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Abstract	18	
	19	
This	 paper	 describes	 the	 second	 phase	 of	 an	 Observing	 System	 Simulation	20	
Experiment	(OSSE)	that	utilizes	the	synthetic	measurements	from	a	constellation	of	21	
satellites	measuring	atmospheric	composition	from	geostationary	(GEO)	Earth	orbit	22	
presented	 in	 part	 I	 of	 the	 study.	 Our	 OSSE	 is	 focused	 on	 carbon	 monoxide	23	
observations	 over	 North	 America,	 East	 Asia	 and	 Europe	 where	 most	 of	 the	24	
anthropogenic	 sources	 are	 located.	 Here	we	 assess	 the	 impact	 of	 a	 potential	 GEO	25	
constellation	 on	 constraining	 northern	 hemisphere	 (NH)	 carbon	 monoxide	 (CO)	26	
using	data	assimilation.	We	show	how	cloud	cover	affects	the	GEO	constellation	data	27	
density	 with	 the	 largest	 cloud	 cover	 (i.e.,	 lowest	 data	 density)	 occurring	 during	28	
Asian	 summer.	We	 compare	 the	modeled	 state	 of	 the	 atmosphere	 (Control	 Run),	29	
before	CO	data	assimilation,	with	the	known	“true”	state	of	the	atmosphere	(Nature	30	
Run)	and	show	that	our	setup	provides	realistic	atmospheric	CO	fields	and	emission	31	
budgets.	Overall,	the	Control	Run	underestimates	CO	concentrations	in	the	northern	32	
hemisphere,	especially	in	areas	close	to	CO	sources.	Assimilation	experiments	show	33	
that	constraining	CO	close	to	the	main	anthropogenic	sources	significantly	reduces	34	
errors	 in	 NH	 CO	 compared	 to	 the	 Control	 Run.	 We	 assess	 the	 changes	 in	 error	35	
reduction	when	only	 single	 satellite	 instruments	 are	 available	 as	 compared	 to	 the	36	
full	 constellation.	 We	 find	 large	 differences	 in	 how	 measurements	 for	 each	37	
continental	scale	observation	system	affect	the	hemispherical	improvement	in	long-38	
range	transport	patterns,	especially	due	to	seasonal	cloud	cover.	A	GEO	constellation	39	
will	provide	the	most	efficient	constraint	on	NH	CO	during	winter	when	CO	lifetime	40	
is	longer	and	increments	from	data	assimilation	associated	with	source	regions	are	41	
advected	further	around	the	globe.	42	
	43	

https://ntrs.nasa.gov/search.jsp?R=20170003473 2019-08-31T09:18:24+00:00Z



	

	 2	

1.	Introduction	44	
	45	

Observing	system	simulation	experiments	(OSSEs)	are	a	powerful	method	for	46	
evaluating	 the	 impact	 of	 potential	 future	 observations	 (Edwards	 et	 al.,	 2009;	47	
Timmermans	et	al.,	2015).	 In	Barré	et	al.,	2015a	(hereafter,	Part	 I),	we	 introduced	48	
the	OSSE	framework	and	method	to	simulate	observations	for	a	future	constellation	49	
of	geostationary	(GEO)	satellites.	The	OSSE	results	presented	in	this	second	part	of	50	
the	study	focus	on	assimilation	of	the	simulated	carbon	monoxide	(CO)	observations	51	
and	 evaluation	 of	 the	 impact	 on	 chemical	 weather	 prediction	 in	 the	 northern	52	
hemisphere	 (NH)	 troposphere.	Because	CO	 is	 a	primary	pollutant,	with	 significant	53	
sources	 from	 industrial	 and	 urban	 fossil/biofuel	 burning,	 wildfires	 and	 biomass	54	
burning,	 it	 is	 a	 convenient	 chemical	 tracer	 for	 assessing	 the	 utility	 of	 assimilated	55	
GEO	 measurements	 for	 quantifying	 pollution	 emissions	 and	 their	 subsequent	56	
transport.		57	

We	observe	high	CO	concentrations	in	the	lower	troposphere	and	in	the	NH	58	
due	 to	urban	and	 industrial	pollution,	over	East	China,	 India,	Western	Europe	and	59	
the	 United	 States.	 Other	 major	 sources	 of	 CO	 in	 the	 NH	 are	 wildfires	 that	 occur	60	
during	 dry	 seasons;	 e.g.,	 May	 to	 October	 in	 extratropical	 northern	 latitudes,	61	
especially	in	forested	boreal	regions.	CO	is	also	a	reactive	chemical	compound	with	62	
chemical	 production	 and	 destruction	 mainly	 due	 to	 hydrocarbon	 and	 hydroxyl	63	
radical	 (OH)	 oxidation,	 respectively.	 OH	 availability	 governs	 CO	 lifetime,	 which	 is	64	
shorter	during	summer	and	over	 low	latitudes,	and	 longer	during	winter	and	over	65	
high	latitudes	in	the	NH	(Edwards	et	al.,	2004).	Satellite	instruments	can	observe	CO	66	
plumes	 from	 strong	 emission	 sources	 on	 global	 scales,	 travelling	 distances	 that	67	
depend	on	CO	lifetime	(weeks	to	months).	This	makes	CO	an	excellent	candidate	for	68	
tracking	fossil	fuel	and	biomass	burning	emissions	as	they	are	transported	from	the	69	
sources	into	the	global	troposphere.	The	OH	seasonal	cycle	leads	to	a	CO	build-up	at	70	
the	 end	 of	 the	 NH	 winter,	 commonly	 underestimated	 in	 model	 simulations	 (e.g.,	71	
Stein	 et	 al.	 2014).	 This	 bias	 is	 likely	due	 to	 a	 combination	of	 factors,	 including	 an	72	
underestimation	of	the	magnitude	of	the	emissions,	biases	in	the	OH	fields,	as	well	73	
as	transport	errors	(e.g.,	 Jiang	et	al.,	2013;	Strode	et	al.	2015).	Data	assimilation	of	74	
CO,	 i.e.	 representing	 the	 best	 CO	 estimate	 of	 the	 atmosphere	 using	 models	 and	75	
observations,	 has	 many	 applications	 ranging	 from	 air	 quality	 characterization,	76	
emissions	estimation,	 large-scale	pollutant	 transport,	and	climate	evolution	due	 to	77	
changing	atmospheric	composition.	78	

Part	 I	 of	 this	 study	 demonstrated	 the	 feasibility	 of	 simulating	 CO	79	
observations	 from	 three	 instruments	 with	 characteristics	 similar	 to	 the	80	
Measurement	of	Pollution	 in	The	Troposphere	 (MOPITT)	 instrument	 flying	on	 the	81	
NASA	Terra	satellite.	These	three	CO	instruments	would	cover	the	most	populated	82	
and	 hence	 most	 polluted	 areas	 of	 the	 world:	 Continental	 US	 (CONUS),	 Western	83	
Europe	and	Eastern	Asia.	Measurement	simulations	provide	realistic	multispectral	84	
sensitivities	 peaking	 at	 the	 surface	 during	 daytime	 for	 land	 observations.	 These	85	
simulated	 measurements	 also	 provide	 errors	 and	 cloud	 coverage	 at	 variable	86	
horizontal	resolution	for	assimilation	experiments.	Previous	OSSE	studies	assessed	87	
the	impact	of	GEO	instrument	capabilities	using	data	assimilation,	but	with	a	focus	88	
on	 the	 regional	 scale.	 Edwards	 et	 al.,	 2009	 and	 Zoogman	 et	 al.,	 2011,	 2014a,b	89	
focused	on	CONUS	CO	and	ozone	(O3),	while	Claeyman	et	al.,	2011	assimilated	GEO	90	
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measurements	 of	 CO	 and	 O3	 over	 Europe	 and	 Yumimoto,	 2013	 assimilated	 GEO	91	
measurements	of	CO	over	East	Asia.		92	

In	 part	 II	 of	 this	 study,	 we	 assimilate	 simulated	 observations	 from	 a	 GEO	93	
constellation	 composed	 of	 the	 three	 instruments	 defined	 in	 Part	 I	 into	 a	 global	94	
chemistry	 model	 to	 assess	 the	 global-scale	 impacts	 of	 GEO	 satellites	 for	 the	 first	95	
time.	The	focus	of	 this	paper	 is	 to	quantify	the	potential	of	a	GEO	constellation	for	96	
constraining	 NH	 CO	 distributions,	 especially	 in	 the	 lower	 troposphere	 near	97	
anthropogenic	sources.	We	present	results	from	two	data	assimilation	experiments	98	
during	summer	and	winter.	Observations	from	each	GEO	instrument	are	assimilated	99	
independently	and	jointly	to	evaluate	the	impact	of	observations	in	each	domain	as	100	
compared	to	the	full	constellation	101	

Section	2	of	this	paper	further	describes	the	OSSE	framework	introduced	in	102	
Part	I,	with	details	on	the	nature	run	and	the	control	run.	We	briefly	summarize	the	103	
observation	 simulations	 covered	 in	 detail	 in	 Part	 I,	 focusing	 here	 on	 cloud	 cover	104	
variability	 over	 different	 regions	 and	 different	 seasons.	We	 also	 present	 the	 data	105	
assimilation	methodology	 following	Barré	 et	 al.,	 2015b.	 Section	 3	 gives	 a	 detailed	106	
evaluation	 of	 the	 GEO	 constellation	 performance	 due	 to	 each	 instrument	 with	107	
assimilation	results	such	as	 increments,	global	 impact	on	CO	errors	and	skill	score	108	
metrics.	 Section	 4	 concludes	 with	 seasonal	 and	 geographical	 observational	109	
requirements	 for	 a	 GEO	 constellation	 of	 CO	 measurements	 and	 perspectives	 on	110	
future	work	using	our	OSSE	framework.	111	
	112	
2.	OSSE	Setup	113	
	114	

An	OSSE	comprises	several	elements	(see	part	I,	figure	1):		a	Nature	Run	(NR)	115	
that	 represents	 the	atmospheric	 true	state;	an	observation	simulator	 that	 samples	116	
the	NR	 to	produce	synthetic	observations;	a	Control	Run	(CR)	 that	 is	 the	modeled	117	
state	 of	 the	 atmosphere;	 and	 an	 assimilation	 system	 that	 merges	 the	 synthetic	118	
observations	with	 the	CR	 to	produce	 an	Assimilation	Run	 (AR).	By	 comparing	 the	119	
NR,	CR	and	AR	one	can	assess	the	impact	of	a	new	instrument	concept,	in	this	case	a	120	
constellation	of	GEO	satellites	over	the	NH.	121	
	122	
2.1	Nature	run	and	control	run	description	123	
	124	

The	 GEOS5	 Nature	 Run	 (NR)	 used	 for	 simulating	 the	 GEO	 constellation	125	
observations	is	described	in	Part	I	of	this	paper	and	complete	details	and	validation	126	
documents	 are	 available	 at	 http://gmao.gsfc.nasa.gov/projects/G5NR/.	 In	 this	127	
section,	we	focus	on	how	we	model	and	parameterize	the	NR	CO	concentrations	and	128	
emissions.	For	this	study,	we	use	reduced	horizontal	resolution	(0.5°	×	0.5°)	derived	129	
from	 the	 high	 horizontal	 resolution	 run	 (0.06˚	 ×	 0.06˚)	 that	 simulates	 year	 2006	130	
atmospheric	 conditions.	 The	 NR	 uses	 a	 simplified	 version	 of	 CO	 chemistry	 as	131	
described	 in	 Ott	 et	 al.,	 2010.	 	 The	 only	 sink	 for	 CO	 is	 the	 reaction	 with	 OH.	132	
Tropospheric	 OH	 is	 parameterized	 using	 OH	 monthly	 means	 from	 previous	133	
calculations	(also	for	year	2006)	of	a	full	chemical	mechanism	(Duncan	et	al.,	2000).	134	
It	was	necessary	to	increase	the	CO	emissions	from	fossil	fuels,	biofuels	and	biomass	135	
burning	 by	 20%,	 19%	 and	 11%,	 respectively,	 to	 account	 for	 CO	 production	 from	136	
non-methane	 hydrocarbons	 emitted	 from	 these	 sources.	 We	 use	 monthly	 mean	137	
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methane	fields	to	calculate	CO	produced	by	methane	oxidation	as	described	in	Bian	138	
et	al.,	2007.	139	

Detailed	 descriptions	 of	 emissions	 are	 provided	 in	 Putman	 et	 al.,	 2014.	140	
Biogenic	 and	methane	 sources	 of	 CO	 are	 taken	 from	 a	 coarse	 resolution	 (4˚	 x	 5˚)	141	
chemical	 transport	 model	 simulations,	 while	 biomass	 burning	 and	 fossil	 fuel	142	
emissions	 were	 produced	 at	 0.1◦	 to	 introduce	 spatial	 heterogeneity	 into	 the	143	
simulations.	 We	 obtain	 daily	 CO	 biomass	 burning	 emissions	 from	 the	 Quick	 Fire	144	
Emissions	 Dataset	 (QFED)	 version	 2.4-r6	 and	 CO	 anthropogenic	 emissions	 are	145	
mainly	from	the	Emissions	Database	for	Global	Atmospheric	Research	(EDGAR).	We	146	
have	 disaggregated	 these	 emissions	 in	 time	 (yearly	 to	monthly	 time	 scales)	 using	147	
information	on	the	seasonal	cycle	of	fossil	fuel	emissions	from	Bey	et	al.,	2001.	We	148	
apply	no	diurnal	or	weekly	variation	to	the	EDGAR	emission	inventory.	149	

We	 evaluate	 NR	mixing	 ratios	 using	 a	 combination	 of	 surface	 and	 satellite	150	
observations.	In	general,	the	NR	tends	to	underestimate	CO	mixing	ratios,	especially	151	
during	 extratropical	 NH	 spring.	 We	 improve	 significantly	 these	 underestimates	152	
through	application	of	an	empirically	derived	bias	correction	method	as	described	153	
in	 http://gmao.gsfc.nasa.gov/projects/G5NR/TM2014-104606v36.pdf,	 leading	 to	 a	154	
reduced	overall	bias	of	10%	at	NH	extratropical	latitudes	compared	to	MOPITT	CO	155	
observations.	 The	 NR	 succeeds	 in	 capturing	 major	 CO	 features	 due	 to	 fossil	 fuel	156	
emissions	and	biomass	burning	that	are	seen	in	the	observations. 157	

We	 use	 the	 Community	 Atmospheric	 Model	 with	 Chemistry	 (CAM-chem)	158	
version	5	with	on-line	meteorology	(using	CAM5	physics,	Conley	et	al.	(2012))	and	159	
on-line	full	gas	phase	chemical	mechanism	(MOZART-4	tropospheric	chemistry)	as	160	
the	Control	Run	(CR)	and	as	a	basis	for	the	Assimilation	Runs	(AR).	In	this	study,	we	161	
use	 a	 horizontal	 resolution	 of	 (1.25°	 longitude	 by	 0.9°	 latitude)	 with	 30	 vertical	162	
levels	from	the	surface	up	to	4hPa.	Emmons	et	al.	2010,	describes	and	evaluates	the	163	
MOZART-4	 chemical	 scheme;	 Lamarque	 et	 al.	 (2012)	 and	 Tilmes	 et	 al.	 (2015)	164	
describe	 updates	 to	 this	 scheme.	 The	 tropospheric	 version	 of	 the	 MOZART	165	
mechanism	 includes	 85	 gas-phase	 species,	 12	 bulk	 aerosol	 compounds,	 39	166	
photolysis	 and	 157	 gas-phase	 reactions.	 We	 prescribe	 the	 relevant	 chemical	167	
variables	 in	 the	 stratosphere,	 between	 50	 hPa	 and	 the	 top	 of	 the	 model,	 using	168	
climatology.	 Lamarque	 et	 al.	 (2012),	Tilmes	 et	 al.	 (2015)	 and	Barré	 et	 al.	 (2015b)	169	
showed	that	the	modeled	CO	distribution	at	high	NH	latitudes	is	underestimated	by	170	
values	 ranging	 from	25%	to	75%	when	compared	 to	 surface,	 aircraft	 and	satellite	171	
observations,	 indicating	 an	 underestimation	 of	 CO	 emissions	 and	 possibly	 also	 an	172	
overestimate	of	the	CO	loss	by	OH.	Barré	et	al.	(2015b)	showed	that	assimilation	of	173	
infrared	Low	Earth	Orbiter	(LEO)	sounder	observations	partially	or	totally	corrects	174	
the	CR	CO	bias	depending	on	sounder	spatial	coverage	and	vertical	sensitivity.	175	

We	 base	 the	 CAM-Chem	 anthropogenic	 emissions	 on	 the	 Atmospheric	176	
Chemistry	 and	 Climate	 Model	 Intercomparison	 Project	 (ACCMIP)	 historical	177	
emissions	 (1960-2000)	 and	 RCP	 8.5	 future	 scenario	 emissions	 (Lamarque	 et	 al.,	178	
2010).	We	 use	 biomass-burning	 emissions	 provided	 by	 the	 Fire	 Inventory	 from	179	
NCAR	 version	 1.5	 (FINNv1.5;	 Wiedinmyer	 et	 al.,	 2011).	 We	 generate	 biogenic	180	
emissions	 offline	 using	 the	 global	Model	 of	 Emissions	 of	Gases	 and	Aerosols	 from	181	
Nature	 (MEGAN	 v2.1;	 Guenther	 et	 al.,	 2012)	 and	 use	 monthly	 averages	 of	 daily	182	
emissions	 from	 MEGAN	 and	 FINN	 emitted	 at	 the	 surface	 level.	 Using	 a	 monthly	183	
average	 for	 the	 fire	 emission	 inventory	 is	 a	 likely	 source	 of	 error	 given	 that	 fires	184	
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have	daily	evolving	signatures.	However,	monthly	emissions	are	justified	in	a	global	185	
scale	 approach	with	 coarse	horizontal	 resolution	where	 large-scale	 fire	 signatures	186	
last	several	months.	187	

Figure	1.	shows	the	seasonal	tropospheric	CO	averages	from	the	NR	and	CR	188	
for	the	winter	and	summer	cases.	Compared	to	the	NR,	 the	CR	underestimates	the	189	
CO	 field	 by	 20%	 to	 30%	 at	 extratropical	 NH	 latitudes.	 Underestimates	 of	 this	190	
magnitude	are	common	in	CO	simulations	as	demonstrated	by	Shindell	et	al.	(2006)	191	
who	 compared	 CO	 fields	 generated	 by	 26	 chemical	 transport	 models.	 As	 stated	192	
above,	CO	is	primarily	emitted	in	the	troposphere	from	anthropogenic	and	biomass	193	
burning	emissions.	However,	 a	 significant	 fraction	of	 tropospheric	CO	 is	produced	194	
from	chemical	oxidation	and	removed	 through	 its	 reaction	with	OH.	Figure	1.	also	195	
shows	 the	 correlation	 coefficients	 between	 the	NR	 and	 CR	 for	 the	 two	 seasons	 of	196	
interest.	Correlation	coefficients	range	from	0.3	to	0.8	depending	on	the	season	and	197	
regions	in	the	northern	hemisphere.	These	values	are	also	in	the	range	of	what	has	198	
been	previously	shown	by	Shindell	et	al.	 (2006),	Table	4,	which	gives	correlations	199	
ranging	from	0.3	to	0.9	for	comparisons	of	chemical	transport	models	with	MOPITT	200	
CO	data.	Overall,	we	find	the	CR	errors	to	be	realistic	in	terms	of	bias	and	variability.	201	

Figure	2.	shows	emission	budgets	over	the	three	regions	of	interest	(fields	of	202	
regard	 of	 the	 3	 GEO	 instruments,	 see	 Part	 I	 figure	 4):	 North	 America,	 Western	203	
Europe	and	Eastern	Asia.	We	display	the	total	emissions	(anthropogenic	+	biomass-204	
burning	+	biogenic)	and	the	biomass-burning	fraction.	The	differences	between	NR	205	
and	 CR	 emissions	 budgets	 are	 representative	 of	 current	 model	 capabilities	 since	206	
fossil	 fuel	emissions	 inventories	are	mostly	underestimated	(Shindell	et	al.,	2006).		207	
Limitations	 in	 state-of-the-art	 models	 lead	 to	 large	 uncertainties	 when	208	
characterizing	 biomass-burning	 emissions	 from	 fire	 events	 (Wiedinmyer	 et	 al.,	209	
2011)	and	hence	large	differences	between	the	CR	and	NR.	In	most	cases,	there	is	an	210	
underestimation	of	CR	emissions	compared	to	the	NR	(for	both	total	emissions	and	211	
biomass	burning	emissions),	except	 for	Eastern	Asia	where	very	 intense	 fires	 take	212	
place	over	Northern	Thailand,	Myanmar	and	Laos	in	NH	spring.	For	South	East	Asian	213	
fires,	 the	 CR	 largely	 overestimates	 the	 fire	 emissions	 compared	 to	 the	NR.	 This	 is	214	
reflected	in	the	emission	budgets	in	Figure	2.,	i.e.,	the	March	budget	over	Asia.	In	our	215	
OSSE	 framework,	 this	 fire	 occurrence	 over	Asia	 provides	 a	 case	 study	 that	 allows	216	
assessment	of	how	well	GEO	satellite	data	assimilation	constrains	the	atmospheric	217	
CO	state	under	a	change	of	sign	in	the	emission	bias.	218	

In	 summary,	 differences	 between	 the	 NR	 and	 CR	 are	 within	 the	 range	 of	219	
differences	between	state-of-the-art	models	and	observations.		220	
	221	
2.2	Simulated	CO	observations		222	
	223	

Part	 I	of	 this	study	provided	a	 full	description	of	the	synthetic	observations	224	
simulated	from	the	NR	and	showed	the	instrument	footprints,	sensitivity	and	errors,	225	
and	 impacts	 of	 cloud	 cover	 on	 pixel	 resolution.	 Part	 I	 focused	 on	 July	 2006	 and	226	
described	the	three	 instruments	are	that	are	envisioned:	GEO-US	(North	America),	227	
GEO-EU	 (Western	Europe)	 and	GEO-AS	 (Eastern	Asia).	The	 reader	 should	 refer	 to	228	
Part	 I	 for	more	details	about	 the	observation	simulations.	 In	 this	Part	 II	paper,	we	229	
extend	 the	observation	simulation	data	 set	 to	 January,	February,	March	 (JFM)	and	230	
June,	July,	August	(JJA)	2006.	231	
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Cloud	 cover	 is	 important	 as	 it	 limits	 the	 capability	 of	 a	 remote	 sensing	232	
instrument	 to	 monitor	 tropospheric	 composition.	 Figure	 3	 displays	 the	 three	233	
instrument	footprints	and	the	cloud	free	ratio	for	JFM	and	JJA,	2006.	The	cloud	free	234	
ratio	 is	 the	 number	 of	 cloud	 free	 occurrences	 over	 the	 total	 number	 of	 possible	235	
measurements	 for	a	given	pixel.	Over	the	three	observational	domains,	differences	236	
of	cloud	free	ratio	between	winter	and	summer	are	large.	Europe	and	North	America	237	
show	more	data	coverage	during	summer	than	winter.	This	tendency	is	reversed	for	238	
Asia.	Over	extratropical	latitudes,	summer	is	generally	significantly	less	cloudy	than	239	
winter	 due	 to	 warmer	 air	 that	 can	 retain	 more	 water	 vapor.	 Over	 Asia,	 the	 GEO	240	
instrument	field	of	view	(see	part	I	figure	4)	tends	to	cover	tropical	and	subtropical	241	
regions,	and	 is	subject	 to	 the	Asian	monsoon	during	summer,	which	 is	a	relatively	242	
wet	season.	For	GEO-AS,	winter	 is	drier	than	summer	with	fewer	clouds	and	more	243	
data	coverage.	244	

The	 geographical	 structure	 of	 data	 coverage	 changes	 with	 season	 and	245	
exhibits	 complex	 patterns.	 GEO-EU	 shows	 a	North-South	 coverage	difference	with	246	
high	coverage	at	southern	latitudes	and	almost	no	observations	northward	of	50˚N	247	
during	 the	 winter.	 Good	 coverage	 over	 the	 Mediterranean	 is	 even	 higher	 during	248	
summer.	GEO-US	shows	very	low	winter	coverage	over	New	England	and	the	Great	249	
Lakes	 area	 but	 reasonable	 coverage	 (above	 30%)	 elsewhere.	 Summer	 provides	250	
overall	 good	 coverage	 (above	 30%)	 and	 excellent	 coverage	 (above	 80%)	 over	251	
California.	GEO-AS	shows	patterns	 that	are	more	complex,	e.g.,	very	high	coverage	252	
and	very	low	coverage	over	the	southwest	part	of	the	domain	and	over	the	Japanese	253	
east	coast,	a	North-South	coverage	difference	that	is	less	marked	over	winter	than	in	254	
summer.		Overall,	land	data	coverage	is	higher	in	winter	than	in	summer	over	Asia.	255	
	256	
2.3	Assimilation	system	and	global	OSSE	design	257	
	258	
2.3.1	Synthetic	meteorological	observations	259	
	260	

In	 this	 OSSE	 framework	 we	 use	 the	 Data	 Assimilation	 Research	 Testbed	261	
(DART,	 Anderson	 et	 al.	 2009),	 which	 is	 a	 community	 data	 assimilation	 software	262	
package	 developed	 since	 2002	 at	 the	 National	 Center	 for	 Atmospheric	 Research	263	
(NCAR).	DART	implements	the	Ensemble	Kalman	Filter	(EnKF)	technique	originally	264	
introduced	by	Evensen	(1994).	This	software	is	designed	to	provide	high	modularity	265	
that	 allows	an	easy	 interface	 for	 a	 variety	of	models.	 It	 facilitates	 ensemble-based	266	
data	assimilation	(DA)	without	needing	to	construct	a	model	adjoint	and	adjoints	for	267	
observation	operators	as	in	the	case	of	4D	variational-based	DA.		268	

DART	assimilates	meteorological	and	chemical	observations	simultaneously.	269	
The	 data	 assimilation	 setup	 is	 based	 on	 the	work	 of	 Raeder	 et	 al.	 (2012)	 for	 the	270	
meteorology	assimilation	and	Barré	et	al.	(2015b)	(see	supplementary	information	271	
document)	 for	 the	 chemistry-meteorology	 assimilation,	 where	 conventional	272	
NOAA/NCEP	 meteorological	 observations	 are	 assimilated.	 These	 two	 studies	273	
provide	 a	 detailed	 evaluation	 of	 the	 performance	 of	 the	 meteorological	 analysis	274	
produced	 with	 the	 DART	 setup.	 In	 this	 present	 study,	 we	 generate	 synthetic	275	
conventional	 meteorological	 observations	 by	 sampling	 the	 nature	 run	 variables	276	
(winds,	temperature	and	specific	humidity)	at	real	observation	locations.	We	define	277	
the	 error	 characterization	 of	 synthetic	 observations	 using	 the	 ratio	 of	 the	 real	278	
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observation	error	over	 the	measurement	value.	We	 then	add	 random	noise	 to	 the	279	
sampled	 nature	 run	 values	 according	 to	 the	 specified	 error	 of	 the	 synthetic	280	
observations.	 We	 use	 the	 following	 relationships	 to	 generate	 synthetic	281	
meteorological	observations:	282	
	283	

Xs	=	Xt+	ε	 	 (1)	284	
	285	

ε	=	N(0,1).	es	 	 (2)	286	
	287	

es	=	Xt	.	em	.	Xm-1	 	 (3)	288	
	289	
Where	Xs	 is	 the	 synthetic	observation	value,	Xt	 the	nature	 run	sampled	at	 the	 real	290	
observation	location,	ε	the	measurement	noise,	es	the	synthetic	observation	error,	em	291	
the	real	observation	error	and	Xm	the	real	observation	value	and	N(0,1)	a	standard	292	
normal	 distribution.	 For	 meridional	 (V)	 and	 zonal	 (U)	 wind	 simulated	293	
measurements,	we	take	into	account	the	wind	speed	( U" + V"),	to	avoid	infinite	or	294	
very	 large	 ratios	 when	 calculating	 the	 ratio	 Xt	 /Xm	 in	 equation	 3.	 In	 the	 OSSE	295	
experiments,	the	CR	assimilates	only	meteorological	data,	while	the	ARs	assimilate	296	
both	meteorological	and	CO	data.	The	following	section	describes	the	experimental	297	
design	of	this	study.	298	
	299	
2.3.2	GEO	constellation	CO	assimilation	experimental	design	300	
	301	

Barré	 et	 al.	 (2015b)	 provides	 a	 complete	 description	 of	 the	 chemical	 data	302	
assimilation	 setup	with	 a	 focus	 on	 CO	 and	 shows	 the	 results	 and	 evaluation	with	303	
independent	 measurements	 from	 assimilating	 the	 MOPITT	 and	 the	 Infrared	304	
Atmospheric	Sounding	 Interferometer	 (IASI)	 instrument	retrieved	CO	profiles	 into	305	
the	CAM-Chem	model.	That	paper	highlights	the	different	capabilities	of	the	IASI	and	306	
MOPITT	instruments	with	particular	attention	to	instrument	vertical	sensitivity	and	307	
coverage	 and	 their	 impact	 on	 the	 analysis	 of	 global	 CO	 atmospheric	 composition.	308	
Barré	 et	 al.	 (2015b)	 showed	 that	 satellite	 observations	 that	 have	 frequent	 revisit	309	
and	 enhanced	 vertical	 sensitivity	 toward	 the	 surface	 close	 to	 sources	 provide	 an	310	
efficient	 constraint	 and	 generate	 a	 global	 improvement	 in	 tropospheric	 CO	311	
concentrations.	In	the	present	study,	we	use	the	same	MOPITT	CO	data	assimilation	312	
setup	 to	 assimilate	 a	 geostationary	 constellation	 of	 simulated	 MOPITT-like	313	
measurements.	 Although	 it	 is	 possible	 to	 infer	 changes	 in	 the	 concentrations	 of	314	
other	 chemical	 species,	 here	 we	 only	 adjust	 CO	 concentrations	 using	 data	315	
assimilation	of	CO	observations,	as	in	Barré	et	al.	(2015b).	316	

We	assimilate	 the	 full	GEO	constellation	and	each	 instrument	 independently	 in	317	
order	 to	 assess	 the	 global	 impact	 of	 the	 constellation	 and	 understand	 the	318	
contribution	 of	 each	 instrument	 to	 the	 estimation	 of	 the	 NH	 CO	 field.	 These	319	
assimilation	experiments	are	repeated	over	the	winter	and	summer	2006	(January-320	
February-March	and	June-July-August,	respectively)	because	emissions,	cloud	cover	321	
and	 CO	 chemical	 lifetime	 change	 significantly	 throughout	 the	 year.	 We	 hereafter	322	
name	the	different	assimilation	runs	as	follows:		323	

• Control	run	(CR):	we	assimilate	only	meteorological	data;	324	
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• Full	constellation	assimilation	run	(AR0):	we	assimilate	meteorological	and	3	325	
GEO	instrument	data;	326	

• GEO-US	 assimilation	 run	 (AR1):	 we	 assimilate	 meteorological	 and	 US	 GEO	327	
instrument	data;	328	

• GEO-EU	assimilation	run	(AR2):	we	assimilate	meteorological	and	European	329	
GEO	instrument	data;	330	

• GEO-AS	assimilation	run	(AR3):	we	assimilate	meteorological	and	Asian	GEO	331	
instrument	data.	332	

	333	
3.	Results	334	
	335	
3.1	Data	assimilation	increments	336	
	337	

In	this	section,	we	investigate	the	overall	constraint	on	model	CO	fields	from	338	
the	AR0	assimilation	experiment	during	winter	and	summer.	Figure	4	displays	the	339	
root-mean-square	 (RMS)	 of	 the	 relative	 increments	 (posterior	 minus	 prior	340	
normalized	by	the	prior)	over	a	month	 for	 the	6-hourly	data	assimilation	window.	341	
As	described	in	Barré	et	al.	(2015b)	CO	retrievals	are	assimilated	every	6	hours	and	342	
the	RMS	of	the	relative	increments	over	a	month	is	useful	for	identifying	the	overall	343	
magnitude	 of	 the	 CO	 changes	 due	 to	 assimilation,	 and	 for	 detecting	 short-term	344	
systematic	 error	 patterns	 in	 the	 CR.	 Please	 refer	 to	 Barré	 et	 al.	 (2015b)	 for	345	
additional	details	about	the	data	assimilation	setup.	346	

We	 can	 observe	 seasonal	 differences	 in	 the	 magnitude	 of	 the	 increments.	347	
Three	main	factors	can	explain	this	difference:	cloud	coverage,	CO	model	error	and	348	
hence	 CO	 emissions	 error,	 and	 instrument	 sensitivity.	 During	winter	 over	 Europe	349	
and	North	America,	relative	increments	are	smaller	than	during	summer	because	we	350	
assimilate	 less	 data	 due	 to	 higher	 cloud	 cover.	 Conversely,	 Asia	 has	 the	 opposite	351	
tendency	 with	 relative	 increments	 that	 are	 larger	 over	 winter	 due	 to	 less	 cloud	352	
cover	(see	section	2.2	and	Figure	3).	 In	general,	errors	 in	CO	emissions	 tend	to	be	353	
larger	 during	 the	 summer	 than	 during	 the	 winter	 (Figure	 2).	 This	 also	 explains	354	
larger	 increments	 during	 the	 summer.	 Confirmation	 of	 this	 comes	 from	 relative	355	
increments	showing	structural	patterns	related	to	emission	patterns.	For	example,	356	
we	 observe	 large	 relative	 increments	 over	 the	 Northeast	 United	 States	 (New	357	
England	 and	 slightly	 lower	 latitudes)	 where	 there	 are	 large	 anthropogenic	 CO	358	
emissions	 throughout	 the	 year	 due	 to	 high	 urbanization	 in	 this	 area.	 We	 also	359	
observe	 large	 relative	 increment	 patterns	 around	 the	 Bohai	 Sea	 (near	 Beijing)	360	
where	urbanization	is	very	high	as	well.	361	

We	also	capture	fire	structures	in	the	data	assimilation	relative	increments;	362	
these	 are	visible	over	 South	East	Asia	during	winter	where	we	detect	 very	 strong	363	
fire	occurrences.	Emission	budgets	in	Figure	2	show	that	the	CR	overestimates	this	364	
fire	source	compared	to	the	NR.	We	detect	other	 fire	patterns	over	North	America	365	
and	Europe	during	summer,	e.g.,	Central	North	US,	North	West	US	and	Spain.	We	can	366	
also	explain	relative	increment	magnitudes	in	Figure	2	from	differences	between	the	367	
CR	and	NR	emission	budgets.	If	the	differences	in	the	emission	budget	are	large	in	a	368	
given	region,	then	the	magnitude	of	the	data	assimilation	relative	increments	is	also	369	
likely	to	be	large.		370	
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We	note	 that	 instrument	 sensitivity	 is	 the	 least	 dominant	 factor	 in	 relative	371	
increment	 size.	We	 calculated	 the	 seasonal	 average	 degrees	 of	 freedom	 for	 signal	372	
(DFS),	which	represents	 the	 independent	vertical	 information	 in	 the	measurement	373	
throughout	 the	 troposphere,	 (see	 part	 I	 for	 details).	 GEO-US	 shows	 a	 DFS	 of	 1.53	374	
(1.28)	during	the	winter	(summer),	GEO-EU	shows	a	DFS	of	1.40	(1.30)	during	the	375	
winter	 (summer)	 and	 GEO-AS	 shows	 a	 DFS	 of	 1.61	 (1.36)	 during	 the	 winter	376	
(summer).	DFS	depends	primarily	on	 thermal	 contrast	 and	CO	abundance	and	 for	377	
these	observational	domains,	 there	 is	clearly	weaker	 instrument	sensitivity	during	378	
the	 summer.	However,	 the	 seasonal	differences	 in	 sensitivity	 are	not	 so	 large	 that	379	
they	dominate	the	relative	size	of	increments	found	for	summer	versus	winter.		380	
	 Diagnosing	 data	 assimilation	 relative	 increments	 shows	 that	 a	 GEO	381	
constellation	 provides	 an	 efficient	 constraint	 on	 atmospheric	 CO	 on	 continental	382	
scales	 at	 or	 close	 to	 the	 main	 anthropogenic	 CO	 sources	 over	 the	 NH.	 In	 the	383	
observing	domain	for	this	constellation,	we	also	detect	some	fire	events,	but	during	384	
summer,	 several	 fires	 occur	 outside	 the	 constellation	 field	 of	 view	 that	 would	385	
require	other	(e.g.,	LEO)	satellites	to	monitor	and	hence	cannot	be	constrained	using	386	
only	GEO	data	assimilation.	387	
	388	
3.2	Data	assimilation	impact	389	
	390	

To	assess	the	impact	of	assimilating	the	GEO	constellation	on	global	northern	391	
hemisphere	CO,	we	first	compare	the	full	constellation	assimilation	run	AR0	and	the	392	
CR	 with	 the	 NR.	 Figures	 5	 and	 6	 show	 monthly	 averaged	 differences	 over	 the	393	
troposphere	(surface	 to	200	hPa)	of	CR	and	AR0	with	NR	 for	winter	and	summer,	394	
respectively.	 In	 the	 same	 manner,	 figure	 7	 shows	 the	 same	 differences	 over	 the	395	
lower	troposphere	(surface	to	800	hPa)	just	for	February	and	July.	Those	plots	show	396	
the	overall	biases	of	CR	and	AR0	versus	NR,	respectively.	The	CR	runs	show	larger	397	
and	more	extended	biases	during	winter	than	summer	in	the	entire	troposphere	as	398	
well	as	 in	 the	 lower	troposphere.	Despite	stronger	differences	 in	emissions	during	399	
summer	between	CR	and	NR	(see	figure	2),	the	shorter	CO	lifetime	during	summer	400	
reduces	 the	 global	 tropospheric	 bias.	 We	 can	 also	 observe	 this	 effect	 within	 the	401	
given	seasons	in	figure	5	and	6.	The	CO	lifetime	shortens	through	January	to	March	402	
(and	 June	 to	August)	 giving	 a	 reduced	 CR	 bias.	With	 a	 shorter	 CO	 lifetime,	 errors	403	
owing	to	CO	emissions	have	less	persistence	over	time	and	propagation	throughout	404	
the	troposphere	is	less	likely.		405	
	 The	AR0	reduces	the	overall	CO	bias	in	the	NH	troposphere.	Figure	7	shows	406	
that	a	significant	error	reduction	occurs	at	the	lowest	level	of	the	atmosphere	close	407	
to	 the	sources	over	 the	GEO	constellation	 fields	of	 regard	 (see	part	 I,	 figure	4	and	408	
figure	3	of	this	paper).	As	a	result,	data	assimilation	does	not	improve	major	error	409	
patterns	close	to	the	surface	and	out	of	 the	fields	of	regard	(e.g.,	CO	fire	emissions	410	
close	to	Lake	Baikal).	A	persistent	error	in	the	AR0	is	still	seen	with	patterns	close	to	411	
major	cities	or	groups	of	cities	over	the	3	regions	of	interest.	This	shows	that	the	DA	412	
system	used	here	constrains	CO	fields	close	to	CO	sources,	but	that	this	system	does	413	
not	yet	have	the	capability	of	updating	the	CO	emission	inventory.	This	means	that	414	
while	error	reduction	of	the	CO	fields	close	to	the	surface	is	large,	the	errors	are	not	415	
removed	since	the	un-adjusted	model	CO	sources	remain	as	an	input	to	the	error	in	416	
the	atmospheric	CO	fields.	Assimilation	of	retrieved	profiles	close	to	the	sources	can	417	
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provide	 a	 hemispheric	 constraint	 due	 to	 long-range	 transport	 of	 the	 relative	418	
increments	and	persistence	over	time	of	the	error	correction.	In	both	seasons,	global	419	
constraints	take	about	a	month	for	advection	to	spread	the	error	correction	over	the	420	
NH.	The	level	of	 improvement	is	also	dependent	on	the	CR	bias.	In	the	winter	case	421	
study,	 the	CR	bias	 is	 larger	 than	 in	 the	summer	case	study	 leading	 to	 the	AR0	run	422	
being	 closer	 to	 the	 NR	 during	 summer	 compared	 to	 winter.	 Even	 if	 the	 error	423	
reduction	 is	 global,	we	observe	 large	errors	at	 the	CO	source	 locations	because	of	424	
remaining	 biases	 in	 emission	 inventories.	 For	 example,	 over	 Asia	 during	 July	425	
(summer),	 the	 cloud	 cover	 is	 high	 and	 hence	 the	 data	 density	 is	 too	 low	 to	 show	426	
significant	 improvement	 of	 the	 CO	 fields	 close	 to	 the	 surface.	 This	 effect	 is	 even	427	
more	 pronounced	 over	 the	 source	 regions	 that	 are	 not	 located	 in	 the	 observing	428	
domain	of	the	GEO	constellation,	e.g.	Siberian	fires	and	Canadian	fires.		429	
	 Assimilation	 of	 a	 GEO-constellation	 of	 CO	 tropospheric	 measurement	 over	430	
the	main	NH	anthropogenic	sources	allows	a	partial	hemispheric	constraint.	Section	431	
3.3	will	quantify	the	performance	of	each	satellite	instrument.		432	
	433	
3.3	Assimilation	performance	assessment	434	
	435	

To	 quantify	 the	 effect	 of	 assimilation	 of	 the	 synthetic	 GEO-constellation	436	
observations,	we	define	the	skill	score	by	the	following	metric:	437	
	438	

𝑆𝑘𝑖𝑙𝑙𝑆𝑐𝑜𝑟𝑒 = 1 −	
(𝐴𝑅 − 𝑁𝑅)"6

(𝐶𝑅 − 𝑁𝑅)"6
	439	

	440	
This	score	is	the	ratio	of	the	square	error	of	the	AR	with	respect	to	the	CR	over	time	441	
t;	we	apply	this	to	every	grid	cell	of	the	CAM-Chem	model.	If	the	skill	score	is	equal	442	
to	 1,	 then	 the	 AR	 is	 perfect	 relative	 to	 the	 NR	 (AR	 equals	 NR).	 A	 positive	 value	443	
indicates	 that	 the	 square	 error	 of	 the	 AR	 is	 reduced	 by	 the	 ratio	 (or	 percentage)	444	
given	by	the	skill	score.	 If	 the	skill	score	 is	zero,	 then	the	assimilation	provides	no	445	
changes;	negative	values	indicate	a	degradation	of	the	AR	compared	to	the	CR.	446	

Figures	 8	 and	 9	 show	 the	 skill	 scores	 for	 the	 troposphere	 (surface	 to	 200	447	
hPa)	for	each	month	for	winter	and	summer,	respectively.	We	compute	skill	scores	448	
for	the	full	constellation	assimilation	AR0,	and	for	the	single	instrument	observation	449	
experiments:	AR1,	AR2	and	AR3.	Data	assimilation	skill	scores	on	single	instrument	450	
assimilation	 (for	 AR1,	 AR2	 and	 AR3)	 demonstrate	 the	 time	 required	 for	 a	 given	451	
instrument	 assimilation	 to	 impact	 the	 model	 tropospheric	 hemispheric	 CO.	 We	452	
identify	 two	main	patterns	of	 transport	affecting	error	reduction.	The	 first	pattern	453	
involves	the	Westerlies	and	warm	conveyor	belt	processes	at	extratropical	latitudes	454	
(AR1,	AR2	and	AR3).	We	clearly	see	this	pattern	over	the	first	month	of	assimilation	455	
(January	 or	 June)	 crossing	 the	Atlantic	 Ocean,	 the	Asian	 continent	 and	 the	 Pacific	456	
Ocean	 from	 East	 to	 West.	 The	 second	 pattern	 involves	 the	 trade	 winds,	 which	457	
constrain	tropical	regions	(AR1	and	AR2	only)	as	they	move	from	East	to	West	over	458	
the	 tropical	 Pacific	 and	 the	 tropical	 Atlantic.	 Overall,	 the	 skill	 score	 shows	459	
improvement	for	every	experiment,	but	to	a	different	degree.	In	addition,	we	can	see	460	
a	degraded	skill	score	away	from	the	assimilated	regions.	This	can	be	due	to	a	bias	461	
sign	change	between	the	NR	and	the	CR.	If	the	overall	assimilation	effect	is	a	positive	462	
bias	(NR	larger	than	CR)	correction	but	a	local	negative	bias	is	occurring	(NR	lower	463	
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than	CR)	the	assimilation	run	will	show	a	degraded	skill	score	in	that	particular	case.	464	
Degraded	 skill	 scores	 are	 also	 due	 to	 coupled	 meteorology-chemistry	 processes	465	
represented	 in	 the	CAM-Chem	model.	Adjusting	 the	CO	 in	 a	 given	 region	modifies	466	
the	 tropospheric	 chemistry	 budget,	 which	 can	 alter	 radiatively	 active	 species	 or	467	
provide	 a	 feedback	 on	 cloud	 formation	 and	 hence	 modify	 the	 meteorology.	 A	468	
modified	 meteorology	 can	 then	 affect	 the	 chemistry	 and	 hence	 change	 CO.	 This	469	
feedback	 is	 more	 obvious	 over	 lower	 latitudes	 and	 summer	 because	 of	 more	470	
complex	 dynamics	 at	 lower	 latitudes	 and	 chemistry	 that	 is	 more	 active	 during	471	
summer	and	at	lower	latitudes.		472	

The	winter	fire	event	over	South	East	Asia	also	illustrates	these	two	effects.	473	
In	this	case,	the	fire	plume	is	overestimated	whereas	a	global	underestimation	(bias)	474	
of	CO	is	provided	by	the	CR.	Assimilation	of	remote	instruments	from	Asia	will	tend	475	
to	 increase	 the	 global	 CO,	 but	will	 also	 contribute	 to	 an	 increase	 in	 CO	 in	 the	 fire	476	
plume	and	hence	degrade	the	skill	scores.	In	addition,	high	fire	emissions	generate	a	477	
heavily	 polluted	 plume	 over	 the	 Pacific.	 Even	 slight	 changes	 in	 dynamics	 can	478	
generate	 large	 CO	 errors	 if	 the	 emission	 differences	 between	 the	 NR	 and	 CR	 are	479	
large,	as	it	is	the	case	between	NR	and	CR	emissions	over	Asia	in	March.	In	Figure	8	480	
during	March,	the	AR1	and	AR2	(i.e.,	GEO-AS	not	assimilated)	shows	the	signature	of	481	
transported	 errors	 from	 the	 fire	 plumes,	 where	 a	 pattern	 of	 negative	 skill	 scores	482	
follows	the	large	fire	plume	over	the	Pacific.	 In	AR0	and	AR3,	where	we	assimilate	483	
the	GEO-AS	data,	positive	values	above	0.6	replace	the	negative	skill	score	pattern.	484	
This	shows	the	importance	of	constraining	the	CO	fields	close	to	sources	to	generate	485	
improved	remote	CO	fields,	a	result	that	is	consistent	with	the	conclusion	of	Barré	et	486	
al.	(2015b)	using	real	data	from	MOPITT.	487	

Figures	8	and	9	show	large	differences	in	the	skill	score	magnitude	over	the	488	
NH.	 During	 winter,	 the	 CO	 lifetime	 is	 more	 than	 a	 factor	 of	 2	 longer	 than	 over	489	
summer	 (Shindell	 et	 al.,	 2006	 and	 Edwards	 et	 al.,	 2004)	 due	 to	 oxidant	 loading	490	
which	 is	greatest	during	the	summer	months.	CO	accumulates	more	during	winter	491	
than	during	summer,	leading	to	a	more	negative	bias	in	the	CR	(see	figures	5	and	6).	492	
The	 CR	 winter	 bias	 is	 larger	 than	 the	 CR	 summer	 bias	 even	 though	 emission	493	
differences	are	generally	smaller	during	winter	(Figure	2).	Data	assimilation	relative	494	
increments,	or	the	error	reduction	generated	by	assimilation	close	to	the	emission	495	
sources,	 then	 have	 more	 persistence	 over	 time	 during	 winter,	 and	 are	 advected	496	
throughout	the	entire	troposphere.	The	AR0	skill	scores	show	an	average	maximum	497	
around	0.7	during	February	2006	(a	month	after	starting	the	assimilation)	and	the	498	
pattern	of	improvement	with	respect	to	NR	is	relatively	homogenous	over	the	entire	499	
NH.	 During	 summer,	 July	 2006	 shows	 a	 0.7	 skill	 score	 over	 assimilated	 regions	500	
(GEO-US	and	GEO-EU),	but	the	skill	score	is	lower,	down	to	0.4,	over	remote	regions.	501	
The	reduction	in	long-range	improvement	in	the	AR0	during	summer	is	also	due	to	a	502	
lack	 of	 observational	 constraints	 over	 strong	 boreal	 fire	 sources	 that	 generate	503	
additional	error	variability	 in	the	CR	relative	to	the	NR.	By	 looking	at	 independent	504	
assimilation	 experiments	 (AR1,	 AR2,	 and	 AR3),	 the	 difference	 is	 even	 more	505	
noticeable.		506	

As	explained	 in	section	2.2,	cloud	cover	varies	 from	one	observed	region	to	507	
another,	and	depends	on	the	season.	GEO-US	and	GEO-EU	show	more	data	coverage	508	
during	summer	than	during	winter,	and	this	tendency	is	opposite	for	GEO-AS.	From	509	
the	skill	score	seasonal	tendency	described	above,	cloud	occurrence	and	hence	data	510	
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coverage	is	not	the	dominant	factor	determining	skill	scores.	During	winter,	the	CO	511	
lifetime	 is	 sufficiently	 long	 that	 less	 data	 density	 is	 sufficient	 to	 constrain	 the	512	
assimilation.	 Additionally,	 emission	 patterns	 and	 errors	 are	mostly	 anthropogenic	513	
and	have	smaller	variability	and	a	more	consistent	geographical	structure	over	time	514	
compared	to	fires.	During	summer,	the	CO	lifetime	is	shorter	and	emission	patterns	515	
are	often	more	sporadic	due	 to	 fires.	However,	during	a	given	season,	cloud	cover	516	
affects	 the	magnitude	of	 the	 skill	 score.	Over	 the	GEO-AS	 footprint,	 the	 cloud	 free	517	
ratio	is	relatively	low	during	summer	(around	20%	on	average).	This	leads	to	lower	518	
skill	 scores	 for	 the	 summer	AR3	 experiment.	 In	 general,	 patterns	 of	 improvement	519	
are	 broader	 in	 space	 and	 larger	 during	winter	 than	 summer,	 despite	 the	 reduced	520	
data	 sampling	 due	 to	 cloud	 cover	 over	 GEO-US	 and	 GEO-EU.	 During	 winter,	 the	521	
longer	CO	 lifetime	means	 that	assimilating	data	 from	a	 single	GEO	 instrument	 can	522	
provide	a	quasi-global	improvement,	which	is	not	the	case	for	summer.	523	

	524	
	525	
4.	Conclusions	and	perspectives	526	
	527	
In	 this	 second	 part	 of	 our	 study	 we	 assessed	 the	 capability	 of	 a	 potential	 GEO	528	
constellation	for	monitoring	atmospheric	composition	using	an	OSSE	with	a	focus	on	529	
measurements	 of	 CO.	 Part	 I	 of	 this	 study	 demonstrated	 that	 3	 GEO	 instruments	530	
measuring	 CO	 from	 space	 can	 be	 simulated	 realistically	 over	 three	 major	531	
anthropogenically	 active	 regions:	 CONUS,	 Western	 Europe	 and	 Eastern	 Asia.	 To	532	
perform	the	OSSE,	we	assimilated	the	synthetic	constellation	measurements	into	the	533	
CAM-Chem	model-using	 DART.	We	 first	 assessed	 differences	 between	 the	 CR	 and	534	
the	NR,	and	found	these	to	be	reasonable		based	on	global	model	biases,	emissions	535	
and	 CO	 uncertainties	 according	 to	 literature	 on	 state-of-the-art	 global	 chemistry	536	
climate	models.	We	designed	assimilation	experiments	to	assess	the	effects	of	long-537	
range	 transport,	 seasonality,	 emissions	 and	 cloud	 cover	 on	 the	 capabilities	 of	 the	538	
GEO	constellation	to	constrain	CO	concentrations.	We	designed	two	case	studies	of	539	
3-month	 assimilation:	 winter	 (January-February-March)	 and	 summer	 (June-July-540	
August).	 In	 addition	 to	 the	 control	 run	 (meteorological	data	assimilated	only)	 and	541	
the	full	constellation	assimilation	experiment	that	we	use	as	a	benchmark,	we	also	542	
performed	assimilation	experiments	for	each	instrument	independently.	In	total,	10	543	
data	assimilation	experiments	led	us	to	the	following	main	conclusions:	544	
	545	

1. Assimilation	 relative	 increments	 (posterior	 minus	 prior	 fields)	 are	 mostly	546	
located	 at	 or	 near	 the	 emission	 sources,	 and	 through	 long-range	 transport,	547	
these	 impact	 the	 entire	 NH	 troposphere.	 This	 result	 suggests	 that	 model	548	
errors	in	CO	are	largely	due	to	emissions,	which	is	consistent	with	previous	549	
data	 assimilation	 and	 modeling	 studies	 (Shindell	 et	 al.,	 2006;	 Fortems-550	
Cheiney	 et	 al.,	 2011;	 Lamarque	 et	 al.,	 2012;	 Jiang	 et	 al.,	 2013;	 Barré	 et	 al.,	551	
2015b;	 Inness	 et	 al.,	 2015;	Miyazaki	 et	 al.,	 2015;	 Tilmes	 et	 al.,	 2015).	 Each	552	
assimilated	instrument	shows	improvement	with	respect	to	the	CR	in	the	CO	553	
transport	 patterns	 over	 large-scale	 areas	 associated	with	 the	westerly	 and	554	
trade	winds	at	different	latitudes.	555	

2. The	 magnitude	 of	 the	 global	 impact	 depends	 on	 season.	 Winter	 data	556	
assimilation	 experiments	 show	better	 improvement	 in	CO	NH	distributions	557	
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than	 for	 summer.	We	 explain	 this	 as	 follows.	 First,	 the	 CO	 lifetime	 during	558	
summer	 is	 shorter	 so	 that	 data	 assimilation	 relative	 increments	 have	 less	559	
persistence	over	time	and	less	global	advection	within	the	model.	Second,	the	560	
summer	has	more	 large-scale	fires	 in	boreal	regions,	or	away	from	the	GEO	561	
constellation	 fields	of	 regard.	These	 fire	emissions	 that	are	not	captured	by	562	
the	GEO	constellation	are	important	to	the	global	CO	budget	and	variability.	563	

3. Cloud	 cover	affects	 the	quality	of	 the	assimilated	 runs	but	 this	 effect	 is	not	564	
dominant	when	comparing	summer	and	winter	simulations.	Winter	shows	a	565	
strong	 decrease	 of	 the	 cloud	 free	 ratio	 (number	 of	 cloud	 free	 scenes	 for	 a	566	
given	 pixel	 over	 a	 season)	 compared	 to	 summer	 for	 GEO-US	 and	 GEO-EU.	567	
This	 tendency	 is	 opposite	 for	 GEO-AS.	 However,	 the	 magnitude	 of	 the	568	
improvement	with	 respect	 to	 the	CR	 is	 still	 larger	during	winter	due	 to	CO	569	
lifetime,	discussed	in	point	2	above.	For	summer,	GEO-AS	provides	the	lowest	570	
skill	 scores	 because	 of	 heavy	 cloud	 cover	 due	 to	 the	 Asian	 monsoon,	 and	571	
hence	weak	constraints	from	simulated	CO	observations.	572	

	573	
This	study	assessed	the	observational	requirements	 for	CO,	a	good	 indicator	of	574	

anthropogenic,	fire	and	other	natural	emissions	that	have	a	lifetime	long	enough	to	575	
allow	transport	between	continents.	Requirements	are	 less	demanding	 in	 terms	of	576	
data	 density	 during	winter	 compared	 to	 summer,	 and	 at	wintertime	 extratropical	577	
latitudes	 compared	 to	 the	 tropics.	Over	 the	next	decade,	 instruments	will	monitor	578	
atmospheric	 composition	 from	geostationary	platforms,	 (with	 temporal	 resolution	579	
on	 the	 order	 of	minutes,	 but	with	 coverage	 restricted	 to	 specific	 areas),	 and	 from	580	
LEO	platforms	that	provide	a	global	picture	of	the	atmosphere	but	at	lower	temporal	581	
resolution	(a	revisit	rate	of	1	or	2	days).	A	next	step	of	this	study	will	be	to	assess	582	
the	 synergy	 between	 GEO	 and	 LEO	 platforms	 to	 constrain	 atmospheric	 CO	583	
composition	 and	 associated	 emissions	 from	 a	 global	 perspective.	 Assimilating	 the	584	
two	 different	 geometries	 in	 a	 single	 OSSE	 framework	 will	 provide	 a	 thorough	585	
scientific	assessment.		586	

Another	focus	for	future	work	will	be	inferring	emissions	from	GEO	observations	587	
in	 order	 to	 provide	 accurate	 chemical	 forecasts	 near	 the	 surface.	We	will	 use	 the	588	
OSSE	 framework	as	presented	here	 to	assess	 the	best	method	 for	emission	source	589	
inversion	using	the	ensemble	Kalman	filter	(EnKF)	technique.	This	will	help	define	590	
measurement	requirements	depending	on	emission	types	and	their	variability	(e.g.,	591	
anthropogenic	 emissions	 versus	 biomass	 burning).	 We	 will	 also	 investigate	 a	592	
combined	CO	and	aerosol	optical	depth	(AOD)	assimilation	with	source	inversion	of	593	
carbonated	aerosol	species	(black	carbon	and	organic	carbon).	594	
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	762	
	763	

Figure	1.	Plots	of	the	Nature	Run	(NR)	and	the	Control	Run	(CR)	January-764	
February-March	(JFM)	a)	and	c),	respectively,	and	June-July-August	(JJA)	b)	765	
and	d),	respectively.	We	convert	mean	values	of	Surface-200hPa	tropospheric	766	
CO	column	into	a	pseudo	volume	mixing	ratio.	Red	and	blue	colors	refer	to	767	

relatively	high	and	low	values,	respectively.	Bottom	panels	show	the	768	
correlation	coefficient	R	between	the	NR	and	CR	for	JFM	(e)	and	JJA	(f),	769	

respectively.	770	



	

	 19	

	771	
Figure	2.	Monthly	emission	estimated	budgets	derived	from	emission	772	

inventories	for	winter	(top	panel)	and	summer	(bottom	panel)	2006	for	GEOS-773	
5	(red)	and	CAM-Chem	(blue)	in	Teragrams	(Tg)	of	CO	per	month.	Dark	colors	774	

indicate	the	biomass-burning	fraction	of	the	emission	budgets.	775	
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	776	
Figure	3.	Cloud	free	ratio	in	%	for	the	three	geostationary	instruments	for	the	777	
winter	(left)	and	summer	(right)	seasons.	Top	panels	(a	and	b)	refer	to	the	778	

CONUS;	middle	panels	(c	and	d)	refer	to	Europe;	bottom	panels	(e	and	f)	refer	779	
to	Eastern	Asia.	Red/purple	and	blue	colors	refer	to	relatively	high	and	low	780	

values,	respectively.	781	
	782	
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	783	
	784	

Figure	4.	RMS	of	relative	increments	in	%	(posterior	state	minus	prior	state	785	
divided	by	the	prior	state)	between	the	surface	to	200	hPa	during	January,	786	
February	and	March	2006	(top	to	bottom,	left)	and	during	June,	July,	August	787	
2006	(top	to	bottom,	right).	Red	and	blue	colors	refer	to	relatively	high	and	788	

low	values,	respectively.	789	
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	790	
	791	

	792	
Figure	5.		Average	differences	in	the	tropospheric	(surface	to	200	hPa)	CO	793	
fields	between	the	control	run	(CR)	and	the	nature	run	(NR)	on	the	left	hand	794	
side	and	average	differences	between	full	constellation	assimilated	CO	(AR0)	795	
and	the	nature	run	(NR)	on	the	right	hand	side	during	January,	February	and	796	

March	(top	to	bottom)	2006.	Units	are	ppbv.	797	
	798	
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	799	
Figure	6.	Same	as	Fig.	5	but	for	June,	July	and	August	2006.	800	



	

	 24	

	801	
Figure	7.	Average	differences	in	the	lower	tropospheric	(surface	to	800	hPa)	802	
CO	fields	between	the	control	run	(CR)	and	the	nature	run	(NR)	on	the	left	803	
hand	side	and	average	differences	between	full	constellation	assimilated	CO	804	
(AR0)	and	the	nature	run	(NR)	on	the	right	hand	side	during	February	and	July	805	

(top	and	bottom,	respectively)	2006.	Units	are	ppbv.	806	
	807	
	808	

	809	
	810	
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	811	
Figure	8.	Assimilation	skill	scores	(see	text	for	details)	for	the	full	812	

constellation	assimilation	(AR0,	first	row),	GEO-US	assimilated	only	(AR1,	813	
second	row),	GEO-EU	assimilated	only	(AR2,	third	row)	and	GEO-AS	814	

assimilated	only	(AR3,	fourth	row).	Surface	to	200hPa	and	monthly	statistics	815	
are	performed	during	winter:	January	(first	column),	February	(second	816	

column)	and	March	(third	column)	2006.	Red	and	blue	colors	refer	to	positive	817	
and	negative	skill	scores,	respectively.	818	

	819	
	820	
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	821	

	822	
Figure	9.		Same	as	Figure	8.	but	for	summer:	June	(first	columns),	July	(second	823	

column)	and	August	(third	column)	2006.	824	
	825	

	826	
 827	


