s antipode

Annulus of entry 
interface and 

landing locations
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Earth Return:  Earth Arrival

Entry Interface

Crossrange

Max Uprange
(Heel)

Max 
Downrange

(Toe)

Crossrange

Antipode

For a particular Earth approach trajectory, the spacecraft 
arrives at entry interface (121.9 km altitude) and flies past 
the Moon’s antipode to landing

The landing footprint downrange (heel to toe) and 
crossrange capability is determined by the aerodynamic 
characteristics (e.g. L/D) of the entry vehicle
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Motion of Moon’s Antipode
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Variation in Accessible Latitudes 
during a Sidereal Month (Direct Entry)
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Accessible Latitudes from 
Intermediate Low Earth Orbit

A return to a LEO parking orbit provides a 
landing latitude band equal to the magnitude 
of the arrival inclination
 For example:  Arrival into a 28.5° parking orbit 

provides a 57° latitude band (- 28.5° to + 28.5°)
This latitude band covers 360° of longitude
Any (land or water) landing site within the 

latitude band is accessible provided:
 Adequate on-orbit loiter time (about 24 hours min.)
 Adequate spacecraft cross-range capability
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Accessible Latitudes from 
Intermediate Low Earth Orbit
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extended depending on 
the cross-range capability 
of the spacecraft
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Libration Points
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Earth-Moon Libration Points

Moon’s Orbital 
Motion

Leading Equilateral Point
(L4)

(L5)
Trailing Equilateral Point

Trans-Lunar 
Libration Point

(L2)

Cis-Lunar 
Libration Point

(L1)

Trans-Earth
Libration Point
(L3)

L1 – 57,731 km from Moon
L2 – 64,166 km from Moon
L3 – 381,327 km from Earth
L4 & L5 – 384,400 km from 

Earth and Moon

 Equilibrium points in a 2-
body system 
 Earth-Moon, Sun-Earth, 

Sun-Mars, etc.
 Collinear points (L1, L2, 

L3), “unstable”
 Equilateral points (L4, 

L5), “stable”
 Station-keeping 

achievable for very small 
V (<10 m/s/yr)



Earth-Moon Libration Points
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Libration Points
 Possible staging point for robotic and human missions

 Lunar Gateway Mission for lunar sorties

 Possible telescope (e.g. Webb Telescope, NGST) 
deploy/maintenance point

• Minimal V transfer costs between Earth-Moon and Sun-Earth libration 
points
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Environment
Considerations
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Radiation

 Van Allen Radiation Belts
 Inner (proton) belt 1,000-12,000 km altitude
 Outer (electron) belt 19,000-57,000 km altitude

 Solar Flares
 Can cause ionization damage and single-event 

effects in sensitive devices
 Energetic protons reach Earth within 30 minutes
 Other solar materials and magnetic fields reach 

Earth in 1 to 4 days
 Solar Flux

 9 to 13 year cycle
 Proton energy range from 10 MeV to 1 GeV

 Galactic Cosmic Ray (GCR) Flux
 Causes single-event effects in sensitive devices
 Peaks around solar minimum
 Particle energy up to and over 10 GeV

More …
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Orbital Debris
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End Part 1
Lunar Orbit Mechanics Tutorial
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Back Up Charts for:
Part 1

Lunar Orbit Mechanics Tutorial
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On-Orbit Plane Changes
Earth and Moon

Delta-V vs. Plane Change For Earth and Moon 
(200x200 km Altitude)
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Mass Ratio versus V

Propellant to Initial Mass Ratio as a Function of ∆V and 
Specific Impulse 
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Declination w.r.t. 28.5 orbit
Declination w.r.t. 51.6 orbit

Declination of Moon At Arrival w.r.t. Fixed Departure Plane
Departure Planes:  51.6° ISS and 28.5° Construction Orbit
Time = 0 at Jan 9, 2009, RAAN = 0°, Altitude = 407x407 km

Earth-Moon Transfer Opportunity for:  
28.5° orbit every  3 to 11 days

Earth-Moon Transfer Opportunity for:  
51.6° orbit every  8 to 11 days
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Lunar Orbit Stability

Percentage of Impacts and Minimum Time to Impact vs. 
Initial Lunar Parking Orbit Altitude
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Data based on lunar orbit lifetime propagation 
time of 365 days for a matrix of inclination and 
right ascension of the ascending nodes 
(RAAN) for selected circular parking orbit 
altitudes.
----------------------------------------------
Inclination Range (deg) = 0, 30, 60, 90
RAAN Range (deg) = 
0, 30, 60, 90, 120, 150, 180, 210, 240, 270, 
300, 330

Data based on lunar orbit lifetime propagation 
time of 365 days for a matrix of inclination and 
right ascension of the ascending nodes 
(RAAN) for selected circular parking orbit 
altitudes.
----------------------------------------------
Inclination Range (deg) = 0, 30, 60, 90
RAAN Range (deg) = 
0, 30, 60, 90, 120, 150, 180, 210, 240, 270, 
300, 330

3000 km Lunar
Parking Orbit

Return
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V-infinity and C3

Jerry Condon
Johnson Space Center - Aeroscience and Flight Mechanics Division
281-483-8173                 gerald.l.condon1@jsc.nasa.gov

Return



April 10, 2014 JSC/EG5/Advanced Mission Design Branch 85

Vis-Viva Equation

Vis-Viva “Life Force” Equation is a statement of 
conservation of energy

3.22 Cconst
r

V 


2

2
1 mV

Kinetic Energy Potential Energy

r
m



C3 determines the type of conic section describing the orbit.

Specific Mechanical
Energy (total energy 
per 2 units of mass

C3 = 0
(parabola)

C3 >0
(hyperbola)

C3 <0
(ellipse)

 
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Typical Form of Vis-Viva Equation

ar
V 


22

From the general equation for a conic:

a
C 13




dynamic
quantity

geometric
quantity

Typical form of Vis-Viva equation used by flight mechanics:

This is valid for 
all equations

ar
V 


22

322 C
r

V 


- or -
(1)

(2)
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Vis-Viva Equation and Hyperbolic Excess Speed

ar
V 


22Let’s look at (1)

as r
ar

V 





22

0

a
V 


2

(1) becomes 22 2
 V

r
V 

r
V

escape 
speed

hyperbolic 
excess speed

32 CV  (in units of 
km2/s2)
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Circular & Parabolic Orbit Case

rrr
V 


22

Circular orbit case
Using (1) for a circular orbit, a = r

r
Vcirc




Parabolic orbit case
Using (1) for a parabolic orbit, 

r
Vparabola

2


03 
a

C 

r
Vparabola

22 

(Circular orbit speed)

(Escape speed)
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Using Vis-Viva Equation to determine V requirements

Parking orbit 
ellipse

Departure 
hyperbola

ar
C

r
V

ar
V

C
r

V

VVV

perigeeperigee
departure

perigee
current

perigee
required

currentrequireddeparture















232

2

32

For an Earth departure (robotic mission)
 = 398602.3 km3/s2

rearth =     6378    km
hperigee =       407    km
hapogee =     1000    km
C3 () =        10     km2/s2

rp = rperigee = rearth + hperigee = 6785 km
ra = rapogee = rearth + hapogee = 7378 km
a = (ra + rp)/2 = 7081.5 km
Vdeparture = 11.2205 – 7.7211 km/s

Vdeparture = 3.4994 km/s

Note:  C3 
target is 

independent of 
initial parking 

orbit
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Typical C3 Values

Robotic Mars Missions
Mars Sample Return

2011 C3 (km2/s2) Type Arrival Entry Speed (km/s)
9.8 II 5.6

12.5 I 6.2
17.7 IV 6.4

2013
10.2 II 5.9
13.1 I 6.7
14.7 IV 5.9

Human Mars Missions
Mars Combo Lander
2014

<18.8 I <7.36

Lunar Missions
0.9 na na

Return
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Van Allen Radiation Belts - Trapped Proton Belt
Dose Rate for Circular Orbits

Note:  1.7 rad-Si = 1 rem
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The current annual dose limit to blood forming 
organs

50 rem - designed to prevent deterministic 
effects (nausea, vomiting, death, etc.)

Annual ISS dose limits
20 rem at Solar Maximum (2000-2001)
40 rem at Solar Minimum (2006-2007)

New career limits (limit cancer mortality)
50-200 rem (depending on age and sex)

Solar Minimum
0.1” Aluminum Shielding
28.5o inclination
240 hours in each orbit

Return
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Van Allen Radiation Belts
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Trapped Particle Trails
Van Allen (Proton) Radiation Belt
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Solar Flux
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Solar and GCR

 Solar Flares
 Can cause ionization damage and 

single-event effects in sensitive 
devices

 Energetic protons reach Earth within 
30 minutes

 Other solar materials and magnetic 
fields reach Earth in 1 to 4 days

 Solar Flux
 9 to 13 year cycle
 Proton energy range from 10 MeV to 

1 GeV
 Galactic Cosmic Ray (GCR) Flux

 Causes single-event effects in 
sensitive devices

 Peaks around solar minimum
 Particle energy range from 0 to over 

10 GeV

H.S. Ahluwalia, 1997, J. Geophy. Res. 102

Yu.I. Stozhkov, et al., 28th Int’l Cosmic Ray Conf.
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End of Part I
Lunar Orbit Mechanics


