

- Chris Cerimele - JSCIEG5

Outline

- Earth-Moon Libration Point System
- Halo Orbit Families \& Geometries
- Libration Point Transfer Options
- Transfer Option Performance Example ($\Delta \mathrm{V}$, time)
o Direct
o Lunar Flyby
o Low Energy (Manifold)
- L2 Halo Orbit Special Considerations
o Orbit Maintenance
o Communication
o Rendezvous
o Launch Opportunities
o Aborts

Earth-Moon Libration Points

Libration Points are Equilibrium Points in a 2-body system (Earth-Moon, Sun-Earth, Sun-Mars, etc.)
 - Collinear points (L1, L2, L3), "unstable"
 - Equilateral points (L4, L5), "stable"
 - Station-keeping - very small $\Delta \mathrm{V}$ (<10 m/s/yr)

Earth-to-Moon - 384,400 km L1 - 57,731 km from Moon
L2 - 64,166 km from Moon L3-381,327 km from Earth L4 \& L5-384,400 km from Earth and Moon
+

Halo Orbit Families and Geometry

Halo Orbit:

- A periodic, 3-D orbit near the L_{1}, L_{2}, L_{3} Lagrange Pt.
- Spacecraft travels in a closed, repeating path near the Lagrange point
- Not technically orbiting the Lagrange point
- Tend to be unstable, station keeping is required

Rule of thumb:

- Period of halo is $\sim 1 / 2$ of the period of the primaries
- In the Earth-Moon system, a halo period is ~ 14 days

orthographic projection on $\hat{\mathbf{y}}-\hat{\mathbf{z}}$ plane
orthographic projection on $\hat{\mathbf{x}}-\hat{\mathbf{y}}$ plane

Earth/Moon-L2 Halo South Family

\square Halo amplitudes range from approximately 0 to 30,000 km (north) and up to $80,000 \mathrm{~km}$ (south)

- As the Z-amplitude (Az) of the halo is increased, there is a transition to a near rectilinear halo with a 6-7 day period.
\square Near rectilinear halos are less unstable and require less orbit maintenance*
\square Lower Az halos are more unstable*, but more amenable to transition to and from weak stability boundary manifold trajectories

L2 Halo Selection Considerations

- L2 or L2 Halo Orbit selection dependent on various parameters besides transportation
o Environmental considerations in L2 halo orbits
- Thermal, Radiation, MMOD
o Orbit maintenance costs
o Best halo for Earth communication and visibility
o Best halo for Lunar South Pole visibility
o Science considerations in L2 Halo Orbits
o Excursions to LLO or alternate Halo Orbits

LEO to Earth-Moon L2 Direct and Flyby - Example Cases

LEO inclination: 28.5 deg
L2 Halo orbit:
Max. Amplitude in x-axis: $11,904 \mathrm{~km}$ Max. Amplitude in y-axis: $34,672 \mathrm{~km}$ Max. Amplitude in z-axis: $10,000 \mathrm{~km}$ Orbit Period: 14 days

LEO to Earth-Moon L2 Direct and Flyby - Example Cases

LEO inclination: 28.5 deg L2 Halo orbit:
Max. Amplitude in x-axis: $11,904 \mathrm{~km}$ Max. Amplitude in y-axis: $34,672 \mathrm{~km}$ Max. Amplitude in z-axis: 10,000 km Orbit Period: 14 days

Destination	L2	
Mission Type	direct	flyby
LEO DV (km/s)	3.149	3.134
Lunar Periapsis DV (km/s)	0.000	0.186
Capture DV (km/s)	1.107	0.148
Total DV (km/s)	4.256	3.468
Transfer Time (days)	6.14	8.53

L2 Halo	
direct	flyby
3.151	3.133
0.000	0.175
0.957	0.109
4.108	3.416
6.29	8.35

Earth Orbit to EM-L2 - Minimized Arrival ΔV

Example Case-Low Energy Trajectory Design

Performance

- Earth departure $\Delta \mathrm{V}=3195 \mathrm{~m} / \mathrm{s}$
- Manifold insertion $\Delta \mathrm{V}=1 \mathrm{~m} / \mathrm{s}$
- Total flight time $=103$ days

Flight Profile

- After Earth launch, depart from a 28.5°, 185 km circular altitude LEO parking orbit, ($\Delta \mathrm{V}=3195 \mathrm{~m} / \mathrm{s}$)
- Achieve energy (C3) to reach the L2 Halo manifold insertion point
- Reach manifold insertion point (Earth departure +10 days)
- Insert onto manifold ($\Delta \mathrm{V}=1 \mathrm{~m} / \mathrm{s}$)
- Coast on a trajectory taking the s/c 1-2 million km where the Sun's gravity field guides the trajectory to the L2 Halo arrival point
- Reach L2 Halo arrival (Earth departure + 103 days)

Comments

- Other low energy trajectory types (lunar flyby, lunar/earth flyby)

Low Energy Trajectory Design Example

Low Energy Transfer Option

- Invariant manifolds (stable and unstable) lead into and out of L1 \& L2
- Connect manifolds to construct low energy transfers to halo or other periodic orbits
- Can use this technique to generate trajectories from Earth to halo orbits in the Earth-Moon (as well as Sun-Earth) system with an extremely small arrival $\Delta \mathrm{V}$ requirement
- Earth departure $\Delta \mathrm{V}$ can be slightly higher than crewed direct or lunar flyby trajectory
- Opens selection to low $\Delta \mathrm{V}$ capability buses
- Longer trip time - uncrewed flights only
- May be limited opportunities

Orbit Maintenance for Halo Orbit Families

- Station keeping at L2 for 1 year can be as low as <5-10 m/s/year -Near-rectilinear halo orbit
- Type of Halo Orbit impacts costs can increase to <25-30 m/s/year

Orbit Type	Libration Point	Period (days)	No. of Maneuvers	Avg. time between maneuvers (days)	Avg. DV $(\mathrm{m} / \mathrm{s})$	Total DV $(\mathrm{m} / \mathrm{s})$
Near-rectilinear halo	L2	7	86	4.2	0.057	4.82
Near-rectilinear halo	L2	8	55	6.4	0.086	4.69
Near-rectilinear halo	$L 2$	8	55	6.4	0.101	5.54

Station Keeping for 1 year*

Orbit Type	Libration Point	Period (days)	No. of Maneuvers	Avg. time between maneuvers (days)	Avg. DV $(\mathrm{m} / \mathrm{s})$	Total DV $(\mathrm{m} / \mathrm{s})$
Halo	L2	14	156	2.33	0.183	28.47
Halo	$L 1$	12	60	6	1.106	66.33

[^0]
Orbit Maintenance $\Delta \mathrm{V}$ Cost In EM-L2 Halo

\square Station keep $\Delta \mathrm{V}$ depends upon:

- Control law
- Maneuver execution error
- Navigation Orbit Determination (OD)
\square With a good control law, navigation accuracy and execution precision will dominate the station keeping $\Delta \mathrm{V}$ cost
- Assumptions
- 24 maneuvers over 12 revs (~ 2 maneuvers / rev)
[Reference EM-L2 halo z-amplitude = 10 km

Earth-Moon L2 Halo Orbit Rendezvous

[. The EM-L2 Halo rendezvous mission begins at Earth launch.
\square The MPCV can be launched daily to target the EM-L2 halo itself
\square There exists an optimal LEO to EM-L2 halo insertion location that occurs once during the halo period (around 14 days).
\square Launching at a time designed to insert the MPCV onto the halo at this time will provide a minimum $\Delta \mathrm{V}$ requirement.
\square Launching at a time away from this optimal time will incur additional MPCV $\Delta \mathrm{V}$ cost.
\square MPCV inserts onto EM-L2 halo at a selected offset distance.
\square MPCV later performs maneuver(s) to close this distance, ultimately docking with the Waypoint Spacecraft (WSC)

Earth-Moon L2 Halo Orbit Rendezvous
 - Example Methodology -

Assumptions

- Target s/c in halo orbit about L2
- Chaser s/c inserts onto (target) halo, trailing by 10 km
- Chaser executes a 2-manuever sequence to close the distance
- Chaser burn 1 maneuver closes distance between Chaser and target over a selected duration

\square Vary the departure epoch (Earth departure maneuver is delayed) from the nominal (minimum Δv) mission.
\square For the nominal mission, the WSC is at the optimal insertion offset point at the optimal (minimum DV) MPCV insertion time.
- The nominal mission assumes zero launch delay.
\square Rendezvous occurs at a new location to minimize Δv and limit the flight time to 9 days.
\square The x-axis in the plots are days past the nominal TLI.

Effect of Launch Delays on MPCV ΔV Requirement

 Results

Insertion Into Non-Optimal Location on a Halo Orbit

Nominal
Departure

Effect of Launch Delays on MPCV ΔV Requirement Results

Insertion Into Non-Optimal Location on a Halo Orbit

* Sum of all Δ v's performed by the MPCV after Earth-departure

1	2	3	4	5	6	7	8	9	10	11	12

Nominal
Departure

Effect of Launch Delays on MPCV ΔV Requirement

Results

In this plot, t is really $(180-\alpha)$, since we are using real (not osculating) halo orbits.
$\square \alpha$ is the insertion right ascension (in the Earth-Moon rotating frame, centered at the L2 point).

Effect of Launch Delays on MPCV ΔV Requirement Summary

\square It turns out that freeing the Moon flyby altitude and flyby maneuver true anomaly constraints result in significant savings for the worst off-nominal cases.

- About $75 \mathrm{~m} / \mathrm{s}$ for the +4 day case
- The worst-case additional $\Delta \mathrm{V}$ cost is $165 \mathrm{~m} / \mathrm{s}$ (for a 6-day delay)
\square This analysis does not account for delays in LEO after launch (it is assumed that TLI is always performed in the optimal LEO for the departure epoch).
\square There may be cases where a multiple-maneuver insertion sequence may reduce the cost [haven't looked at this yet].
\square This analysis also assumes that the WSC is a totally passive vehicle. A further study could assume that it is capable of also performing maneuvers to produce a more favorable alignment.

Aborts

- Earth Entry Interface (EI) Target:
- Altitude: 121.9 km
- Flight path angle: -5.86

Total return time ≤ 11 days
Start of Excursion
\square Best of single-impulse and two-impulse (flyby) modes

Aborts

\square For most cases, the flyby departure will be cheaper (but there are cases where a direct return is cheaper).

Maneuver between L2 and L1 Halo orbits - ARTEMIS Mission Example -

ARTEMIS Mission

- Spacecraft "P1" reached vicinity of L2 Aug. 2010, "P2" reached L1 Oct. 2010
- Frequent orbit maintenance (every week) required, but maneuvers were small equivalent to $<100 \mathrm{~m} / \mathrm{s} / y e a r$
- P1 maneuvered from L2 to L1 Jan 2011 - ΔV negligible, 10-day transfer
- P1 maneuvered ($90 \mathrm{~m} / \mathrm{s}$) from L1 "lissajous" to lunar orbit June 2011, P2 joined it in July ($120 \mathrm{~m} / \mathrm{s}$)

ARTEMIS-P1 Spacecraft's Orbit - Top View

Moon Inertial Axes

	Time at L2	L2-L1 Transfer	Time at L1
P1	131 days	10 days	154 days
P2	-	-	255 days

END PRESENTATION

BACKUP

Earth-Moon Libration Point Mission Design and Performance L2 TO MARS

Earth-Moon L2 to Phobos Orbit Insertion

Example Trajectory
Transfer time: 209 days

> 3-Burn Escape:

$$
\left.\begin{array}{l}
\Delta \mathrm{v}_{\mathrm{L} 2}=144 \mathrm{~m} / \mathrm{s} \\
\Delta \mathrm{v}_{\text {Moon }}=195 \mathrm{~m} / \mathrm{s} \\
\Delta \mathrm{v}_{\text {Earth }}=445 \mathrm{~m} / \mathrm{s} \\
\Delta \mathrm{v}_{\text {Mars }}=2.135 \mathrm{~km} / \mathrm{s} \\
\Delta \mathrm{v}_{\text {Total }}=2.921 \mathrm{~km} / \mathrm{s}
\end{array}\right\} 784 \mathrm{~m} / \mathrm{s}
$$

Earth-Moon L2 to Phobos Orbit Insertion

\square Compare to direct transfer from L2

Natural Environments at Earth-Moon L2 Ionizing Radiation

- Major sources of radiation
o Galactic Cosmic Rays
o Solar Particle Events
o Magnetosphere
- Shielding Strategy required to protect crew.
o Mission duration and shielding strategy determine risk
o Short Duration free space missions (<30 days) can be conducted within current NASA Standards and risk models
- Spacecraft hardware assessment required to ensure surface charging and ionizing radiation levels at L2 are within existing hardware certification levels.

Natural Environments at Earth-Moon L2 Thermal \& Micro-Meteoroid

- Thermal
o Thermal environment ranges from 70-230 Kelvin depending on exposure to the sun
o Thermal environment not considered an architectural driver for L2 missions

Radiator sink temperature at L2 is invariant. It can either be very cold due to deep space or at a constant sink of 230 Kelvin (1 sun)

- MMOD
- - Lagrange Sink Scenario 2
o Man made orbital debris not a major factor at L2 / L2 Halos, tends to "wash out" of location / orbit
o Meteoroid risk is influenced by Earth focusing (gravitational) factor and Earth shadowing while in Earth orbit
- Meteoroid risk far from Earth is typically less compared to meteoroid risk in LEO
o MMOD environment not considered an architectural driver for L2 missions.

Earth-Moon L2 Halo Orbit Rendezvous
 - Example Methodology -

Assumptions

- Target s/c in halo orbit about L2
- Chaser s/c inserts onto (target) halo, trailing by 10 km
- Chaser executes a 2-manuever sequence to close the distance
- Chaser burn 1 maneuver closes distance between Chaser and

Earth Visibility from Halo Orbit - Communications -

Assumptions

- Visibility based on ability to view at least one of three DSN sites from the spacecraft on the halo
- There are North and South halo orbit families

Observations

- Visibility to Earth is affected by halo orbit amplitude (94\%+)
- Visibility to Earth is essentially independent of distance from the Earth

Earth-Moon L2 Halo Orbit Rendezvous
 - Example Methodology -

Assumptions

- Target s/c in halo orbit about L2
- Chaser s/c inserts onto (target) halo, trailing by 10 km
- Chaser executes a 2-manuever sequence to close the distance
- Chaser burn 1 maneuver closes distance between Chaser and target over a selected duration

Target

Burn1 Rendezvous initiation

Burn2 -
Rendezvous complete
ich Delays on MPC

irement

Insertion Into Non-Optimal Location on a Halo Orbit

Abort Assessments

- Earth Entry Interface (EI) Target:
- Altitude: 121.9 km
- Flight path angle: -5.86
] Total return time ≤ 11 days
- Best of single-impulse and two-impulse (flyby) modes

Start of

 Excursion

Abort Assessments

\square For most cases, the flyby abort will be cheaper (but there are cases where a direct return is cheaper).

LEO to Earth-Moon L1 \& L2 Direct and Flyby - Example Cases

ASTEROID UIILZATION MISSION
 $$
\text { Status } 1
$$

Jacob Willams/ ERC/ESCG / iacobwillams@esccbacobscom Jemy Condon / JSC/EG5 / cerad..condon@nasa.gov

Contributors

- Jerry Condon
- Jacob Williams
- David Lee

JSC/EG5
JSC/ESCG
JSC/EG5

Integrated Performance Lead
Trajectory/Performance
Asteroid Capture - Consult

Overview of Slides

1. DRO Tutorial

2. MPCV Transfer Example Cases
3. Overview of Trade Studies to Assess MPCV Accessibility to the Asteroid
Targets

Nesa

DRO Tutorial

Background

- A Distant Retrograde Orbit (DRO) is another family of stable orbits found in the circular restricted three-body problem (CRTBP).
- In the Earth-Moon rotating frame, they look like circular to elliptical orbits around the Moon (with the Moon at the center of the orbit).
- DROs orbit the moon in a retrograde direction from moon's orbit/rotation.
- Some DROs are very stable over long periods of time (≥ 100 years) with no orbit maintenance, even with a "real" force model.

DROs In The CR3BP

- DRO shapes transition with increases in altitude
- Nearly circular near the Moon
- Transitioning to an elliptical shape
- Then becomes more kidney-shaped
- Then becomes more cardioid shaped
- In a "real" system, 50,000 to $70,000 \mathrm{~km}$ altitudes are stable for > $\mathbf{1 0 0}$ years
- Additional work required to determine stability of higher altitudes

Earth-Moon Rotating Frame
(Circular Restricted Three-Body Problem)

Example DRO's (Real Force Model)

- Classified by x-axis crossing radius (b) - like a semi-minor axis: $10,000-60,000 \mathrm{~km}$ shown here
- Stable for long periods (300 days shown here)
- DROs are periodic in Circular Restricted Three Body Problem (CRTBP)
- DROs are quasi-periodic in the real force model
- Increasing period with increasing altitude above Moon

Earth-Moon Rotating Frame

Example DRO's: Inertial Frame (Moon-Centered)

- This DRO set lies in the Earth-Moon plane
- DROs currently being pursued by JPL for ARM storage orbit

J 2000 I nertial Frame (Moon-Centered)

Example DRO's: Inertial Frame (Earth-Centered)

- From an Earth perspective, a DRO will reside in the general vicinity of the moon and so a spacecraft in a DRO will orbit Earth about every $\mathbf{2 8}$ days
- A spacecraft in a DRO will have the same approximate position, rotational velocity, and inclination as that of the moon

J 2000 Inertial Frame (Earth-Centered)

Summary

- "Lunar" DROs cycle in the vicinity of the moon with a range of altitudes
- DROs are generally stable (particularly lower altitude DROs)
- They can propagate for many years (some cases > 100 years) without maintenance
- In an Earth-Moon rotating frame, DROs are a quasiperiodic orbit (circle, ellipse, kidney - shaped)
- From Earth perspective, DROs approximately follow the lunar orbit motion

Round-Trip MPCV Mission TO DRO (Example Cases)

Overview

- This assessment contains a round-trip MPCV mission to a distant retrograde orbit (DRO) around the Moon.
- In support of a rendezvous mission with a preemplaced asteroid
- This is a feasibility assessment (i.e. just a single case) and not a trade study.
- It is not a best or worst case.
- Mission performance requirements and opportunities would be better revealed by trade studies

Assumptions

- Impulsive (Δv) maneuvers (optimized)
- DRO size (x-axis crossing distance) $\mathbf{= 6 2 , 0 0 0} \mathbf{~ k m}$
- Outbound:
- iCPS MECO state (see next slide)
- iCPS Capability:
- Total $\Delta \mathrm{v}: 2,900 \mathrm{~m} / \mathrm{s}$
- $40.77 \mathrm{~m} / \mathrm{s}$ used for the PRM (raises perigee from 40.7 to 185 km , with an 1806 km apogee)
- Estimate about $80 \mathrm{~m} / \mathrm{s}$ gravity for losses,
- So, the impulsive limit for TLI is $2,779.23 \mathrm{~m} / \mathrm{s}$
- iCPS Earth departure maneuver, followed 30 seconds later by an MPCV departure maneuver (if necessary to complete TLI)
- Powered lunar flyby (minimum 100 km altitude)
- Inbound:
- Direct return (no flyby)
- El Altitude: 121.92 km
- EI FPA: -5.86 deg
- Total mission duration ≤ 21 days (optimized)
- At least one day stay in the DRO (optimized)

Assumptions: MECO State

- MECO State (EPM_OF_DATE Frame, Earth-centered)
- Radius magnitude (km): 6535.55695654
- Longitude (deg): -66.5737779
- Geocentric latitude (deg): 27.5046213
- Velocity magnitude (km/s): 8.20892236
- Geocentric azimuth (deg): 97.76124785
- Geocentric flight path angle (deg): 3.46249997

Assumptions: Earth Departure

Periapsis Raise Maneuver

Earth Departure Finite
Burn Maneuver
(~ 20 min)
Example: MECO at 2017-Dec-12 08:14:14 TDB
hybrid_8x8_20171122_240030_base.ideck

- Fixed flight time from MECO to apoapsis (44 min).
- Fixed maneuver to raise periapsis to 185 km altitude ($40.8 \mathrm{~m} / \mathrm{s}$).
- The $\mathbf{1 8 5} \mathbf{~ k m}$ periapsis is the actual propagated value (not osculating).
- 8x8 GGM02C Earth gravity model
- Optimized coast to the Earth departure maneuver.
- Finite Burn Earth departure maneuver with optimized control law and burn duration:
- VUW Frame
- $\alpha, \dot{\alpha}, \beta, \dot{\beta}$ SOC control law

Results (Impulsive Only)

- MECO Epoch: 2021-Jul-19 15:59:17 TDB
- iCPS Departure: 2,779.23 m/s
- MPCV Departure: $\mathbf{6 0 . 3 6 \mathrm { m } / \mathrm { s }}$
- Flyby : $179.1 \mathrm{~m} / \mathrm{s}$
- Outbound Flight Time: 9.38 days
- DRO Arrival: $\mathbf{1 2 4 . 6} \mathbf{~ m} / \mathrm{s}$
- Stay Time: 2.49 days
- DRO Departure: $577.4 \mathrm{~m} / \mathrm{s}$
- Return Flight Time: 6.61 days
- Entry velocity: 11.00 km/s
- Total iCPS $\Delta \mathrm{v}: \mathbf{2 , 7 7 9 . 2 3 \mathrm { m } / \mathrm { s }}$
- Total MPCV $\Delta \mathrm{v}: 941.5 \mathrm{~m} / \mathrm{s}$
- Total Mission Duration: 18.49 days

Phasing

- Assume the asteroid is at the location of the optimal insertion on previous slide (the 2021-Jul-19 departure epoch).
- Subsequent opportunity (next month) will have a higher cost due to the nonoptimal phasing (assuming the asteroid cannot be moved once placed in orbit)
- Trade studies will be necessary to assess asteroid accessibility over time for different sized DROs and asteroid insertion phase.

Delayed DRO Departure

- Using the nominal case (MECO Epoch: 2021-Jul-19), delay the departure from the asteroid and re-optimized the Earth return.
- Direct return.
- The El constraint remains altitude and flight path angle only.

Delayed DRO Departure

Nominal Departure

> Nominal Departure

Orion Performance to Asteroid Rendezvous Targets

Asteroid Storage Orbits

- Currently monitoring JPL assessment of possible asteroid storage orbits

National Aeronautics and Space Administration
Jet Propulsion Laboratory
California Institute of Technology

Asteroid Storage Orbit Options

- Scenario 1: Lunar Circulating Eccentric Orbit
- ARM Spacecraft enters weakly captured orbit Eccentric and thrusts to increase orbit lifetime until it is Orbit long term stable in a "Frozen Orbit"
- Orbit is highly varied, but the motion is bounded
- Scenario 2: Lunar Distant Retrograde Orbit (DRO)
- ARM Spacecraft initially enters very distant, but not very stable DRO and thrusts to increase orbit lifetime
- Scenario 3: Earth Weakly Captured
- Orbit is weakly captured at Earth, escapes and is then recaptured a year later
- We don't know how to do this yet
- Scenario 4: Lunar Horseshoe
- We enter an elliptical Earth orbit that is resonant with the Moon

Circulating

The asteroid Cruithne is in a type of resonant orbit called a
"Horseshoe orbit"

Current JPL primary ARM Earth return target:

- DRO
- TBD altitude >60,000 km

Secondary JPL ARM Target:

- Earth-Moon L2

Reference: Strange, N., "Lunar Storage Orbits", JPL Presentation,
1/25/13

Trade Space - Performance

- DRO Performance
- Parameters*:
- Epoch range: 2021-2025
- DRO Altitude
- 60,000, 70,000, 80,000 km
- Based on orbit lifetime. Shorter lifetimes not considered, currently.
- Mission time
- 84 total crew days available
- Assess mission times for crews of 2, 3, 4
- Stay time at the asteroid
- Direct vs LGA, Outbound/Inbound
- Current study: LGA outbound with Direct inbound
- Earth return targets: Altitude/FPA vs Entry Target-line
* Parameter sets are similar for lunar orbit and libration point targets. For an EML2H target, the "altitude" variation can be substituted with an "amplitude" of the halo.

Trade Space - Performance

- DRO Abort Performance
- Assessment of Earth return performance cost along outbound (Earth to Asteroid orbit) trajectory
- Possibility of inclusion of a free-return on outbound
- Assess aborts for Direct vs LGA (outbound and inbound) combinations
- Assess MPCV mission opportunities
- Matching DRO orbit to resonate with lunar orbit
- MPCV performance to DRO; Orbit lifetime

Trade Space - DRO Performance Output

- Mission DV/propellant
- Frequency of opportunities
- Increased opportunities for reduced crew
- Launch windows
- Aborts
- Cargo missions?

Future Work

- Conduct MPCV Trades
- Performance cost for varying DRO characteristics
- Mission opportunities to DRO
- Mission duration vs. cost (for > 21 day max MPCV active life)
- Launch window for DRO mission
- Develop MPCV DRO rendezvous
- Far-field (and proximity operations)
- Orbit lifetime
- Aborts
- Continue to assess MPCV performance to alternative asteroid storage orbits

Acronyms

- DRO
- FPA
- FPR
- iCPS
- LGA
- MPCV
- OM
- PRM
- TCM
- SLS

Distant Retrograde Orbits

Flight Path Angle
Flight Performance Reserve
interim Cryogenic Propulsion Stage
Lunar Gravity Assist
Multi-Purpose Crew Vehicle
Orbit Maintenance
Perigee Raise Maneuver
Trajectory Correction Maneuver
Space Launch System

Backup

Round-Trip

MPCV Mission
To Libration
Point
(Example
Cases)

1. EM-L2 Halo \rightarrow EM-L2 Halo

MPCV

- LEO Orbit: 185x1806 km, Incl. = 28.5 deg
- Earth Departure $\Delta \mathrm{v}: \mathbf{2 7 4 1}$ m/s
- Earth to L2 Halo transfer time: 8.6 days
- Flyby $\Delta \mathrm{v}: \mathbf{2 2 8}$ m/s
- L2 Halo insertion $\Delta v: 112$ m/s
- L2 halo orbit $A_{\mathbf{z}}$: 10,000 km
- Rendezvous = 1.5 days

WSC+MPCV

- Stay in L2 Halo orbit: 2.3 days
- Transfer from L2 halo to L2 halo 4.7 days
- Transfer $\Delta \mathrm{v}$: $16 \mathrm{~m} / \mathrm{s}$
- L2 halo orbit $A_{z}: 12,000 \mathrm{~km}$
- Stay in L2 Halo orbit: 5.7 days MPCV
- Earth return $\Delta \mathrm{v}: 944 \mathrm{~m} / \mathrm{s}$
- Return time: 5.9 days (direct)

Libration Point Orbit-MPCV Performance: L1, L2

Halo orbit test cases with Copernicus
Jacob Williams, ESCG, 11/4/2011

	LEO to L2 Halo		LEO to L2		LEO to L1 Halo	LEO to L1
Maneuver	direct	flyby	direct	flyby	direct	direct
LEO DV	3.172	3.155	3.171	3.156	3.140	3.137
Lunar Periapsis DV	0.000	0.175	0.000	0.186	0.000	0.000
Capture DV	0.958	0.109	1.108	0.148	0.606	0.717
Total DV (km/s)	4.130	3.438	4.278	3.490	3.746	3.855
Transfer Time (days)	6.29	8.35	6.13	8.53	3.94	3.76

Assumptions

Circularized Moon Orbit at 2011-Jan-1 00:00:00 Objective function is sum of Delta-V's

LEO Departure Orbit	
SMA	6478 km
ECC	0
INC	28.5 deg

L1 Halo orbit

Max. Amplitude in x-axis Max. Amplitude in y-axis Max. Amplitude in z-axis Orbit Period

6537 km 23445 km 10000 km

12 day

11904 km 34672 km 10000 km

14 day

General Vehicle Assumptions

- MPCV
- Mass = 24092.6 kg
- Usable propellant (after removal of FPR, TCM, ACS, OMs, Sep. mnvrs) $=8086 \mathrm{~kg}$
- $\quad \mathrm{Isp}=315.1 \mathrm{sec}$
- \quad Thrust $=6,000 \mathrm{lb}(26,689.3$ newton $)$
- Delta-V capability $=1340 \mathrm{~m} / \mathrm{s}$ (usable, translational)
- $\quad \mathrm{T} / \mathrm{W}_{\text {initial }}=0.113$
- iCPS (Current Configuration)
- Mass $_{\text {MECO }}=55,773 \mathrm{~kg}$
- Mass $_{\text {Earth_Departure }}=54,649.4 \mathrm{~kg}$
(includes $24,092.6 \mathrm{~kg} \mathrm{MPCV}$)
- Usable propellant Earth_Departure+PRM $=25,902.6 \mathrm{~kg}$
- \quad Isp $=460.296 \mathrm{sec}$
- Thrust $_{\text {Earth_Departure }}=110,897.4 \mathrm{~N}(24,930.7 \mathrm{lb}$.
- Earth Departure delta-V $=2859 \mathrm{~m} / \mathrm{s}$
(includes 24,092.6 kg MPCV)
- $\quad \mathrm{T} / \mathrm{W}_{\text {initial }}=0.207$
- iCPS (18" Extension - Stretched Configuration)
- Mass $_{\text {MECO }}=58,313.3 \mathrm{~kg}$
- Mass $_{\text {Earth_Departure+PRM }}=57,170.3 \mathrm{~kg}$
(includes 24,092.6 kg MPCV)
- $\quad \mathrm{Isp}=462.746 \mathrm{sec}$
- Thrust $_{\text {Earth_Departure }}=110,173.6 \mathrm{~N}(24,768 \mathrm{lb}$.
- Earth Departure delta-V $=2890 \mathrm{~m} / \mathrm{s}$
- $\quad \mathrm{T} / \mathrm{W}_{\text {initial }}=0.198$

Two-Body Energy vs. DRO Size

Distant Retrograde Orbits About the Moon

Example DRO's: Inertial Frame (Earth-Centered)

J 2000 I nertial Frame (Earth-Centered)

Example DRO's: Inertial Frame (Earth-Centered)

J 2000 I nertial Frame (Earth-Centered)

Example Mission - Performance Summary

Example cases only - not for vehicle sizing

- Departure epoch: August 15, 2021
- DRO altitude $=\mathbf{6 0 , 0 0 0} \mathrm{km}$
- Halo orbit amplitudes are optimized
- Flight times are optimized

Mission Type	Approximate Departure Epoch	LEO Departure DV	EML2 Departure DV	Lunar Flyby DV	DRO Arrival DV	DRO Departure DV	LLO Arrival DV	LLO Departure DV	EML2 Arrival DV	Flight Time	Comments
		(m/s)	(days)								
LEO to DRO Transfer (Direct)	August 15, 2021	3152			702					9.3	RAAN solution 1
LEO to DRO Transfer (Direct)	August 15, 2021	3161			801					11.8	RAAN solution 2
LEO to DRO Transfer (Flyby)	August 15, 2021	3134		182	167					8.1	
LEO to DRO Transfer (Flyby)	August 15, 2021	3134		188	171					8.0	
DRO to LLO Transfer (Direct)	August 15, 2021					108	653			5.5	
LLO to DRO Transfer (Direct)	August 15, 2021				107			653		5.5	
DRO to EML2 Halo Transfer (Direct)	August 15, 2021					19			358	5.3	Halo $\mathrm{Az}=2,000 \mathrm{~km}$. Opt. Halo alt., Opt. Flt. Time.
DRO to EML2 Halo Transfer (Flyby)	August 15, 2021			146		90			6.9	41.6	Halo $A z=2,000 \mathrm{~km}$. Opt. Halo alt., Opt. Flt. Time.
EML2 Halo to DRO Transfer (Direct)	August 15, 2021		326		28					6.0	Halo $A z=2,000 \mathrm{~km}$. Opt. Halo alt., Opt. Flt. Time.
EML2 Halo to DRO Transfer (Flyby)	August 15, 2021		14	41	112					21.5	Halo $A z=2,000 \mathrm{~km}$. Opt. Halo alt., Opt. Flt. Time.
DRO to Earth EI (Direct)	August 15, 2021					631				5.7	Free Az El
DRO to Earth El (Flyby)	August 15, 2021			171		94				32.0	Free Az El

DRO Mission Design and Performance

- DROs are stable; No orbit maintenance required
- "Lunar" DROs cycle in the vicinity of the moon with a range of altitudes
- Visibility from Earth can be designed such that it doesn't cross disc of moon
- Possible short solar eclipsing
- DROs, being stable, do require a delta-V for insertion and departure (19 $801 \mathrm{~m} / \mathrm{s}$ in the examples provided). No manifold for insertion/departure.
- Current orbit maintenance delta-V budget for Gateway mission is 20 m/s/year
- Note: Artemis robotic mission in a Lissajous orbit used ~7 m/s/year
- Performance (note: based on single cases, single epochs)
- Cost from LEO to DRO appears similar to LEO to EML2H w/ flyby ~350 m/s range
- Cost from LEO to DRO appears a bit cheaper than LEO to EML2H direct - DRO: $801 \mathrm{~m} / \mathrm{s}$ (direct); EML2H: $957 \mathrm{~m} / \mathrm{s}$ (direct)
- Higher cost to go to moon's orbit (parabolic approach vs. EM-L2)
- ~761 m/s DRO ($\sim 60,000 \mathrm{~km}$) vs ~640 m/s EML2
- DRO DVs: 108 m/s departure, $653 \mathrm{~m} / \mathrm{s}$ LLO arrival
- Note: DROs are stable, so will always have departure Δv, unlike EML2H

Discussion / Recommendations

- Possible use as a "holding pen"
- For example: They could serve as a long term stable holding area for a returning Mars sample return (to address back contamination issues)
- Recommendation: With a reasonably small orbit maintenance delta-V, there appears to be no significant benefit to DRO for Gateway type missions
- Further, the stability of the DROs can result in additional mission delta-V cost.

Example Trajectories

Example Transfers

- A few example transfers to and from a DRO are shown here.
- Selected a 60,000 km DRO (which passes near both the Earth-Moon L1 and L2 libration points).
- Epoch is in the vicinity of August 15, 2021.
- Not meant to be a comprehensive performance study.

Example LEO to DRO Transfer (Direct)

Earth-Moon Rotating-Pulsating Frame

- $b_{\text {DRO }}=60,000 \mathrm{~km}$
- LEO Departure epoch: Aug-15-2021
- LEO Departure orbit: 185 km, circular, 28.5 deg inclination (optimized RAAN and TA)
- Optimized flight times and maneuvers
- LEO Departure: 3,152 m/s
- DRO Arrival: $702 \mathrm{~m} / \mathrm{s}$
- Flight Time: 9.25 days

Example LEO to DRO Transfer (Direct)

- $b_{\text {DRO }}=60,000 \mathrm{~km}$
- LEO Departure epoch: Aug-15-2021
- LEO Departure orbit: 185 km, circular, 28.5 deg inclination (optimized RAAN and TA)
- Optimized flight times and maneuvers
- LEO Departure: $\mathbf{3 , 1 6 1} \mathrm{m} / \mathrm{s}$
- DRO Arrival: $801 \mathrm{~m} / \mathrm{s}$
- Flight Time: 11.8 days

Example LEO to DRO Transfer (Flyby)

- $b_{\text {DRO }}=60,000 \mathrm{~km}$
- LEO Departure epoch: Aug-15-2021
- LEO Departure orbit: 185 km, circular, 28.5 deg inclination (optimized RAAN and TA)
- Powered lunar flyby (minimum 100 km altitude)
- Optimized flight times and maneuvers
- LEO Departure: 3,134 m/s
- Flyby : $182 \mathrm{~m} / \mathrm{s}$
- DRO Arrival: 167 m/s
- Flight Time: 8.05 days

Example LEO to DRO Transfer (Flyby)

- $b_{\text {DRO }}=60,000 \mathrm{~km}$
- LEO Departure epoch: Aug-15-2021
- LEO Departure orbit: 185 km, circular, 28.5 deg inclination (optimized RAAN and TA)
- Powered lunar flyby (minimum 100 km altitude)
- Optimized flight times and maneuvers
- LEO Departure: $\mathbf{3 , 1 3 4} \mathrm{m} / \mathrm{s}$
- Flyby : $188 \mathrm{~m} / \mathrm{s}$
- DRO Arrival: $\mathbf{1 7 1} \mathrm{m} / \mathrm{s}$ - Total: $359 \mathrm{~m} / \mathrm{s}$
- Flight Time: 8.0 days

J2000 Inertial Frame

Example DRO to LLO Transfer

Example L2 Halo to DRO Transfer (Flyby)

Example DRO to L2 Halo Transfer (Direct)

- $b_{\text {DRO }}=60,000 \mathrm{~km}$
- Halo arrival epoch: Aug-15-2021
- Two impulse transfer
- Optimized halo amplitude
- Optimized flight times and maneuvers
- DRO Departure: $19 \mathrm{~m} / \mathrm{s}$ Total:
- Halo Arrival: $358 \mathrm{~m} / \mathrm{s} \int 377 \mathrm{~m} / \mathrm{s}$
- Flight Time: 5.3 days
- Halo $A_{2}=2,000 \mathrm{~km}$

J2000 Inertial Frame

Example DRO to L2 Halo Transfer (Flyby)

Earth-Moon Rotating Frame

dro_to_12halo_flyby_2.ideck

- $b_{\text {DRO }}=60,000 \mathrm{~km}$
- DRO departure epoch: ~ Aug-15-2021
- Optimized flight time
- Optimized halo amplitude
- Three-impulse transfer
- DRO Departure: $90 \mathrm{~m} / \mathrm{s}$
- Flyby: $146 \mathrm{~m} / \mathrm{s}$
- Halo Arrival: $6.9 \mathrm{~m} / \mathrm{s} \int \begin{aligned} & 244 \\ & \mathrm{~m} / \mathrm{s}\end{aligned}$
- Flight Time: 41.6 days
- Halo $\mathrm{A}_{\mathbf{z}}=\mathbf{2 , 0 0 0} \mathrm{km}$

Example DRO to EI (Direct)

Earth-Moon Rotating-Pulsating Frame

- $b_{\text {DRO }}=60,000 \mathrm{~km}$
- DRO departure epoch: ~ Aug-15-2021
- El Altitude: 121.9 km
- EI FPA: -5.86 deg
- DRO Departure: $631 \mathrm{~m} / \mathrm{s}$
- Flight Time: 5.7 days
- Entry velocity: 10.99 km/s

J2000 Inertial Frame

Example DRO to El (Flyby)

Earth-Moon Rotating Frame

- $b_{\text {DRO }}=60,000 \mathrm{~km}$
- DRO departure epoch: ~ Aug-15-2021
- El Altitude: 121.9 km
- EI FPA: -5.86 deg
- DRO Departure: $94 \mathrm{~m} / \mathrm{s}$
- Moon Flyby: 171 m/s Total: 265
- Flight Time: 32 days
- Entry velocity: 10.98 km/s

Families of Periodic Orbits

Fig. 30. Typical trajectories in family \mathbf{C} of retrograde periodic orbits around \boldsymbol{m}_{2}
From: R.A. Broucke, "Periodic Orbits in the Restricted Three-Body Problem with Earth-Moon Masses", J PL Technical Report 32-1168, 1968.

Computing DRO's

- Only considering planar-DRO's here (in the Earth-Moon plane)
- Using Copernicus (latest development build)
- Force Model: Earth, Moon, Sun
- SNOPT optimizer
- DDEABM (Adams) integration method (1e-11 tolerance)
- Optimization Problem
- Optimization variables: Δt and v_{y}
- r_{x} coordinate specified ("semiminor axis" b)
- Target $v_{x}=0$ at next x-axis crossing $\left(r_{y}=0\right)$ [repeat for a couple periods]

References

- R.A. Broucke, "Periodic Orbits in the Restricted Three-Body Problem with Earth-Moon Masses", JPL Technical Report 321168, 1968.
- M. Hénon, "Numerical Exploration of the Restricted Problem V. Hill's Case: Periodic Orbits and Their Stability" Astronomy \& Astrophysics, Vol. 1, 223-238, 1969
- T. Lam, G.J. Whiffen, "Exploration of Distant Retrograde Orbits Around Europa", AAS 05-110, 2005.
- A.N. Hirani, R.P. Russell, "Approximations of Distant Retrograde Orbits for Mission Design", AAS 06-116, 2006.
- J. Demeyer, P. Gurfil, "Transfer to Distant Retrograde Orbits Using Manifold Theory", Journal of Guidance, Control, and Dynamics, Vol 30., No. 5, Sept-Oct 2007.

LUNAR MISSION TUTORIAL Part 1 - Lunar Orbit Mechanics

Participants

Jerry Condon JSC/EG5
Tim Dawn JSC/EG5
Dick Ramsell JSC/EG5
Juan Senent Univ. of Texas at Austin
Carlos Westhelle JSC/EG5
Sam Wilson JSC/EG5

Introduction

\square On January 14, 2004, President Bush announced a new vision for NASA

- Extend human presence across the solar system, starting with a human return to the Moon by the year 2020, in preparation for human exploration of Mars and other destinations;
\square Key Elements of New Space Policy
- Begin robotic missions to the Moon by 2008, followed by a period of evaluating lunar resources and technologies for exploration.
- Begin human expeditions to the Moon in the 2015-2020 timeframe.

Approach

This presentation provides a tutorial of lunar astrodynamic characteristics

It addresses orbital mechanics as it applies to a human lunar mission design

Outline: Part I - Lunar Orbit Mechanics

■Earth-Moon System

- Lunar Inclination
- Lunar Libration
- Earth to Moon (Outbound)
- Geocentric Characteristics
- Selenocentric Characteristics
- Lunar Orbit
- Moon to Earth (Inbound)
- Libration Points
- Environment

Moon and Earth Facts

Comparison	Moon	Earth	\% of Earth
Mass (kg)	7.3483×10^{22}	5.9742×10^{24}	1.23
Volume (km $\left.{ }^{3}\right)$	2.1958×10^{10}	1.0832×10^{12}	2.03
Equatorial radius (km)	1738.1	6378.1	27.25
Polar radius (km)	1736.0	6356.8	27.31
Ellipticity (Flattening)	0.0012	0.00335	36.0
Mean density $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$	3350	5515	60.7
Surface gravity $\left(\mathrm{m} / \mathrm{s}^{2}\right)$	1.62	9.80	16.5
Escape velocity $(\mathrm{km} / \mathrm{s})$	2.38	11.2	21.3
Gravitational Parameter $\left(\mathrm{km}{ }^{3} / \mathrm{s}^{2}\right)$	4.902×10^{3}	3.986×10^{5}	1.23
$\mathrm{J2}$ (effects of nonspherical/homogenous body)	202.7×10^{-6}	1082.63×10^{-6}	18.7

Moon Facts

Parameter	Moon
Semimajor axis (km)	384,400
Perigee (km)	363,300
Apogee (km)	405,500
Revolution Period (days)	27.3217
Synodic Period (days)	29.53
Mean Orbital Velocity (km/s)	1.023
Max. Orbital Velocity (km/s)	1.076
Min. Orbital Velocity (km/s)	0.964
Inclination to Ecliptic (deg)	5.145
Inclination to Equator (deg)	18.28-28.58
Orbit Eccentricity	0.0549
Sidereal Rotation Period (days)	27.32
Obliquity to orbit (deg)	6.68
Recession rate from Earth (cm/yr)	3.8
Mean Values	
Distance from Earth (km)	384,467
Apparent diameter (seconds of arc)	1,864.2
Apparent visual magnitude	-12.74

Lunar Mission History

Moon					
Spacecraft	Coun	Launch	Arrival	Landing Site	Comment
Luna 2	USSR	12 Sep 59	Sep 1459	$29.10 \mathrm{~N} \quad 0.0$	Impact - Palus Putredinis
Ranger 4	USA	23 Apr 62	Apr 2662	15.5 S 130.7 W	Impact - Far Side
Ranger 6	USA	30 Jan 64	Feb 264	M Tranquilit.	Impact - Mare Tranquilitatis
Ranger 7	USA	28 Jul 64	Jul 3164	10.35 S 21.58 W	Impact - Mare Cognitum
Ranger 8	USA	17 Feb 65	Feb 2065	2.67 N 24.65 E	Impact - Mare Tranquilitatis
Ranger 9	USA	21 Mar 65	Mar 2465	12.83 S 2.37 W	Impact - Alphonsus crater
Luna 5	USSR	9 May 65	May 65	315 8E	Crash (S/L attempt) - Mare Nubium
Luna 7	USSR	4 Oct 65	Oct 65	9N 40 W	Crash (S/L attempt) - Oceanus Procellarum
Luna 8	USSR	3 Dec 65	Dec 65	9:08N 63:18W	Crash (S/L attempt) - Oceanus Procellarum
Luna 9	USSR	31 Jan 66	Feb 366	7:08N 64:33W	Softlanding - Oceanus Procellarum
Surveyor 1	USA	30 May 66	Jun 266	2:27S 43:13W	Softlanding - Flamsteed P
Lunar 0. 1	USA	10 Aug 66	Oct 2966	$7 \mathrm{~N} \quad 161 \mathrm{E}$	Impact (Far side) after successful orbiter mission
Surveyor 2	USA	20 Sep 66	Sep 2266	S Copernicus	Crash (S/L attempt)
Lunar 0. 2	USA	6 Nov 66	Oct 1167	3N 119.1E	Impact (Far side) after successful orbiter mission
Luna 13	USSR	21 Dec 66	Dec 2466	18:52N 62:03W	Softlanding - Oceanus Procellarum
Lunar 0. 3	USA	5 Feb 67	Oct 1067	14.32 N 92.7 W	Impact (Far side) after successful orbiter mission
Surveyor 3	USA	17 Apr 67	Apr 2067	2:56S 23:20w	S/L; Apollo 12 visit - Oceanus Procellarum
Lunar 0. 4	USA	4 May 67	Oct 3167	? 22-30w	Impact after successful orbiter mission
Surveyor 4	USA	14 Jul 67	Jul 1767	0:26N 1:20w	Crash (S/L attempt)
Lunar 0. 5	USA	1 Aug 67	Jan 3168	2.79 S 83	Impact after successful orbiter mission
Surveyor 5	USA	8 Sep 67	Sep 1167	1:25N 22:15E	Softlanding
Surveyor 6	USA	6 Nov 67	Nov 1067	0:25N 1:20W	Softlanding
Surveyor 7	USA	7 Jan 68	Jan 1068	40:53S 11:26W	S/L rim of Tycho
Luna 15	USSR	13 Jul 69	Jul 2169	$17 \mathrm{~N} \quad 60 \mathrm{E}$	Crash (during Apollo 11) - Mare Crisium
Apollo 11	USA	16 Jul 69	Jul 2069	0:40N 23:29E	Manned S/L - Mare Tranquilitatis
Apollo 12	USA	14 Nov 69	Nov 1969	3:02S 23:24W	Manned S/L, near Surveyor 3 - Oceanus Procellarum
Luna 16	USSR	12 Sep 70	Sep 2070	0:41S 56:18E	S/L, sample return - Mare Fecunditatis
Luna 17	USSR	10 Nov 70	Nov 1770	38:18N 35W	S/L, Lunochod 1 rover - Mare Imbrium
Apollo 14	USA	31 Jan 71	Feb 571	3:35S 17:22 W	Manned S/L - Fra Mauro
Apollo 15	USA	26 Jul 71	Jul 3071	26:05N 3:39E	Manned S/L, rover - Hadley Rille
Luna 18	USSR	2 Sep 71	Sep 71	3:34N 56:30E	Crash (sample return attempt) - Mare Fecunditatis
Luna 20	USSR	14 Feb 72	Feb 2172	3:32N 56:33E	S/L, sample return - Mare Fecunditatis
Apollo 16	USA	16 Apr 72	Apr 2072	8:59S 15:31E	Manned S/L, rover - Descartes
Apollo 17	USA	7 Dec 72	Dec 1172	20:10N 30:45E	Manned S/L, rover - Taurus-Littrow
Luna 21	USSR	8 Jan 73	Jan 1573	25:54N 30:30E	S/L, Lunochod 2 rover - LeMonnier Crater
Luna 23	USSR	28 Oct 74	Nov 74	12:41N 62:18E	S/L, sample return attempt failed - Mare Crisium
Luna 24	USSR	9 Aug 76	Aug 1476	12:45N 62:12E	S/L, sample return - Mare Crisium
Prospector	USA	6 Jan 98	Jul 3199	South Pole	Crash after successful orbiter mission

Tidal Locking

\square The Moon pulls on Earth with a force that varies from point to point, thereby causing tidal bulges that follow the terrestrial sublunar point and its antipode. In the very long term, the friction caused by the attendant flow of ocean water slows the Earth's rotation rate.

\square Similarly, Earth pulling on the Moon over many millennia caused a tidal bulge that has become frozen in place while concurrently putting the Moon into a state of gravity-gradient stabilization. This keeps it "tidally locked" so that it rotates at the same rate at which it revolves, showing the Earth only one face.

Lunar Inclination

18 Year Lunar Inclination Cycle

\square Lunar inclination (with respect to the Earth equator) varies from minimum of 18.3° to a maximum 28.6° over a period of about 18.6 years

The next maximum inclination:
June 2006
The next minimum inclination:
October 2015
\square The lunar inclination affects the geocentric lunar transfer orbit inclination, hence propulsion costs

- Dependent upon launch scenario
- Ground launched to immediate departure phasing orbit
- Fixed Earth orbit departure

Lunar Inclination

The Earth's equator is tilted 23.4° from the ecliptic plane
The Moon's orbit is tilted 5.1° from the ecliptic plane
The Moon's orbit rotates about the ecliptic north 360° about every 18.6 years

- In 2006, this results in a 28.5° lunar inclination to the Earth equator
- In 2015, this results in an 18.3° lunar inclination to the Earth equator

18 Year Lunar Inclination Cycle

Lunar Inclination wrt Earth Equator vs Date

Lunar Libration

Lunar Libration

\square Lunar libration causes a variation in the lunar surface that faces Earth
-Up to 59\% of the lunar surface is visible from Earth (about 50\% without libration)
\square Libration occurs in both longitude ($\pm 8^{\circ}$) and latitude ($\pm 6.7^{\circ}$)
\square Note: Lunar libration can cause points on the lunar surface to rotate in and out of view from Earth

Lunar Libration and Phases

Lunar Libration - Latitude

\square The Moon 'faces the Earth' as it rotates about the Earth
\square The Moon maintains a 5.1° inclination to the ecliptic
\square The Moon's rotational axis is inclined:

- 1.6° from the ecliptic north
- 6.7° from the angular momentum vector of the lunar orbit plane
\square This results in an apparent latitude movement of about 6.7° (up and down) as viewed from Earth

Lunar Libration -- Latitude

Lunar Libration - Longitude

\square The Moon 'turns the same face to the Earth', so that its rotation about its axis is equal in period to the time for one orbit around the Earth
\square The Moon's speed of rotation about its axis remains essentially constant as a consequence of the conservation of angular momentum
\square The Moon has an elliptical orbit about the Earth, so the Moon speeds up near perigee and slows down near apogee in accordance with Kepler's laws
\square The differences between the lunar rotation rate and the rotation rate of the Moon's velocity vector create an apparent back and forth (east-west) nodding of the Moon.

Lunar Libration - Longitude

The differences between the lunar rotation rate and the rotation rate of the Moon's velocity vector create an apparent back and forth (east-west) nodding of the Moon.

Moon View From Earth

Percentage Viewing Over One Lunar Rotation

Minimum 0° Mask Angle at Moon
 Mar-2011

Moon View From Earth

Percentage Viewing Over One Lunar Rotation

Minimum 5° Elevation Mask Angle at Moon
Mar-2011

Moon View From Earth

Percentage Viewing Over One Lunar Rotation

Minimum 10° Elevation Mask Angle at Moon
Mar-2011

Moon View From Earth

Percentage Viewing Over One Lunar Rotation

Minimum 15° Elevation Mask Angle at Moon
Mar-2011

Moon View From Earth

Percentage Viewing Over One Lunar Rotation

Percent Coverage Time
0
10
10
20
30
40
50
60
70
80
90
100
+

Minimum 0° Elevation Mask Angle at Moon
Mar-2011

Moon View From Earth

Percentage Viewing Over One Lunar Rotation

Percent Coverage Time
0
10
10
20
30
40
50
60
70
80
90
100
+

Minimum 5° Elevation Mask Angle at Moon
Mar-2011

Moon View From Earth

Percentage Viewing Over One Lunar Rotation

Percent Coverage Time
0
10
20
20
40
50
60
70
80
90
100
+

Minimum 10° Elevation Mask Angle at Moon Mar-2011

Moon View From Earth

Percentage Viewing Over One Lunar Rotation

Percent Coverage Time
0
10
20
20
40
50
60
70
80
90
100
+

Minimum 15° Elevation Mask Angle at Moon
Mar-2011

Lunar Libration - Summary

\square Up to 59\% of the lunar surface is visible from Earth (about 50\% without libration)
\square Libration occurs in both longitude ($\pm 8^{\circ}$) and latitude $\left(\pm 6.7^{\circ}\right)$
\square Landing sites near the limb of the Moon (e.g., north and south poles and east and west limbs) may nod in and out of Earth view periodically with lunar rotation about Earth

- Surface crew out of Earth communication (without bent-pipe satellite aid)
\square Lunar terrain may exacerbate the Earth-viewing problem
- A polar landing site in a valley would have Earth viewing further reduced
- A polar landing site on a high hill may have continuous Earth view
- Better lunar terrain models are needed*

[^1]
Geocentric Transfer Characteristics

Earth to Moon Transfer

- High thrust Earth-

Moon transfer consists of two primary maneuvers: Earth orbit departure (EOD) and Lunar Orbit Insertion (LOI)
\square The $\Delta \mathrm{V}$ cost for EOD and LOI is about $3100 \mathrm{~m} / \mathrm{s}$ and 900 m / s, respectively

Earth to Moon - $\Delta \mathbf{V}$ Cost

Earth Parking Orbit to Lunar Parking Orbit ΔV Cost vs. Flight Time

Earth-Moon Transfer

\square Earth orbit departure (EOD)

- Tangential EOD
- Non-coplanar, non-tangential thrusting has severe performance penalties

Departure Options:

1. EOD after ground launch to a low Earth orbit (LEO) phasing orbit

- Selectable departure plane
- Daily launch/EOD opportunities

2. EOD from pre-established LEO parking orbit (e.g., ISS, 28.5° construction orbit)

- Fixed departure plane
- EOD opportunities average every 9-10 days*
*The combination of the Moon's orbital motion ($\sim 13^{\circ} /$ day) plus ISS nodal regression of $\sim 5^{\circ} /$ day results in $\sim 18^{\circ} /$ day relative movement between orbit plane and Moon or a coplanar EOD opportunity averaging about every 10 days. For a 28.5° orbit, EOD opportunities occur on the average about every 9 days.

Earth-Moon Transfer

Lunar Transfer Opportunities
- Ground launch ... every day
- Fixed orbit departure ... every
9-10 days (average)

18 Year Lunar Inclination Cycle Example: Departure from Fixed (ISS) Parking Orbit

18 Year Lunar Inclination Cycle

Example: Departure from Fixed (28.5) Parking Orbit

Geocentric Wedge Angle

Best and worst case geocentric wedge angle as a function of maximum and minimum lunar orbit inclination

	$\mathbf{2 8 . 5 ^ { \circ }}$ Departure Orbit		$\mathbf{5 1 . 6 ^ { \circ } \text { (ISS) Departure Orbit }}$	
Lunar Inclination (w.r.t. Earth Equator)	18.3° (Minimum)	28.6° (Maximum)	18.3° (Minimum)	28.6° (Maximum)
Worst-Case Geocentric Wedge Angle between Earth-Moon Transfer Orbit and Lunar Orbit Plane	46.8°	57.1°	69.9°	80.2°
Best-Case Geocentric Wedge Angle betwaen Earth-Moon Transfer Orbit and Lunar Orbit Plane	10.2°	0.0°	33.3°	23.0°

Ground Launch Delta-V Cost

\square Earth Launch

- 100\% Earth gravity; largest drag velocity losses
\square Mars Launch
- 38\% Earth gravity; reduced drag velocity losses
\square Moon Launch
- 17\% Earth gravity; no drag velocity losses

Delta-V vs Geocentric Inclination for Earth to Moon Transfer

Earth Parking Orbit to Lunar Parking Orbit Transfer ΔV vs.

 Geocentric Inclination w.r.t. Moon's Orbit Plane

Earth-Moon Transfer Summary

\square Ground launched lunar missions provide daily opportunities
\square Lunar missions departing from an existing fixed orbit provide opportunities only about every 9 days for a 28.5° parking orbit or every 10 days for 51.6°
\square The general $\Delta \mathrm{V}$ cost for lunar missions is about $3100 \mathrm{~m} / \mathrm{s}$ for Earth Orbit Departure and about 900 for Lunar Orbit Insertion

Selenocentric Characteristics

Minimum Energy Orbital Transfer

A high thrust orbital transfer between the Earth and the Moon with the least fuel requirement traverses a central angle of 180° and has a tangential departure and arrival. This is known as a Hohmann Transfer.

OUTBOUND

Initial orbit: Spacecraft (S/C) in circular orbit

$$
\mathbf{V}_{\text {circ_initial }}
$$

Transfer orbit: S/C at perigee of elliptical orbit

$$
\mathrm{V}_{\text {perigee }}=\mathrm{V}_{\text {circ_initial }}+\Delta \mathbf{V}_{1}
$$

Hohmann Transfer

Transfer orbit: S/C at apogee of elliptical orbit

$\mathbf{V}_{\text {apogee }}$

Final orbit: Spacecraft in circular orbit

$$
V_{\text {circ_final }}=V_{a_{\text {pogee }}}+\Delta V_{2}
$$

Minimum Energy Orbital Transfer

INBOUND

Initial orbit: Spacecraft (S/C) in circular orbit

$$
\mathbf{V}_{\text {circ_initial }}
$$

Transfer orbit: S/C at apogee of elliptical orbit

$$
V_{\text {apogee }}=V_{\text {circ_initial }}-\Delta \mathbf{V}_{1}
$$

Hohmann Transfer

Transfer orbit: S/C at perigee of elliptical orbit

$\mathbf{V}_{\text {perigee }}$

Final orbit: Spacecraft in circular orbit

$$
V_{\text {circ_final }}=V_{\text {perigee }}-\Delta V_{2}
$$

Earth to Moon Transfer

I In the geocentric reference frame, a delta-velocity maneuver $\left(\Delta \mathrm{V}_{1}\right)$ in low Earth orbit establishes a Moon intercept transfer ellipse trajectory
\square After coasting from perigee to apogee (at lunar altitude) on the transfer ellipse, the spacecraft (s / c) encounters the Moon ($\mathrm{V}_{\text {apogee }}$)
\square Since the apogee velocity of the transfer ellipse is slower than the circular lunar orbit velocity $\left(\mathrm{V}_{\text {moon }}\right)$, the Moon overtakes the s/c
\square The difference between $V_{\text {moon }}$ and $V_{\text {apogee }}$ (of the transfer ellipse) is the lunar approach vector known as V_{∞}
The V_{∞} is a measure of the energy per unit mass of a lunar approach hyperbolic trajectory

Earth to Moon Transfer

Geocentric Reference Frame

Faster moving Moon ($\mathrm{V}_{\text {moon }}$) overtakes slower moving spacecraft $\left(\mathrm{V}_{\text {apogee }}\right)$ at lunar encounter.

Selenocentric Reference Frame

From the perspective of the lunar surface, the spacecraft appears to be approaching from the opposite direction of the Moon's motion at a velocity which is the difference between the Moon's velocity and the spacecraft velocity at the apogee of its transfer orbit.

The spacecraft approaches the Moon on a hyperbolic trajectory*.
*Without a propulsive capture maneuver, the spacecraft will fly by the Moon into gepcentric or heliocentric space, depending on the loçation of the lunar flyby.

Tutorial on V_{∞}

LOI: 2-D Seleocentric View

The incoming hyperbola $\left(\mathrm{V}_{\infty}\right)$ can be adjusted at Earth departure (for a negligible $\Delta \mathrm{V}$ cost) to poise the arriving spacecraft to perform lunar orbit insertion (LOI) into a posigrade or retrograde lunar parking orbit.

Minimum $\Delta \mathrm{V}$ LOI occurs at the closest approach to the planet (the periapse radius of the incoming hyperbola, $\mathbf{R}_{\mathrm{per}}$)

Earth to Moon Transfer

\square In general, the hyperbolic V_{∞} approach vector is the vector difference between the geocentric velocity of the spacecraft and Moon's geocentric velocity at the lunar encounter
\square The V_{∞} vector can be adjusted at Earth orbit departure, for a negligible $\Delta \mathrm{V}$ cost, to allow a coplanar LOI to any inclination (greater than or equal to the declination of the incoming \vee_{∞} vector asymptote)

- Inclinations lower than the declination of the lunar approach V_{∞} vector can also be achieved, but with a required out-ofplane maneuver

Earth to Moon Transfer

Lunar Parking Orbits

Lunar Parking Orbit Inclination

\square The magnitude of the lunar parking orbit inclination establishes a band of landing site latitudes (equal to the magnitude of the inclination)

- Within this latitude band, coplanar descent and ascent are possible, given that the rendezvous orbit contains the landing site
- For landing site latitude magnitudes greater than that of the rendezvous orbit inclination, the descent and ascent are noncoplanar
\square For a given landing site within the latitude band, there are two ascent opportunities every lunar rotation cycle (about 27.3 days)
- Exception: There is only one opportunity about every 27.3 days when the magnitude of the latitude of the landing site equals that of the rendezvous orbit inclination

Lunar Parking Orbit Inclination

Lunar inclination establishes a band of landing sites achievable with coplanar descent

At least one in-plane lunar ascent \& rendezvous available about every 27 days

Lunar Powered Descent and Landing/Ascent Unplanned Ascent

\square For a given lunar orbit inclination, a coplanar descent/ascent can be achieved to/from any landing site latitude magnitude that is equal to or less than that of the rendezvous orbit inclination

- Landing can be achieved outside this range, but will be subject to a plane change penalty (i.e., non-coplanar descent or ascent)
\square In general, nominal lunar descent and ascent are coplanar maneuvers
\square Upon nominal landing, the spacecraft moves at a rate equal to the lunar rotation rate (about $360^{\circ} / 27.3$ days)
\square An unplanned ascent would require a plane change
- The magnitude of the plane change will be dependent upon the time of the ascent

Worst Case Lunar Plane Change Cost

Lunar Rendezvous Altitude $=100 \times 100 \mathrm{~km}$

For any lunar orbit inclination, global lunar access dictates that there is a lunar landing site where a 90° plane change could be required

Worst-Case Descent/Ascent Plane Change for Global Lunar Surface Access							
Landing Site Latitude							
(deg)	0	15	30	45	60	75	90
0	0	15	30	45	60	75	90
15	15	30	45	60	75	90	75
30	30	45	60	75	90	75	60
45	45	60	75	90	75	60	45
60	60	75	90	75	60	45	30
75	75	90	75	60	45	30	15
90	90	75	60	45	30	15	0

Worst-Case Descent/Ascent $\Delta \mathbf{V}$ Cost for Global Lunar Surface Access
Landing Site
Plane Change $\Delta \mathrm{V}$ (m / s)
Latitude

(deg)	0	15	30	45	60	75	90
0	0	426	845	1250	1633	1988	$\mathbf{2 3 0 9}$
15	426	845	1250	1633	1988	$\mathbf{2 3 0 9}$	1988
30	845	1250	1633	1988	$\mathbf{2 3 0 9}$	1988	1633
45	1250	1633	1988	$\mathbf{2 3 0 9}$	1988	1633	1250
60	1633	1988	$\mathbf{2 3 0 9}$	1988	1633	1250	845
75	1988	$\mathbf{2 3 0 9}$	1988	1633	1250	845	426
90	$\mathbf{2 3 0 9}$	1988	1633	1250	845	426	0

Reference Coplanar Lunar Ascent Cost

$\Delta V=1850 \mathrm{~m} / \mathrm{s}$

Target $100 \times 100 \mathrm{~km}$ Low Lunar Orbit

Note: The ΔV cost of a 90° plane change is greater than the cost of a coplanar transfer from the lunar surface to a $100 \times 100 \mathrm{~km}$ parking orbit.

Lunar Orbit Stability

- Low (circular) lunar orbit altitudes (<~1000 km) are less stable
- Perturbations to orbit due to non-uniform seleno-potential
\square Higher (circular) lunar orbit altitudes (>~5000 km) are less stable
- Perturbations to orbit due to Earth and Sun gravity
\square Lunar orbit altitudes in the ~1000 - 5000 km altitude range are more stable

NOT TO SCALE
More ...

Earth Return

Earth Return and Landing Site Options

\square Major influences on the Moon to Earth trajectory design

- Lunar departure date
- Moon to Earth flight time
- Inclination of the transfer orbit from the Moon to Earth
\square Earth Return Options
- Direct Entry
- Lighting conditions at landing depends on the Lunar departure date
- Limited range of accessible latitudes varies with the departure date
- Range of accessible longitudes varies with the Moon to Earth flight time
- Intermediate Low Earth Orbit
- Insert into orbit using either propulsion or aerobrake
- Plane change may be required to insert into a specific orbit
- Orbit inclination is greater than or equal to the landing site latitude
- Loitering in orbit may be required to target a landing site
\square Landing Site Location
- Land landing
- Requires both primary and alternate sites
- Sites at various latitudes will be required for the direct entry option
- Water landing
- Requires ship fleet(s)

Earth Return

A direct (to surface) return as well as a return to a selectable LEO parking orbit is always available given adequate lunar departure capability

Return to a fixed Earth parking orbit requires proper orientation of that orbit

Earth Return: Fixed Orbit Arrival

Abstract

A return to a fixed parking orbit is available (on average) about every 9 or 10 days for return to a LEO parking orbit inclination of 28.5° or 51.6°, respectively

Modified from original. Original courtesy K. Joosten.

Effect of Lunar Parking Orbit Inclination on Lunar Transfer Opportunities \rightarrow Moon to Earth Transfer

Coplanar Equatorial Orbit Departure Opportunity

Coplanar Polar Orbit Departure Opportunity

Earth Return: Trip Time vs Arrival Location

For a given inbound (Earth return) trajectory, a variation in trip time provides some movement of the Earth arrival perigee location

Earth Return: Earth Arrival

The time of lunar departure determines the location of the Moon's antipode

For a given trip time with a negligibly small $\Delta \mathrm{V}$ adjustment at lunar departure, the incoming (Moon to Earth) entry interface and landing points can be rotated about the Moon's antipode

Earth Return: Earth Arrival

Motion of Moon's Anțipode

Variation in Accessible Latitudes during a Sidereal Month (Direct Entry)

Moon at Max. Inclination of 28.5°

Accessible Latitudes from Intermediate Low Earth Orbit

\square A return to a LEO parking orbit provides a landing latitude band equal to the magnitude of the arrival inclination

- For example: Arrival into a 28.5° parking orbit provides a 57° latitude band (-28.5° to $+28.5^{\circ}$)
\square This latitude band covers 360° of longitude
\square Any (land or water) landing site within the latitude band is accessible provided:
- Adequate on-orbit loiter time (about 24 hours min.)
- Adequate spacecraft cross-range capability

Accessible Latitudes from
Intermediate Low Earth Orbit
Intermediate Low Earth Orbit Inclination of 28.5°

Note: May require some loitering time for groundtrack to intersect with desired landing site

Libration Points

Earth-Moon Libration Points

Libration Points

\square Possible staging point for robotic and human missions

- Lunar Gateway Mission for lunar sorties

- Possible telescope (e.g. vvébb Telescope, NGST) deploy/maintenance point
- Minimal $\Delta \mathrm{V}$ transfer costs between Earth-Moon and Sun-Earth libration points

Environment Considerations

Radiation

0
[. Van Allen Radiation Belts
More ...

- Inner (proton) belt 1,000-12,000 km altitude
- Outer (electron) belt 19,000-57,000 km altitude
- Solar Flares
- Can cause ionization damage and single-event effects in sensitive devices
- Energetic protons reach Earth within 30 minutes
- Other solar materials and magnetic fields reach Earth in 1 to 4 days
- Solar Flux
- 9 to 13 year cycle
- Proton energy range from 10 MeV to 1 GeV
- Galactic Cosmic Ray (GCR) Flux
- Causes single-event effects in sensitive devices
- Peaks around solar minimum
- Particle energy up to and over 10 GeV

Orbital Debris

End Part 1 Lunar Orbit Mechanics Tutorial

Back Up Charts for: Part 1 Lunar Orbit Mechanics Tutorial

On-Orbit Plane Changes

Earth and Moon

Delta-V vs. Plane Change For Earth and Moon (200x200 km Altitude)

Mass Ratio versus ΔV

Propellant to Initial Mass Ratio as a Function of ΔV and Specific Impulse

Declination of Moon At Arrival w.r.t. Fixed Departure Plane

Departure Planes: 51.6° ISS and 28.5° Construction Orbit Time $=0$ at Jan 9, 2009, RAAN $=0^{\circ}$, Altitude $=407 \times 407 \mathrm{~km}$

Lunar Orbit Stability

Vis-Viva Equation

Vis-Viva "Life Force" Equation is a statement of conservation of energy

Kinetic Energy

C3 determines the type of conic section describing the orbit.

Typical Form of Vis-Viva Equation

From the general equation for a conic:

$$
V^{2}=\frac{2 \mu}{r}-\frac{\mu}{a}
$$

$$
\longrightarrow \frac{C 3}{\mu}=-\frac{1}{a}
$$

dynamic quantity
geometric quantity

This is valid for all equations

Typical form of Vis-Viva equation used by flight mechanics:

$$
\begin{equation*}
V^{2}=\frac{2 \mu}{r}-\frac{\mu}{a} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
V^{2}=\frac{2 \mu}{r}+C 3 \tag{2}
\end{equation*}
$$

Vis-Viva Equation and Hyperbolic Excess Speed

Let's look at (1) $\quad V^{2}=\frac{2 \mu}{r}-\frac{\mu}{a}$

$$
\text { as } \mathrm{r} \longrightarrow \infty \quad V_{\infty}{ }^{2}=\frac{2 \mu \hat{\mu}}{\not r_{\infty}}-\frac{\mu}{a} \text { a } \longrightarrow \quad V_{\infty}{ }^{2}=-\frac{\mu}{a}
$$

Circular \& Parabolic Orbit Case

Circular orbit case
Using (1) for a circular orbit, $a=r$

$$
V^{2}=\frac{2 \mu}{r}-\frac{\mu}{r}=\frac{\mu}{r} \quad V_{\text {circ }}=\sqrt{\frac{\mu}{r}} \quad \text { (Circular orbit speed) }
$$

Parabolic orbit case
Using (1) for a parabolic orbit, $C 3=-\frac{\mu}{a}=0$

$$
V_{\text {parabola }}^{2}=\frac{2 \mu}{r} \quad \text { 涼 }
$$

(Escape speed)

Using Vis-Viva Equation to determine $\Delta \mathbf{V}$ requirements

Departure

$$
\begin{aligned}
& \Delta V_{\text {departure }}=V_{\text {required }}-V_{\text {current }} \\
& V_{\text {required }}=\sqrt{\frac{2 \mu}{r_{\text {perigee }}}+C 3} \\
& V_{\text {current }}=\sqrt{\frac{2 \mu}{r_{\text {perigee }}}-\frac{\mu}{a}} \\
& \Delta V_{\text {departure }}=\sqrt{\frac{2 \mu}{r_{\text {perigee }}}+C 3}-\sqrt{\frac{2 \mu}{r_{\text {perigee }}}-\frac{\mu}{a}}
\end{aligned}
$$

Parking orbit

hyperboga

For an Earth departure (robotic mission)

Typical C3 Values

Robotic Mars Missions Mars Sample Return		
2011 C3 (km²/ ${ }^{2}$)	Type	Arrival Entry Speed (km/s)
9.8	II	5.6
12.5	I	6.2
17.7	IV	6.4
$\underline{2013}$		
10.2	II	5.9
13.1	I	6.7
14.7	IV	5.9
Human Mars Missions		
$\begin{aligned} & \text { Mars Combo Lander } \\ & \underline{2014} \end{aligned}$		
≤ 18.8	1	≤ 7.36
Lunar Missions		
0.9	na	na

Van Allen Radiation Belts - Trapped Proton Belt Dose Rate for Circular Orbits

Van Allen Radiation Belts

Trapped Particle Trails
Van Allen (Proton) Radiation Belt

Solar Flux

Estimate of 13-Month Smoothed Solar Flux for Cycle 23 and Cycle 24

Solar and GCR

\square Solar Flares

- Can cause ionization damage and single-event effects in sensitive devices
- Energetic protons reach Earth within 30 minutes
- Other solar materials and magnetic fields reach Earth in 1 to 4 days
\square Solar Flux
- 9 to 13 year cycle
- Proton energy range from 10 MeV to 1 GeV
\square Galactic Cosmic Ray (GCR) Flux
- Causes single-event effects in sensitive devices
- Peaks around solar minimum
- Particle energy range from 0 to over
 10 GeV

End of Part I Lunar Orbit Mechanics

[^0]: ${ }^{*}$ Multibody Orbit Architectures for Lunar South Pole Coverage. D. Grebow, M. Ozimek and K. Howell

[^1]: * Currently, proposals exist to provide high-resolution lunar gravity mapping and improved lunar terrain models.

