
 1 

Seasonal monitoring and estimation of regional aerosol 1 

distribution over Po Valley, northern Italy, using high-2 

resolution MAIAC product 3 

Barbara Arvani1, R. Bradley Pierce2, Alexei I. Lyapustin3, Yujie Wang4, Grazia 4 

Ghermandi1 and Sergio Teggi1 5 

[1]{Dipartimento di Ingegneria Enzo Ferrari, Università di Modena e Reggio Emilia, via P. 6 

Vivarelli 10, 41125 Modena, Italy} 7 

[2]{NOAA/NESDIS Advanced Satellite Products Branch, 1225 W. Dayton Street, Madison, 8 

WI 53706, USA} 9 

[3]{NASA Goddard Space Flight Center, code 613, Greenbelt, Maryland 20771 USA} 10 

[4]{University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD, USA} 11 

Correspondence to: B. Arvani (barbara.arvani@unimore.it) 12 

 13 

Abstract 14 

In this work,  the new 1-km-resolved Multi-Angle Implementation of Atmospheric Correction 15 

(MAIAC) algorithm is employed to characterize seasonal AOD-PM10 correlations over 16 

northern Italy. The accuracy of the new dataset is assessed versus the widely used Moderate 17 

Resolution Imaging Spectroradiometer (MODIS) Collection 5.1 Aerosol Optical Depth (AOD) 18 

data, retrieved at 0.55 µm with spatial resolution of 10 km (MYD04). We focused on evaluating 19 

the ability of these two products to characterize both temporal and spatial distributions of 20 

aerosols within urban and suburban areas. Ground PM10 measurements were obtained from 73 21 

of the Italian Regional Agency for Environmental Protection (ARPA) monitoring stations, 22 

spread across northern Italy, for a three-year period from 2010 to 2012.  The Po Valley area 23 

(northern Italy) was chosen as the study domain because of severe urban air pollution, resulting 24 

from  the highest population and industrial manufacturing density in the country, being located 25 

in a valley where two surrounding mountain chains favor the stagnation of pollutants. We found 26 

that the global correlations between PM10 and AOD are R2 = 0.83 and R2 = 0.44 for MYD04_L2 27 

and for MAIAC, respectively, suggesting for a greater sensitiveness of the high-resolution 28 

product to small-scale deviations. However, the introduction of Relative Humidity (RH) and 29 
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Planetary Boundary Layer (PBL) depth corrections gave a significant improvement to the PM 1 

– AOD correlation, which led to similar performance: R2 = 0.96 for MODIS and R2 = 0.95 for 2 

MAIAC. Furthermore, the introduction of the PBL information in the corrected AOD values 3 

was found to be crucial in order to capture the clear seasonal cycle shown by measured PM10 4 

values. The study allowed us to define four seasonal linear correlations that estimate PM10 5 

concentrations satisfactorily from the remotely sensed MAIAC AOD retrieval. Overall, the 6 

results show that the high resolution provided by MAIAC retrieval data is much more relevant 7 

than 10km MODIS data to characterize PM10 in this region of Italy which has a pretty limited 8 

geographical domain, but a broad variety of land usages and consequent particulate 9 

concentrations. 10 

 11 

1 Introduction 12 

Particulate matter (PM), also defined as atmospheric aerosol, is one of the major pollutants 13 

studied and monitored since it affects air quality in urban and rural areas worldwide. PM is the 14 

general term used to define a complex mixture of solid and liquid particles. These particles vary 15 

in size and composition, and remain suspended in the air for different periods of time. The 16 

sources of the atmospheric aerosols include both natural activity, such as fire, sea salt, volcanic 17 

eruptions and windblown dust, and anthropogenic activity, such as combustion, traffic and 18 

industrial emissions. PM with aerodynamic diameter of 10µm or less (PM10) leads to serious 19 

human health effects. They can be inhaled into the respiratory system and so cause respiratory 20 

lung diseases and even premature death (Pope et al., 2004, Forastiere et al., 2005, Brunekreef 21 

and Forsberg, 2005). At local scale, urban pollution plays a significant role on issues related to 22 

health due to high urban population densities. Prior to the twentieth century, most urban air 23 

pollution problems arose from the burning of wood, cool and other raw materials without any 24 

emission controls. Such burning resulted in significant increases in health issues related to 25 

urban pollution (Jacobson, 2012).  26 

The Po Valley, in the northern part of Italy, is the area with the most severe air pollution 27 

problems in the country and Europe as it is the largest industrial, trading and agricultural area 28 

with a high population density (Mélin and Zibordi, 2005, Bigi et al., 2012, Bigi and Ghermandi, 29 

2014, Putaud et al., 2014). The pollution problems that affect the Po Valley are not only related 30 

to the presence of highly urbanized and industrial centers. In fact, the presence of the Alpine 31 

mountain chain at the North and West sides of the valley, and the Apennines to the South, act 32 
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as a barrier to winds blowing from Northern Europe and the Mediterranean, favoring stagnation 1 

conditions and accumulation of pollutants (Putaud et al., 2004, Mazzola et al., 2010, Putaud et 2 

al., 2010). Because of this, monitoring in this area requires data with high spatial resolution to 3 

better characterize the spatial variability of pollution within the Po Valley. 4 

Due to health problems associated with urban air pollution, many environmental protection 5 

agencies have been developing capabilities for continuous monitoring and assessment of air 6 

pollution from ground-based stations and for improving sampling techniques. These ground-7 

based measurements are necessary to guide studies of possible ways to reduce the air pollution 8 

problems. Yet, ground-based observations represent point measurements and do not have the 9 

necessary coverage to characterize the regional distribution of aerosols in the atmosphere. 10 

Moreover, the PM ground-based stations only provide information at the surface. The 11 

development of satellite remote sensing aerosol products since the launch of the Moderate 12 

resolution Imaging Spectroradiometer (MODIS) onboard the NASA Terra and Aqua satellites 13 

has permitted the exploration of new research techniques for monitoring global air quality 14 

(Gupta et al., 2006, Fishman et al., 2008). This alternative approach for air quality monitoring 15 

provides air quality data where the ground-based measurements are not available. The potential 16 

for using space-based sensors for the air quality monitoring was demonstrated using Aerosol 17 

Optical Depth (AOD) data in combination with the PM ground-based stations, as the literature 18 

suggest (Chu et al., 2003, Wang and Christopher, 2003). The use of MODIS aerosol products 19 

to investigate air pollution was demonstrated both in research fields (van Donkelaar et al., 2006, 20 

Gupta and Christopher, 2008b, Tian and Chen, 2010) and for operational applications (Al-Saadi 21 

et al., 2005). But, satellite AOD quantifies the presence of aerosols in an atmospheric column, 22 

while the surface PM mass concentration is needed for the assessment of air quality health 23 

impacts: it is not obvious what the relationship between these two quantities is for a particular 24 

region. Hoff and Christopher (2009) provide a detailed review of the literature on how satellite 25 

remote sensing provides an alternative way to monitor surface PM mass concentrations. As 26 

they point out, correlations between ground measurements and optical thickness are actively 27 

used and investigated.  28 

In previous works, the Po Valley domain was studied, where the air quality monitoring from 29 

satellite measurements was applied (Di Nicolantonio et al., 2007, Di Nicolantonio et al., 2009, 30 

Barnaba et al., 2010). These studies pointed to the use of satellite remote sensing observations 31 

for monitoring the air pollution over industrialized and urban areas, such as the Po Valley. 32 
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However, their correlation is often not high enough for AOD retrievals to be operationally 1 

incorporated in air quality monitoring procedures. The MODIS standard aerosol product spatial 2 

resolution is appropriate for application on regional to global scale. However, its nominal 3 

resolution at nadir (10 km) may be too coarse to resolve urban scale processes. Therefore, 4 

alternative aerosol retrieval algorithms have been developed using the MODIS data in order to 5 

produce a finer high-spatial resolution product. The MODIS NASA research team recently 6 

released a new MODIS product: MODIS Collection 6, which includes a global aerosol product 7 

at nominal 3 km, in addition to the standard MYD04 at 10 km (Remer et al., 2013, Munchak et 8 

al., 2013, Livingston et al., 2014). Recently, the Multi-Angle Implementation of Atmospheric 9 

Correction (MAIAC) algorithm was developed for MODIS (Lyapustin et al., 2011a, Lyapustin 10 

et al., 2011b, Lyapustin et al., 2011c, Lyapustin et al., 2012). The MAIAC algorithm performs 11 

a simultaneous retrieval of surface Bidirectional Reflection Distribution Function (BRDF) and 12 

aerosol properties at a resolution of 1 km, and represents an interesting alternative for 13 

characterizing spatial variability of aerosol within polluted and industrial urban areas (Emili et 14 

al., 2011, Chudnovsky et al., 2013a, Chudnovsky et al., 2013b, Hu et al., 2014).  Due to the 15 

availability of high-spatial resolution products, recently, a series of studies have demonstrated 16 

how the satellite remote sensing products can provide a potentially cost effective way to predict 17 

PM (PM10 and PM2.5) concentrations by using AOD in areas where ground monitoring is either 18 

not available or too sparse (Chudnovsky et al., 2014, Hu et al., 2014a, Hu et al., 2014b, Kloog 19 

et al., 2014, Kloog et al., 2015, Just et al., 2015). 20 

In the current study, we extend the preliminary analysis of Arvani et al. (2013b) by using the 21 

MAIAC 1 km resolution retrievals to analyze the relationship between PM10 mass concentration 22 

and remotely sensed AOD within the Po Valley, for an extended period of three years, from 23 

2010 to 2012. We started with a direct comparison between both MYD04_L2 and MAIAC 24 

AOD retrievals and the surface PM10 measurements. Then, with the introduction of additional 25 

meteorological information, as the role of the planetary boundary layer and relative humidity, 26 

we analyzed the seasonal temporal and spatial variability of PM10 compared to AOD, for the 27 

same days and locations. Finally, starting from a monthly sweep of linear correlation 28 

coefficients, carried out on the 36 months where both datasets were available, we defined four 29 

unique correlations to estimate the PM10 concentrations on a seasonal level. The coefficients 30 

were obtained for both the coarse 10 km MYD04 and the finer high spatial resolution 1 km 31 

MAIAC satellite products.  32 
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2 Data and methods 1 

2.1 Region of interest 2 

The region of interest, Po Valley in northern Italy, shown in Fig. 1, covers an area of 3 

approximately 40° - 50° N and 5° - 15° E.  In this paper, we considered three of its 4 

administrative regions, west to east: Piemonte, Lombardia and Emilia Romagna. Piemonte is 5 

characterized by major urban centers and is heavily industrialized. Most of the Italian Regional 6 

Agency for Environmental Protection (ARPA) network stations within the Piemonte region is 7 

located near the Alps. Lombardia is the most populated region, and it has the highest density of 8 

industrial sites. The Emilia Romagna region, similar to Piemonte, is characterized by major 9 

urban centers. Some of the ARPA sites within this region are located close to the Apennine 10 

mountain chain to the south, and near the coast of the Adriatic Sea to the east.  11 

2.2 Ground-level mass concentration 12 

Twenty-four hour averaged PM10 mass concentrations in µgm-3, were obtained for 73 air quality 13 

monitoring ground-based stations within the ARPA network over a time span of 3 years, from 14 

2010 to 2012: Piemonte (18 stations), Lombardia (19 stations), Emilia Romagna (36 stations). 15 

The spatial distribution of the ground-based stations almost uniformly covers most of the valley, 16 

as highlighted in Fig. 1.  Each regional ARPA network has a unique set of measurements, 17 

carried out with different hardware and according to different daily averaging rules, thus 18 

leading to regionally different uncertainties. This non-uniformity may affect the correlations. 19 

In particular, in ARPA Piemonte PM10 is measured using a Beta Attenuation Monitor (BAM) 20 

with an accuracy of 2%. In ARPA Lombardia TEOM, TEOM-FDMS (Tapered Element 21 

Oscillating Micro-balance - Filter Dynamics Measurement System), or BAM are used, with an 22 

accuracy of ±2.5 µgm-3. In ARPA Emilia Romagna, PM10 data have been collected by the beta 23 

attenuator SWAM 5A RL by FAI Instruments with an uncertainty lower than ±10%. All 24 

information related to the ARPA's stations and instrumentation are available at the ARPA web 25 

sites of their respective regions, mentioned above. Yet all the instruments used are equivalent 26 

to the gravimetric technique, inserted within the framework of the EC Directive on ambient air 27 

quality and cleaner air for Europe (2008/50/EC).  28 
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2.3 Remotely sensed data 1 

In the present work, we compare plain, standard MODIS Aqua Collection 5.1 (MYD04) aerosol 2 

product data with a first application of the high-resolution MAIAC algorithm over the Po valley. 3 

MYD04 data have a nominal spatial resolution of 10 km at nadir, which increases by roughly 4 

four-fold at the edges of the swath. The MODIS AOD algorithm uses multispectral observed 5 

radiance and pre-computed look-up tables to retrieve AOD over ocean and land (Remer et al., 6 

2005, Remer et al., 2009).  The recently developed MAIAC aerosol retrieval algorithm 7 

(Lyapustin et al., 2011a, Lyapustin et al., 2011b) employs MODIS Aqua Land retrieval data 8 

and is thus provided over the land only. AOD is retrieved at a finer spatial resolution (1 km), 9 

making simultaneous use of BRDF parameters. This is accomplished by using the time series 10 

of MODIS measurements and simultaneous processing of groups of pixels. The MAIAC 11 

algorithm guarantees that the number of measurements exceeds the number of unknowns, a 12 

necessary condition for solving an inverse problem without empirical assumptions, which are 13 

commonly used in current operational algorithms. The MAIAC time series approach also 14 

provides coverage at multiple (15) view angles for every surface grid cell, which is required for 15 

the BRDF retrievals from MODIS data. Moreover, MAIAC incorporates a Cloud Mask (CM) 16 

algorithm based on spatio-temporal analysis, which augments traditional pixel-level cloud 17 

detection techniques (Lyapustin et al., 2008). Fig. 2 shows three example days of MYD04 18 

compared to MAIAC AOD retrieval, one day per each year of analysis (from 2010 to 2012). 19 

Since the study domain of the Po Valley has limited geographical extents, assessing 1 km 20 

MAIAC AOD retrievals which can achieve much greater detail than the standard MODIS 21 

product is extremely promising for future applications of the satellite measurements as part of 22 

predictive tools. The 10 km resolution of MODIS AOD does not allow local details of the AOD 23 

field to be detected. On the contrary, 1 km AOD retrievals allow areas of intense air pollution 24 

to be detected on the urban scale, such as Fig. 2 shows for June 5th, 2010 and March 16th, 2012. 25 

Furthermore, the high spatial resolution MAIAC retrieval often provides data where MODIS 26 

has reduced data coverage; for instance, the east coast of the Po Valley (marshland area), on 27 

April 19th, 2011. This is allowed by the time-series-based analysis and angle-based interpolation 28 

the MAIAC algorithm incorporates. A good review of this phenomenon is thoroughly explained 29 

in Emili et al., 2011, where five different days over the Alpine chain are considered and 30 

compared.  31 
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The MODIS Collection 5.1 retrieval has already been cloud filtered and is used without 1 

additional quality control. On the contrary, the new aerosol retrieval algorithm MAIAC 2 

includes masks of cloud and terrain, incorporated into the AOD Quality Assurance (QA) 3 

parameter definition. The MAIAC Cloud Mask (CM) and the Land-Water-Snow (LWS) mask 4 

fields have been considered during the MAIAC run in order to avoid pixels where clouds, water 5 

or snow are detected. As a matter of fact, one of the fundamental limitations of satellite data is 6 

the unavailability of air pollution observations both when clouds obstruct the satellite sensors 7 

field of view and over domains with high reflectivity surfaces such as urban areas or when snow 8 

and ice conditions predominate (Gupta and Christopher, 2008b, Emili et al., 2011). In Fig. 2, 9 

March 16th 2012, lack of AOD retrieval close to the important industrialized centers of Milan 10 

and Turin appears to be due to an intense pollution haze, which causes a total backscattering 11 

(gas and aerosol scattering) of the radiance to the sensor and seems to be misinterpreted as a 12 

cloud.  13 

2.4 Meteorological data 14 

The vertical span of the aerosol distribution defines the most relevant weighting parameter for 15 

the AOD datum. This was introduced by considering Planetary Boundary Layer (PBL) depth 16 

information. Relative Humidity (RH) was also introduced as a correction to dried PM10 mass 17 

concentration measurements. These parameters were obtained from 6 hourly analysis files from 18 

the NOAA National Center for Environmental Prediction (NCEP) Global Data Assimilation 19 

System (GDAS), downloaded from nomads.ncdc.noaa.gov, with a spatial grid resolution of 20 

0.5°x0.5°. For each day, four analysis files are available, one per each synoptic hour (00, 06, 21 

12 and 18 UTC). Therefore, 6 hourly meteorological files were interpolated on a  time basis to 22 

the time of satellite overpass over the Po Valley domain. The PBL height is diagnostically 23 

determined and uses the bulk-Richardson (Troen and Mahrt, 1986) approach to iteratively 24 

estimate a PBL depth starting from the ground upward (Hong and Pan, 1996). Relative 25 

humidity in the GFS is computed according to the standard NCEP procedure: 26 

• at T < -20 C, w.r.t. ice 27 

• at T > 0 C, w.r.t. water 28 

• -20 < T < 0, mix phased. 29 
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2.5 Spatial co-location of satellite data and ground measurements 1 

The MODIS Collection 5.1 aerosol product, MAIAC retrievals and surface PM10 were co-2 

located in space for the period from 2010 to 2012, for each ARPA station considered in the 3 

study domain. The spatial co-location of MODIS and MAIAC pixels with PM10 ground-based 4 

stations was accomplished using the average approach as suggested in Gupta et al. (2006) with 5 

a tolerance radius equal to 0.20° (about 20 - 25 km at the latitude of the Po Valley) for 6 

MYD04_L2 product, and 0.02° (about 2 - 2.5 km at the latitude of the Po Valley) for MAIAC, 7 

using the same scale factor as their spatial resolutions. To determine the coincidences, we 8 

considered that if there is at least one missing pixel within the tolerance area we set the mean 9 

AOD value equal to a missing data. This is a conservative approach since it automatically 10 

excludes all the retrievals in the neighborhood of pixels identified by the terrain and cloud 11 

masks within a fixed tolerance area. We find that the impact of neighboring missing values is 12 

less of an issue for the standard MODIS retrieval, possibly due to a more conservative cloud 13 

mask (Arvani et al., 2015). 14 

2.6 Normalization of the AOD parameter 15 

PM10 and AOD represent two different measurements of the atmospheric loading of aerosols. 16 

The PM10 is a dry mass concentration (µg/m3), measured mostly ground level, at a specific 17 

geographic location. On the other hand, satellite AOD represents total column aerosol loading 18 

averaged over a specific spatial area (unitless) and it depends on the environmental conditions. 19 

As suggested by the literature, the PM - AOD correlation may be improved by considering 20 

meteorological information such as the role of the Relative Humidity (RH) (Li et al., 2005, 21 

Wang and Martin, 2007, Altaratz et al., 2013), or vertical distribution of aerosols (Gupta et al., 22 

2006, Wang and Martin, 2007, Tsai et al., 2011). In this work, both the variations in the vertical 23 

distribution of aerosols and the role of the hygroscopic information are considered. For the first, 24 

the information on the Planetary Boundary Layer (PBL) depth is introduced. The use of PBL 25 

depth as parameter to improve the correlation between surface PM and satellite AOD 26 

measurements has utilized both as measurements (Boyouk et al., 2010, Barnaba et al., 2010, 27 

Tsai et al., 2011, Chu et al., 2013), and as model simulations (Gupta and Christopher, 2009, 28 

Emili et al., 2010), and is still widely used at present, such as in Chu et al., 2015, where vertical 29 

and horizontal distribution of aerosols over Baltimore - Washington Corridor are studied. 30 



 9 

The Aerosol Optical Depth is defined as a vertical integral of aerosol extinction, from the 1 

surface to the top of the atmosphere (TOA):  2 

𝐴𝐴𝐴𝐴𝐴𝐴 =  ∫ 𝜎𝜎0.55 𝜇𝜇𝜇𝜇
𝑒𝑒𝑒𝑒𝑒𝑒  (𝑧𝑧)𝑑𝑑𝑧𝑧𝑇𝑇𝑇𝑇𝑇𝑇

0                (1) 3 

In Tsai et al., 2011, two types of aerosol vertical distributions are considered. The first assumes 4 

that the aerosols are well-mixed and confined in the PBL; the second one is characterized by 5 

two layers of aerosols, the first layer where the aerosols are well-mixed and a second layer with 6 

an exponential decay of aerosol extinction coefficient with height above the top of the first 7 

layer. The first type of vertical distribution is assumed in the current study. Mathematically this 8 

can be expressed as follows:  9 

𝐴𝐴𝐴𝐴𝐴𝐴∗ = 𝜎𝜎0.55 𝜇𝜇𝜇𝜇
𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍 ∗ 𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍   (2) 10 

where ZPBL represent the height of the PBL, schematically represented in Fig. 3. Under the 11 

hypothesis that most of the aerosols are confined and mixed homogeneously within the PBL, 12 

the values of AOD normalized by PBL height may be regarded as mean PBL extinction in km-13 
1 (𝜎𝜎0.55 𝜇𝜇𝜇𝜇

𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍 ). It may be more representative of the surface PM10 concentration since variations 14 

in the depth of the PBL are accounted for. In this work, the normalization was applied both for 15 

MYD04 and MAIAC AOD retrievals.  16 

In Fig. 4 panel (a) the monthly trend of PBL height is reported, for the entire period (2010-17 

2012) and locations over the Po Valley domain. The box and whisker box graph was realized 18 

considering all the equal months in the period (3 years). The highest mean and median values 19 

were obtained during the summer, with the highest dispersion of data evaluated in terms of the 20 

different between the 10th and 90th percentiles, with a maximum for the month of July.  On the 21 

contrary, the lowest mean and median values were obtained during the winter, with the lowest 22 

dispersion of data, with a minimum for the month of December. The statistical parameters 23 

obtained for the four seasons are shown in Fig. 5 panel (a). The highest mean and median values 24 

were obtained in summer (June, July, August), and the lowest in winter (December, January, 25 

February), which also presents the most limited dispersion features in contrary to the summer 26 

season. In spring (March, April, May) pretty high values were obtained, with a significant 27 

dispersion of data. In fall (September, October, November), instead, pretty low values were 28 

obtained, but slightly higher than the winter ones. It is important to mention that such seasonal 29 

changes were found under a complex and complete climatology study developed in Seidel et 30 

al. (2012) work. The paper states that, as a cross climatology overview, daytime values over 31 
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Europe occasionally reach 2 km in summer, and during spring and summer the PBL heights are 1 

higher than fall and winter. This confirms that the seasonal variations described above 2 

characterize the mixed layer values over the Po Valley domain. 3 

2.7 Relative humidity correction 4 

While the remotely sensed AOD value is the columnar aerosol abundance in ambient 5 

environment, the mass concentration of PM is a dry measure at a fixed RH. Therefore, as the 6 

literature suggests, introducing hygroscopic information on measured ground PM mass 7 

concentrations by means of a scaling function may be relevant. 8 

Hence, we chose the relationship by Tsai et al. (2011), which was successfully applied to rather 9 

moist environments. This function expresses an aerosol growth factor f(RH) due to relative 10 

humidity as 11 

𝑓𝑓(𝑅𝑅𝑅𝑅) = 1

�1−𝑅𝑅𝑅𝑅
100�

 ,                                   (3) 12 

where RH is the relative humidity value expressed in percentage.  13 

In Fig. 4 panel (b) the monthly mean trend of RH for the Po Valley is reported. The highest 14 

mean and median values were seen during September, with a mean relative humidity of 35% 15 

and the highest dispersion of data evaluated in terms of the different between the 10th and 90th 16 

percentiles for the months of October and November leading to the formation of typical humid 17 

morning and occurrence of mild to heavy fog. The seasonal trend of relative humidity is shown 18 

in Fig. 5 panel (b). The highest mean and median values were obtained during the fall, and in 19 

summer. However, while dispersion is maximum during the fall, it is minimum in the summer. 20 

The lowest mean and median values were obtained during the winter.  21 

In the section below, we consider the simple expression defined in (3) to test how the RH affects 22 

the PM10 – AOD correlation, AOD being normalized by PBL depth. 23 

3 Results and discussion 24 

3.1 PM10 vs. AOD correlation: binned scatter plot analysis 25 

First of all, a direct comparison between daily PM10 mass concentrations and remotely sensed 26 

AOD values with no meteorological corrections was done. A non-corrected linear correlation 27 
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was obtained from both MYD04 and MAIAC, at all ground stations and for the whole 2010 to 1 

2012 period.  2 

Because of the evidently large spread of AOD and PM values (not reported in this paper, but 3 

shown in Arvani et al., 2013a for a limited period of time and domain of analysis), and not 4 

promising values of R2 (see Table 1), we divided the AOD into 20 bins of 0.05 intervals for the 5 

range [0-1], and we compared them with the mean PM10 within each bin. So, the final PM-6 

AOD correlation value is determined by using the average value of PM in each AOD bin. This 7 

set of twenty points is reported on the scatter plot as black dots in Fig. 6, panels (a). The solid 8 

red line shows the linear regression line for these two data sets. White dots refer to median 9 

values of AOD at fixed value of PM10. Gray symbols represent the 25th and 75th percentile (first 10 

and third quartiles) respectively in PM10 for a particular AOD bin. N, on the top of each plot, 11 

represents the number of coincidence calculated from the full scatter plots, before binning, 12 

where by coincidence we mean a (station, date) case where both PM measurement and the AOD 13 

value are available. This simple statistical approach gives a robust estimate of the linear 14 

regression between the PM10 and satellite data (Gupta et al., 2006). Using this regression 15 

relation, obtained from the bin-averaged PM10 and AOD correlation, surface PM10 mass 16 

concentration can be quantified when the remotely sensed AOD is available and an estimate of 17 

the air quality index could be obtained. The correlation between bin-averaged AOD and PM10 18 

concentration is highest for MYD04, with R2 = 0.83. The higher resolution MAIAC retrieval 19 

algorithm has a significantly lower R2 of 0.44. Looking at the result in Fig. 6 lower panels (a) 20 

this worst result may be due to the last bins, especially the last two ones that have values of 21 

mean, median and 75th percentile completely out of range. A possible explanation of this would 22 

be correlated to the fact that we are looking to maximum edge of the possible values of AOD, 23 

therefore fewer values available for solid statistics. In agreement of this, both MYD04 and 24 

MAIAC correlation show a strange behavior for the last six bins, for the range [0.8-1].   25 

As mentioned in the previous subsection, the PM10 – AOD correlation is not enough to estimate 26 

a mass concentration value from a remotely sensed measured. Therefore, the introduction of 27 

meteorological variables is necessary. Firstly, we introduced the PBL depth values, for the same 28 

period and locations of analysis. This leaded to consider the AOD/ZPBL vs. PM10 correlation, 29 

and we used the same procedure describe above. The results are summarized in Fig. 6, panels 30 

(b), for both MYD04_L2 and MAIAC retrievals. They show a significant improvements after 31 

the normalization, with an R2 of 0.96 and 0.95 for MYD04_L2 and MAIAC, respectively. This 32 
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indicates that the introduction of well-mixed PBL information is mandatory for both remotely 1 

sensed measurements. Secondly, we introduced the RH correction on the mass concentration 2 

measurements. However, it did not produce improvements in the correlations, as reported in 3 

Fig. 6 panels (c). 4 

This analysis suggested that the introduction of the hygroscopic factor on the PM mass 5 

concentration measurements seems produce a much less significant improvement in the PM – 6 

AOD correlation, and could hence be discarded for the current study, while the introduction of 7 

vertical distribution information cannot be avoided as it leads to a huge improvement.  8 

3.2 Temporal trends of AOD and PM10 mass concentration 9 

As second step of our study, we introduced time-series analysis to quantitatively examine the 10 

temporal trends of PM10 levels, as well as their AOD correlations.  11 

In Fig. 7 upper panels, the monthly trend of the PM10 (a), the MODIS (b) and MAIAC (c) AOD 12 

are reported respectively, for the entire period (2010-2012) and locations over the Po Valley. 13 

PM10 and AOD monthly trends have opposite behavior for both retrievals. The PM10 monthly 14 

mean trend over a year is characterized by low mean and median values as well as limited 15 

dispersion during the summer months, and high mean and median values - with large dispersion 16 

- during the winter period. This is summarized by the corresponding seasonal statistics reported 17 

in Fig. 8 upper panel (a), which have been derived from the same data set for all locations and 18 

dates. During the spring and fall seasons, intermediate values smoothly follow the summer vs. 19 

winter behavior, the fall values being slightly higher than the spring ones.  20 

On the other hand, the AOD monthly mean trends of Fig. 7, upper panels (b) and (c), for 21 

MYD04_L2 and MAIAC products, respectively, are characterized by high mean and median 22 

values with significant dispersion during the spring/summer period and low mean and median 23 

values with limited dispersion during the winter. Both retrievals show similar monthly trends, 24 

as also enforced by the seasonal statistics of Fig. 8 upper panels (b) and (c). The fact that 25 

seasonal statistics for both retrieval methods tend to converge to the same values suggests that 26 

MAIAC produces a reliable higher-resolution prediction, which fits the same averaged data as 27 

the coarser product. Seasonal high values of PM during the fall and winter can be partly related 28 

to the meteorological conditions that characterize the Po Valley. During these periods, in fact, 29 

events of strong temperature inversion, which favor the buildup of near-ground pollutants and 30 

lead to the formation of fog events, are frequent. When the pollutants are trapped within the 31 
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stable layer, they may stay with a residence time of the order of hours. Furthermore, intense 1 

human activities which characterize the area, with the largest presence of agriculture and 2 

industry levels of activities in Italy (Fuzzi et al., 1992, Di Nicolantonio et al., 2009, Mazzola et 3 

al., 2010), should also be regarded as responsible for this phenomenon. As far as the AOD trend 4 

is concerned, instead, high values of AOD (detected both by MODIS and MAIAC monthly 5 

mean trends) during the spring/summer period appear to be correlated in part to meteorological 6 

factors, like desert dust intrusions from northern Africa, transport of fire particles at the low 7 

latitude, and anthropogenic factors, like a long-range transport of aerosol produced by human 8 

activities from Central Europe (Mazzola et al., 2010). Yet, the limited dispersion of data 9 

recorded during the fall/winter period, which has a minimum in December, is correlated to often 10 

prohibitive conditions for the satellite to remotely sense the columnar abundance over the 11 

domain, due to intense and frequent formation of a layer of clouds, presence of snow or intense 12 

haze over the urban areas with high reflectivity (Gupta and Christopher, 2008a). In Table 2 the 13 

total number of dataset points, both for PM10 and AOD measurements, are reported. 14 

Considering all 73 locations and the whole 2010-2012 period (1096 days), the largest possible 15 

dataset would contain 80.008 measurements. While PM10 measurements are available for most 16 

days and locations (no data being provided only when instrumentation issues at the ground-17 

based stations happened), the remotely sensed AOD values are only available at the 32% and 18 

28% of the cases, for MYD04_L2 and MAIAC respectively.  19 

In the lower row of Figure 7, panels (a), (b) and (c), instead, the monthly trend of PM10 mass 20 

concentration is corrected by the RH function of Eqn. (3), and the MODIS and MAIAC AOD 21 

values are both normalized by the PBL depth. In agreement to what verified in Section 3.1, the 22 

introduction of the hygroscopic factor, may not produce a significant alteration, but it appears 23 

to noticeably reduce data dispersion during the winter season. The seasonal statistics are again 24 

shown in Fig. 8, lower panel (a) confirm what observed above. On the other hand, the 25 

normalization of AOD by PBL depth produces significant changes in both the MODIS and 26 

MAIAC AOD trends. AOD/ZPBL monthly trends are now characterized by an opposite 27 

behavior than non-normalized AOD: low mean and median values, with limited dispersion, are 28 

seen during the summer months, and high mean and median values during the winter, with 29 

more intense dispersion. Seasonal statistics for AOD/ZPBL in Fig. 8 lower panels (b) and (c), 30 

for both retrievals, now show trends clearly mimic the behavior of RH-corrected measured 31 

PM10. This significant improvement on the AOD side is caused by the PBL height – whose 32 
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monthly mean trend is presented in Section 2.6 - which reaches the highest value during the 1 

spring/summer period.  2 

3.3 Spatial trends of AOD and PM10 mass concentration 3 

Fig. 9 upper panel (a) shows the mean spatial distribution of ground PM10 measurements from 4 

ARPA sites, compared with the mean spatial distribution of AOD values for both MODIS and 5 

MAIAC retrievals (upper panels (b) and (c)), across all years (2010-2012) and locations. 6 

MAIAC AOD seems to replicate the major spatial pattern of ground measurements of PM10 in 7 

the east side of the valley and near the coast. On the other hand, high values of PM10 measured 8 

close the major urban and industrialized sites of Milan and Turin is not well detected by both 9 

the non-corrected AOD retrievals. The second row of Fig. 9 compares instead global time 10 

averages of relative-humidity-corrected measured PM10 measurements – panel (a) – with PBL-11 

normalized AOD for both MODIS and MAIAC (panels (b) and (c)), at each monitoring site. 12 

PBL information has a significant impact on MODIS retrievals in the southeast of the valley 13 

and on the southern edge (near-mountain stations), where normalized AOD have significantly 14 

smaller values. MAIAC AOD spatial distribution is instead less affected in those regions – 15 

fewer coincidences being invalid because of cloud cover or snow-related reflectance (different 16 

cloud mask). This led MAIAC to better replicating the major spatial pattern shown by PM10 17 

ground measurements, also near the major northwestern urban and industrialized sites, where a 18 

consistent increase of normalized AOD’s was seen versus the non-normalized ones. The RH 19 

correction impact on the PM10 measurements was of increasing the PM values anywhere. The 20 

effect was however particularly evident at the sites that exhibited the largest PM10 averages, 21 

i.e., the urban and industrialized sites of Milan and Turin.  22 

The seasonal spatial trends are reported in Fig. 10. The largest impact of a correction is seen 23 

for AOD normalization during the winter. Here (lower panels (b) and (c)), both MODIS and 24 

MAIAC retrievals show significantly higher values when PBL-normalized, for all sites in the 25 

valley. RH correction is again less relevant. However, it has a positive effect across all seaons 26 

in terms of better “distinguishing”, or increasing the local gradients of PM10, between  the urban 27 

versus the mountain areas. While before the correction PM10 presents an almost flat spatial 28 

trend on the valley, the RH-corrected spatial trend provides much more comparable data to the 29 

PBL-normalized AOD values of lower panel (c). Again, MAIAC provides a better comparison 30 

with measured data than MODIS, where the spatial results are much more scattered. Looking 31 
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at the other three seasons (Spring, Summer and Fall), they have lower values than in winter 1 

because of the larger PBL heights. However, the improvement in local gradient distribution is 2 

still evident, even if up to a smaller extent. 3 

The seasonal spatial trends analysis presented in this section suggests that normalized AOD 4 

spatial trends present a comparable pattern to the PM10 measured one for MAIAC, while the 5 

MODIS spatial trend, as an effect of its much coarser spatial resolution, suffers from more data 6 

dispersion especially during the winter season where the retrievals are fewer and less reliable.  7 

3.4 Estimation of PM10 using the coarse MYD04 and the fine MAIAC products 8 

As last step of our study in this paper, we introduced linear relationship to estimate PM10 9 

concentrations, using both the coarse 10 km MYD04 and the high-resolution 1 km MAIAC 10 

products.    11 

We started to examine the linear correlation coefficients monthly trends, reported in Fig. 11, 12 

for both the AOD retrievals (MODIS 10 km in upper and lower panels (a) and MAIAC 1 km 13 

in upper and lower panels (b)), and for entire period of analysis. In order to assess the effect of 14 

the AOD correction, linear correlation coefficients were obtained by correlating monthly PM10 15 

measurements with MYD04 and MAIAC, both with (Fig. 11, second row) and without (first 16 

row) PBL depth normalization. The intercepts, which provide a ‘ground’ or ‘noise’ PM value 17 

to be applied when AOD is zero, are not influenced by the correction of meteorological 18 

variables. Slope trends show instead much different behaviors. The annual trend tends to 19 

disappear into a flat line when AOD is PBL-normalized; for both retrievals, the slopes are 20 

similar, and fluctuate around the global average of 17.9 for MODIS and 21.7 for MAIAC.  21 

The seasonal coefficients were directly obtained from this analysis, and are listed in Table 3. 22 

For each season, a slope and an intercept value were found as the means of their corresponding 23 

monthly mean values. For the PM10 – AOD correlation type, MAIAC shows a tendency towards 24 

lower intercepts than MYD04, and correspondingly higher slopes; both retrievals showing 25 

similar correlation coefficients, R2. For the normalized PM10 – AOD/ZPBL relationship, while 26 

the intercepts remain lower for MAIAC, the slopes now show similar results as the MODIS 27 

ones. This suggests that the PBL normalization brings a more stable, closer-to-linear 28 

relationship between the ground measurement and the satellite datum for both retrievals. 29 

Therefore, we used the four intercepts and slopes for the normalized AOD datum to define four 30 

corresponding seasonal correlations (4a – 4b – 4c – 4d): 31 
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𝑌𝑌𝑀𝑀𝑇𝑇𝑀𝑀 = 𝑚𝑚𝑀𝑀𝑇𝑇𝑀𝑀 ∗ 𝑋𝑋 + 𝑞𝑞𝑀𝑀𝑇𝑇𝑀𝑀           (4a) 1 

𝑌𝑌𝐽𝐽𝐽𝐽𝑇𝑇 = 𝑚𝑚𝐽𝐽𝐽𝐽𝑇𝑇 ∗ 𝑋𝑋 + 𝑞𝑞𝐽𝐽𝐽𝐽𝑇𝑇           (4b) 2 

𝑌𝑌𝑆𝑆𝑇𝑇𝑆𝑆 = 𝑚𝑚𝑆𝑆𝑇𝑇𝑆𝑆 ∗ 𝑋𝑋 + 𝑞𝑞𝑆𝑆𝑇𝑇𝑆𝑆           (4c) 3 

𝑌𝑌𝐷𝐷𝐽𝐽𝐷𝐷 = 𝑚𝑚𝐷𝐷𝐽𝐽𝐷𝐷 ∗ 𝑋𝑋 + 𝑞𝑞𝐷𝐷𝐽𝐽𝐷𝐷                       (4d) 4 

where 𝑌𝑌 represents estimated PM10 map concentrations and 𝑋𝑋 the corresponding map of 5 

normalized AOD/ZPBL values for both the coarse MODIS AOD product and the finer high-6 

resolution MAIAC. Fig. 12 and Fig. 13 show twelve one-day examples of estimated (map) and 7 

measured (dots) PM10 concentrations, one for each month. The estimate was made using 8 

MYD04 at 10 km spatial resolution (Fig. 12) and MAIAC AOD retrieval at 1 km spatial 9 

resolution (Fig. 13), respectively. The available PM10 in-situ measurements are displayed on 10 

top of the PM10 estimated map of concentrations, with the same concentration scale. The 11 

patterns of PM10 concentrations predicted by both MYD04 and MAIAC retrievals are similar 12 

in spring and summer, when the pollutant levels remain moderate. During the fall and winter 13 

seasons, when the pollutant levels reach the highest values, MAIAC is able to better capture 14 

the major spatial gradients shown by measured PM10. The coarse 10 km MYD04 product does 15 

not allow the PM10 concentrations to be well detected on a local scale, and it is also affected by 16 

reduced data coverage. The dates of November 16th, December 5th and January 26th, show 17 

regions where it is possible to estimate the PM10 concentrations using MAIAC, but where 18 

MODIS data at 10 km is not available. This suggest MAIAC’s better potential to serve PM10 19 

studies in the Po Valley, which is characterized by high cloud cover values for many days 20 

during a year, especially during the fall and winter seasons where PM values are maximum.  21 

To assess the goodness of fit of the estimated values, two statistical indicators such as the Root 22 

Mean Square Error (RMSE) and the coefficient of determination (R2) were calculated between 23 

the predicted PM10 concentrations and the observations. The seasonal results of the used 24 

statistical indicators are listed in Table 4. The RMSE ranges from 6.91 in summer to 8.58 μg/m3 25 

in spring for MYD04, and from 6.63 in summer to 15.10 μg/m3 in winter for MAIAC. Overall, 26 

the results indicate a good fit between predicted PM10 concentration values and the 27 

observations. In particular, looking at MAIAC RMSE values, the high-spatial resolution 28 

product provides slightly better RMSE values on spring and summer, and worst for the fall and 29 

winter seasons. For instance, in winter MAIAC has a RMSE which is 50% higher than the 30 

MODIS result. For both the retrievals, the lowest error was obtained in summer, where the 31 
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pollutant concentrations reach the lowest levels and the meteorological condition of cloudless 1 

permits the highest number of available remotely sensed data. After the normalization by the 2 

ZPBL on both MYD04 and MAIAC AOD retrievals, the RMSE range changes as from 5.33 in 3 

winter to 8.33 μg/m3 in spring and from 6.45 in summer to 11.45 μg/m3 in winter, respectively. 4 

The introduction of the meteorological variable on the AOD retrieval, not only increments the 5 

PM – AOD correlation and improves the temporal and spatial trends, but also reduces the 6 

existing error between predicted and measured PM10 concentrations. This is true for both 7 

retrievals. Also in this case, MAIAC is slightly better in spring and summer, but worse in fall 8 

and winter where the AOD retrieval rate is less. The discrepancy between the winter RMSE for 9 

MODIS and the winter RMSE for MAIAC is still around 47%, also after the normalization. 10 

While MAIAC obtained the lowest error in summer, MODIS did it in winter, apparently in 11 

contradiction to what stated before. Regarding the coefficient of determination, the results show 12 

that R2 is relatively low – ranging from 0.46 down to 0.04 for MODIS, and from 0.26 to 0.16 13 

for MAIAC. Both retrievals show that the highest R2 was obtained in the summer, with a 14 

maximum number of AOD retrievals, whereas the lowest was obtained in winter, with a 15 

minimum number of AOD retrievals. On average, MAIAC show slightly worse results in spring 16 

and summer. Yet, an improvement was obtained for the fall and winter seasons.  While the 17 

normalization by the ZPBL variable seems to slightly improve the R2 values for MODIS 18 

retrievals (except in winter), on average in MAIAC the statistical indicator become worse, in 19 

each season.  20 

4 Concluding Remarks 21 

Until recently, the MODIS satellite AOD data product, with 10 km resolution, was the main 22 

source of global satellite aerosol data used by the air quality community. The new MAIAC 23 

AOD product, at 1 km resolution, provides a significantly higher resolution that may be more 24 

appropriate for urban air quality studies. This paper analyzed the effect of spatial resolution on 25 

the correlation between remotely sensed AOD and ground-based PM10 concentration 26 

measurements and the estimation of the PM10 concentrations from the high-spatial resolution 27 

at 1 km product over the Po valley domain, in northern Italy. Three years, from 2010 to 2012, 28 

of MODIS Aqua and MAIAC AOD retrievals were used. The study also focused on seasonal 29 

trends in the Po valley, and their effect on the accuracy of the retrievals.   30 

Based on this study, the following conclusions were drawn:   31 
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1. A direct comparison between coarse MYD04_L2 10 km AOD and high-resolution MAIAC 1 

1 km AOD for all collocated PM vs. AOD pairs for the same period of analysis and sites 2 

showed that both retrievals have pretty low correlation coefficients, if PM-AOD points are 3 

not binned into a number of AOD ‘classes’; 4 

2. The link between surface measurements and AOD data alone not suitable for quantitative 5 

analysis. The normalization of the optical parameter AOD by the PBL depth significantly 6 

improves the R2, and is also able to capture seasonal changes in the PBL height over the Po 7 

Valley. Similar global correlation coefficients, R2 = 0.96 and R2 = 0.95, were obtained for 8 

standard MODIS and MAIAC retrievals, respectively, when considering all the period and 9 

locations.  10 

3. The seasonal temporal analysis showed opposite trends for non-normalized monthly mean 11 

AOD versus the PM10 mass concentrations. This strengthened the need to always apply the 12 

mixing layer correction in order to achieve a suitable AOD monthly mean trend, resulting 13 

proportional with the PM one.  14 

4. The study of how the relationship of AOD and dehumidified PM at surface is affected by 15 

relative humidity (RH) showed that seasonal changes in AOD are more prominent 16 

compared to seasonal changes in PM10 mass concentrations, and that the RH correction on 17 

the PM mass concentration measurement did not significantly improve the PM – AOD 18 

correlation in this area, which is affected by a rather homogeneous relative humidity 19 

concentration all year long (Fig. 4 b).  20 

5. The seasonal spatial analysis showed acceptable agreement between the MAIAC AOD 21 

retrieval after the PBL normalization and the PM10 measurements after the RH correction. 22 

This agreement is even better during the winter season, when the pollutant values are 23 

maximum, especially close to the major urban and industrialized sites.  24 

6. The results obtained from the linearization procedure to estimate the PM10 concentrations 25 

showed that –  if averaged over the whole domain – the MAIAC predicted PM10 26 

concentrations at 1 km resolution are comparable with MODIS predicted PM10 27 

concentrations at 10 km resolution. However, local values, relevant in a limited 28 

geographical domain such as the Po Valley, are substantially better when using the high 29 

spatial resolution MAIAC AOD product than MODIS, as more spatial details near the major 30 
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urban and industrialized areas in the domain are captured both by the satellite retrieval and 1 

by its seasonal PM10 estimation function.  2 

Therefore, the study suggested that MAIAC has a good potential to provide data for PM10 3 

concentration predictions and so it may be later be used to serve PM10 health effects studies in 4 

a narrow, populated, industrialized and urbanized domain, like the Po Valley in Italy.  5 

In future studies, we will focus on two aspects. First, we will investigate further extensions of 6 

the satellite-retrieved AOD and PM10 relationships, such as by dividing the entire domain into 7 

areas to study the effects of different levels of urbanization on surface brightness and thus 8 

quality of the aerosol retrieval (cf. Lyapustin et al., 2011b). Second, the use of higher resolution 9 

PBL estimates over Italy (Kukkonen et al., 2012, Baldauf et al., 2011, Barthlott et al., 2010) 10 

will be used to explore the relationship for each administrative district over Po valley separately. 11 

The aim is to understand if the use of finer PBL depth and satellite – retrieved AOD (MAIAC) 12 

helps to better characterize the spatial variability of aerosol pollution within the Po Valley. 13 
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Figure 1. In the figure, the geographic study domain. The colored dots mark locations of the 3 

ARPA PM10 ground-based stations; they are grouped into different color to respect the 4 

administrative division of the sites (Piemonte in green, Lombardia in red and Emilia Romagna 5 

in blue).  6 
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Figure 2. MYD04 10 km (on the top) and MAIAC 1 km (on the bottom) AOD retrievals for 3 

three example days, one per each year of analysis (2010, 2011 and 2012). The higher resolution 4 

data reveals a substantial spatial variability of AOD, which is not as well captured using a coarse 5 

10 km scale, especially near the urban areas, and near the sea cost.  6 
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Figure 3. Schematic aerosol vertical profile where the aerosols are considered well-mixed and 3 

confined in the PBL height.  4 
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Figure 4. PBL depth and RH monthly trends, from 2010 and 2012. For each candlestick, the 3 

10th, 25th, 50th (median, horizontal black thick line), 75th, 90th are shown as horizontal black 4 

bars. The red thick line represents the monthly mean value. The graph was realized considering 5 

all the equals months in the period of analysis. 6 
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Figure 5. PBL depth and RH seasonal trends, from 2010 and 2012. MAM (March, April, May) 3 

refers to the spring months; JJA (June, July, August) refers to the summer months; SON 4 

(September, October, November) refers to the fall month and DJF (December, January, 5 

February) refers to the winter months. For each candlestick, the 10th, 25th, 50th (median, 6 

horizontal black thick line), 75th, 90th are shown as horizontal black bars. The red thick line 7 

represents the seasonal mean value. The graph was realized considering all the equal months in 8 

the period of analysis (3 years) and then grouped into the four seasons. 9 
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Table 1. Global statistics values for the direct PM10 – MYD04 and PM10 – MAIAC AOD linear 1 

correlations, with and without ZPBL normalization and RH correction, for the period from 2010 2 

to 2012, for the same days and locations. 3 

  
Correlation type 

Statistics 

 Intercept  Slope R2 p-value 

MYD04 2010-2012 

PM10; AOD 21.35 30.23 0.09 <0.0001 

PM10; AODZPBL 22.59 17.94 0.21 <0.0001 

PM10*f(RH); AODZPBL 31.63 23.98 0.22 <0.0001 

MAIAC 2010-2012 

PM10; AOD 28.49 20.81 0.02 <0.0001 

PM10; AODZPBL 23.64 21.71 0.29 <0.0001 

PM10*f(RH); AODZPBL 31.96 27.53 0.29 <0.0001 
 4 
 5 
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Figure 6. Correlation between PM10 and MYD04_L2 and MAIAC AOD at Po Valley ground-3 

based stations from 2010 to 2012.  Bin scatter plot analysis presented for both retrievals 4 

(MYD04_L2 top panels, MAIAC bottom panels). Panels (a): simple correlation between PM10 5 

and AOD; panels (b) correlation between PM10 and AOD normalized by ZPBL; panels (c) 6 

correlation between PM10 corrected by RH and AOD normalized by ZPBL.  7 
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Figure 7. PM10 and AOD (both for MYD04_L2 and MAIAC retrievals) monthly trends, from 3 

2010 and 2012. In panels (a), the PM10 monthly trend (top) is compared to the PM10 trend 4 

multiple by the RH correction (bottom). In panels (b) and (c) the AOD monthly trends, for 5 

MODIS and MAIAC AOD respectively, are compared with the AOD trend normalized by the 6 

PBL depth value. For each candlestick, the 10th, 25th, 50th (median, horizontal black thick line), 7 

75th, 90th are shown as horizontal black bars. The red thick line represents the monthly mean 8 

value. The graph was realized considering all the equals months in the period of analysis. 9 
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Table 2. PM10 and AOD total available data 1 

Total presumed data (tpd) Ntot = 73 (#stations) * 1096(days) = 80008 

total PM10 retrieved data (trd_PM10) NPM10 = 74357 

(trd_PM10)/(tpd)   93% 

total MYD04 retrieved data (trd_AOD) NMYD04 = 25697 

(trd_MYD04)/(tpd) 32% 

total MAIAC retrieved data (trd_AOD) NMAIAC = 22547 

(trd_MAIAC)/(tpd) 28% 

 2 
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Figure 8. PM10 and AOD (both for MYD04_L2 and MAIAC retrievals) seasonal trends, from 3 

2010 and 2012. In panels (a), the PM10 seasonal trend (top) is compared to the PM10 trend 4 

multiple by the RH correction (bottom). In panels (b) and (c) the AOD monthly trends, for 5 

MODIS and MAIAC AOD respectively, are compared with the AOD trend normalized by the 6 

PBL depth value. MAM (March, April, May) refers to the spring months; JJA (June, July, 7 

August) refers to the summer months; SON (September, October, November) refers to the fall 8 

month and DJF (December, January, February) refers to the winter months. For each 9 

candlestick, the 10th, 25th, 50th (median, horizontal black thick line), 75th, 90th are shown as 10 

horizontal black bars. The red thick line represents the monthly mean value. The graph was 11 

realized considering all the equal months in the period of analysis (3 years) and then grouped 12 

into the four seasons. 13 
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Figure 9. Panels (a): annual mean PM10 concentration measured from ARPA ground-based 3 

stations, without (top) and with (bottom) the RH correction. Panels (b) and (c): annual mean 4 

MODIS and MAIAC AOD retrievals, respectively, without (top) and with (bottom) the 5 

normalization from the PBL depth. All the results refer to the entire period and locations of 6 

analysis. 7 
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Figure 10. Panels (a): seasonal mean PM10 concentration measured from ARPA ground-based 3 

stations, without (top) and with (bottom) the RH correction. Panels (b) and (c): seasonal mean 4 

MODIS and MAIAC AOD retrievals, respectively, without (top) and with (bottom) the 5 

normalization from the PBL depth. In each panels, the mean values are grouped into the four 6 

seasons: MAM (March, April, May) refers to the spring months; JJA (June, July, August) refers 7 

to the summer months; SON (September, October, November) refers to the fall month and DJF 8 

(December, January, February) refers to the winter months. 9 
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Figure 11. Linear correlation coefficients monthly trends for the MYD04_L2 and MAIAC 3 

AOD dataset. Coefficient “slope” of the linear correlation in black; in red, the “intercept” 4 

coefficient, both for the period from 2010 to 2012. The dash lines on the graph refer to the 5 

intercept and slope values obtained from the entire dataset, for the entire period. 6 
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Table 3. Seasonal statistics coefficients obtained from the linear correlation PM10 – 1 

MYD04/MAIAC AOD datasets, with and without the ZPBL normalization, considering the 2 

total period of analysis from 2010 to 2012, and locations.  3 

 

Correlation type 

Statistics 

Intercept  (q) Slope (m) R2 

 MYD04_L2 MAIAC MYD04_L2 MAIAC MYD04_L2 MAIAC 

MAM 
PM10; AOD 19.46 16.46 36.53 43.94 0.20 0.19 

PM10; AODZPBL 24.63 23.18 15.63 18.36 0.13 0.12 

JJA 
PM10; AOD 16.85 14.47 23.82 27.93 0.19 0.21 

PM10; AODZPBL 20.37 19.00 10.21 10.06 0.08 0.09 

SON 
PM10; AOD 25.70 21.10 45.43 72.08 0.19 0.20 

PM10; AODZPBL 36.28 25.17 -8.04 19.79 0.21 0.19 

DJF 
PM10; AOD 34.03 30.83 145.08 133.08 0.31 0.18 

PM10; AODZPBL 43.25 38.64 19.02 18.16 0.27 0.19 

 4 
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Figure 12. Estimated pollutant PM10 values from the MYD04 AOD retrieval normalized by the 3 

PBL depth. On the basemap the PM10 ground-based sites measurements are overlapped. An 4 

example day per each month of the year (2012) is reported, dived into the four seasons. 5 

 6 
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Figure 13. Estimated pollutant PM10 values from the high-resolution MAIAC AOD retrieval 3 

normalized by the PBL depth. On the basemap the PM10 ground-based sites measurements are 4 

overlapped. An example day per each month of the year (2012) is reported, divided into the 5 

four seasons. 6 

 7 



 44 

 1 

Table 4. RMSE seasonal values obtained between the measured and estimated PM10 2 

concentrations. The pollutant was estimated by both MYD04_L2 and MAIAC AOD dataset, 3 

with and without the ZPBL normalization, considering the total period of analysis from 2010 4 

to 2012.  5 

  RMSE [µg/m3] R2 

 Correlation type MYD04_L2 MAIAC MYD04_L2 MAIAC  

MAM 
PM10; AOD 8.58 8.06 

7.89 

0.29 0.23 

PM10; AODZPBL 8.33 0.31 0.18 

JJA 
PM10; AOD 6.91 6.63 0.46 0.26 

PM10; AODZPBL 6.78 6.45 0.46 0.20 

SON 
PM10; AOD 7.82 9.03 

7.22 

0.17 0.22 

PM10; AODZPBL 6.44 0.18 0.16 

DJF 
PM10; AOD 

PM10; AODZPBL 

7.54 15.10 

11.45 

0.04 0.16 

5.33 0.04 0.13 

 6 
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