NASA/TM—2017-219501

An N+3 Technology Level Reference Propulsion System

Scott M. Jones, William J. Haller, and Michael T. Tong
Glenn Research Center, Cleveland, Ohio

NASA STI Program . . . in Profile

Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) Program plays a key part in helping NASA maintain this important role.

The NASA STI Program operates under the auspices of the Agency Chief Information Officer. It collects, organizes, provides for archiving, and disseminates NASA’s STI. The NASA STI Program provides access to the NASA Technical Report Server—Registered (NTRS Reg) and NASA Technical Report ServerPublic (NTRS) thus providing one of the largest collections of aeronautical and space science STI in the world. Results are published in both non-NASA channels and by NASA in the NASA STI Report Series, which includes the following report types:

- TECHNICAL PUBLICATION. Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA counter-part of peer-reviewed formal professional papers, but has less stringent limitations on manuscript length and extent of graphic presentations.
- TECHNICAL MEMORANDUM. Scientific and technical findings that are preliminary or of specialized interest, e.g., "quick-release" reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.
- CONTRACTOR REPORT. Scientific and technical findings by NASA-sponsored contractors and grantees.
- CONFERENCE PUBLICATION. Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or co-sponsored by NASA.
- SPECIAL PUBLICATION. Scientific, technical, or historical information from NASA programs, projects, and missions, often concerned with subjects having substantial public interest.
- TECHNICAL TRANSLATION. Englishlanguage translations of foreign scientific and technical material pertinent to NASA's mission.

For more information about the NASA STI program, see the following:

- Access the NASA STI program home page at http://www.sti.nasa.gov
- E-mail your question to help@sti.nasa.gov
- Fax your question to the NASA STI

Information Desk at 757-864-6500

- Telephone the NASA STI Information Desk at 757-864-9658
- Write to:

NASA STI Program
Mail Stop 148
NASA Langley Research Center
Hampton, VA 23681-2199

An N+3 Technology Level Reference Propulsion System

Scott M. Jones, William J. Haller, and Michael T. Tong
Glenn Research Center, Cleveland, Ohio

National Aeronautics and
Space Administration

Glenn Research Center
Cleveland, Ohio 44135

Acknowledgments

The authors would like to thank the Advanced Air Transport Technology project, specifically Acting Project Manager Dr. James Heidmann, for providing the funding to support this work. Mr. Mark Guynn of NASA Langley’s Systems Analysis Branch for providing fuel burn sensitivities for NASA’s in-house 737-800 airplane for use in this report.

Trade names and trademarks are used in this report for identification only. Their usage does not constitute an official endorsement, either expressed or implied, by the National Aeronautics and Space Administration.

This work was sponsored by the Advanced Air Vehicle Program at the NASA Glenn Research Center

Level of Review: This material has been technically reviewed by technical management.

Available from

An N+3 Technology Level Reference Propulsion System

Scott M. Jones, William J. Haller, and Michael T. Tong
National Aeronautics and Space Administration
Glenn Research Center
Cleveland, Ohio 44135

Abstract

An $\mathrm{N}+3$ technology level engine, suitable as a propulsion system for an advanced single-aisle transport, was developed as a reference cycle for use in technology assessment and decision-making efforts. This reference engine serves three main purposes: it provides thermodynamic quantities at each major engine station, it provides overall propulsion system performance data for vehicle designers to use in their analyses, and it can be used for comparison against other proposed $\mathrm{N}+3$ technology-level propulsion systems on an equal basis. This reference cycle is meant to represent the expected capability of gas turbine engines in the $\mathrm{N}+3$ timeframe given reasonable extrapolations of technology improvements and the ability to take full advantage of those improvements.

Nomenclature

AATT	Advanced Air Transport Technology Project
BPR	Bypass ratio
ERA	Environmentally Responsible Aviation Project
FPR	Fan pressure ratio
HPC	High pressure compressor
HPT	High pressure turbine
LPC	Low pressure compressor
LPT	Low pressure turbine
MCL	Maximum climb (flight Mach number 0.80 , altitude 35000 ft) condition
NASA	National Aeronautics and Space Administration
OPR	Overall or operating pressure ratio
RTO	Rolling takeoff (flight Mach number 0.25, altitude 0 ft) condition
SFC	Engine thrust specific fuel consumption
SLS	Sea level static (flight Mach number 0.00 , altitude 0 ft) condition
T_{3}	High pressure compressor exit temperature
T_{4}	Burner exit temperature, high pressure turbine entrance temperature
VAFN	Variable area fan nozzle

Introduction

The Advanced Air Transport Technology (AATT) Project has an overarching goal to investigate and develop technologies and concepts with the potential to revolutionize the energy efficiency and environmental compatibility of fixed wing transport aircraft. The primary focus of the AATT project is the $\mathrm{N}+3$, or far term, timeframe. Figure 1 shows the potential benefits for a set of NASA-generated environmental metrics that serve as goals to guide technology development. $\mathrm{N}+3$ represents an entry-intoservice aircraft in the 2030 to 2040 timeframe. Because of constrained budgets, it is imperative that projects prioritize investment decisions in an attempt to maximize value for their limited technology

TECHNOLOGY BENEFITS*	TECHNOLOGY GENERATIONS (Technology Readiness Level $=4-6$)		
	N+1 (2015)	$\mathrm{N}+2$ (2020**)	N+3 (2025)
Noise (cum margin rel. to Stage 4)	-32 dB	-42 dB	-52 dB
LTO NOx Emissions (rel. to CAEP 6)	-60\%	-75\%	-80\%
Cruise NOx Emissions (rel. to 2005 best in class)	-55\%	-70\%	-80\%
Aircraft Fuel/Energy Consumption ${ }^{\ddagger}$ (rel. to 2005 best in class)	-33\%	-50\%	-60\%

* Projected benefits once technologies are matured and implemented by industry. Benefits vary by vehicle size and mission. $\mathrm{N}+1$ and $\mathrm{N}+3$ values are referenced to a $737-800$ with CFM56-7B engines, $\mathrm{N}+2$ values are referenced to a $777-200$ with GE 90 engines
** ERA's time-phased approach includes advancing "long-pole"' technologies to TRL 6 by 2015
\ddagger CO2 emission benefits dependent on life-cycle CO2e per MJ for fuel and/or energy source used
Figure 1.—NASA's Subsonic Transport System Level Metrics.
development resources. To support this objective, the systems analysis team within the AATT project was tasked with performing an assessment to quantify the potential fuel burn reduction for an advanced, N+3 propulsion system applicable to a single-aisle commercial aircraft (e.g., CFM56-7 thrust class system suitable for a Boeing 737-800 aircraft). The results provided AATT project management with an initial estimate of how much progress the advanced propulsion system technologies make toward meeting the aggressive, long-term fuel burn reduction targets. In addition, the assumptions utilized in the study provide discipline experts with improvement targets to assist in the formulation of technology development plans.

The approach for the conceptual design activity began with the formulation of an $N+3$ technology level propulsion system. To ensure consistency, a review of the propulsion technology levels used in previous NASA system assessments was conducted. The Environmentally Responsible Aviation (ERA) effort was a NASA project that focused on development of technologies for advanced, commercial transports in the $\mathrm{N}+2$ timeframe (Ref. 1). The $\mathrm{N}+3$ technology assumptions leverage this previous work, in addition to NASA-sponsored small core engine research conducted under multiple NASA Research Announcements. Consequently, an N +3 technology level engine suitable as a propulsion system for an advanced single-aisle transport was developed as the reference cycle for use in this assessment. This reference engine serves three main purposes:

- Provides thermodynamic quantities at each major engine station, allowing component researchers to have relevant information about the engine environment necessary for their design
- Provides overall propulsion system performance data for vehicle designers to use in their analyses
- Can be compared to other proposed $\mathrm{N}+3$ technology level propulsion systems on an equal basis

This reference cycle is meant to represent the expected capability of gas turbine engines in the $\mathrm{N}+3$ timeframe given reasonable extrapolations of technology improvements and the ability to take full advantage of those improvements. It is not meant to represent an actual engine product for which cost, among other practical trade-offs, will impact the final propulsion system design.

Assumptions

The $\mathrm{N}+3$ reference propulsion system is an advanced engine sized to meet the thrust required for a 737-800 class transport. Since the study's goal was to quantify the potential fuel burn reduction from advanced propulsion, a current technology in-house representation of the 737-800 airframe was used. The engine architecture was assumed to be a two-spool, separate flow gas turbine engine, but with features that make it an evolution of currently-fielded aircraft propulsion systems. Engines in the single-aisle thrust class, such as the CFM56-7B, have bypass ratios (BPR) on the order of 5; but advancements in turbomachinery and materials technology have enabled higher bypass ratios. In a move to improve propulsive efficiency, fan pressure ratio was decreased to the point that a geared system was required to match optimal speeds for the fan and low pressure turbine (LPT). Therefore, the $\mathrm{N}+3$ system employs a gear box and a variable area fan nozzle (VAFN). The VAFN was required to maintain reasonable fan performance over the entire flight envelope. Other technology areas in the engine are also assumed to have been enhanced over $\mathrm{N}+2$ levels. These technologies include improved turbomachinery aerodynamics, advanced turbine cooling techniques, and ceramic matrix composite (CMC) materials. Other engine technologies envisioned for future generations of propulsion systems, such as cooled cooling air, alternative fuels, or intercooled/regenerative cycles that use heat exchangers, were not considered.

The specific technology improvements for the reference engine were based primarily on research and studies from the ERA Project. The ERA assessments characterized the expected technology performance levels for a wide array of propulsion systems spanning the envisioned breadth of vehicle size classes in the $\mathrm{N}+2$ timeframe. The $\mathrm{N}+3$ reference engine system assumed performance levels at least as good as the ERA $\mathrm{N}+2$ single-aisle system. Based on those efforts, the following component-specific performance was used:

- Fan-the $\mathrm{N}+3$ fan technology is similar to the $\mathrm{N}+2$ level, but the fan pressure ratio (FPR) has been reduced to 1.3 to improve specific fuel consumption. The fan polytropic efficiency is 97 percent, about the same as the $\mathrm{N}+2$ level. This value may seem aggressive, but not overly so due to the low pressure ratio and the gearing, allowing the fan to spin at a much lower speed than the low pressure compressor (LPC) and low pressure turbine (LPT) to which it is mechanically coupled. Gear loss is 1 percent. Fan diameter is about 100 in.
- LPC - the gear system allows the LPC to rotate at a much higher speed and, therefore, an increase in the pressure ratio to around three was assumed for this component. The peak LPC polytropic efficiency is about 93 percent, roughly 1 percent higher than the $\mathrm{N}+2$ level.
- High Pressure Compressor (HPC) - the HPC pressure ratio is approximately 14 to yield the target Overall Pressure Ratio (OPR) of 55. The HPC polytropic efficiency was a function of the core size parameter, which is a corrected mass flow surrogate for the blade height of the last stage of the HPC. The nominal efficiency of 91 percent is for a core size of $6.0 \mathrm{lbm} / \mathrm{sec}$; the $\mathrm{N}+3 \mathrm{HPC}$ has a core size of approximately $3.0 \mathrm{lbm} / \mathrm{sec}$ and an assumed polytropic efficiency roughly 2 percent below the nominal value was employed.
- High Pressure Turbine (HPT) - the HPT is a two-stage turbine with a polytropic efficiency of 91 percent, 1 percent higher than the $\mathrm{N}+2$ level. The HPT is assumed to have $3160^{\circ} \mathrm{R}\left(2700{ }^{\circ} \mathrm{F}\right)$ CMCs for its vanes and advanced thermal barrier coatings and improved cooling features for the rotors. The maximum turbine inlet temperature $\left(\mathrm{T}_{4}\right)$ is about $3360{ }^{\circ} \mathrm{R}$ and required HPT cooling is about 15 percent, with 13 percent of that for the four HPT blade rows and 2 percent for the turbine disks and cavity cooling. In current engines, a small amount of HPT power is extracted along with a portion of high pressure bleed air for external, aircraft-related needs. However, for the $\mathrm{N}+3$ timeframe it was assumed there would be no engine air extracted. Therefore, the amount of horsepower required to support external (customer) requirements was increased accordingly.
- LPT-the LPT has a polytropic efficiency of 92 percent which is the same as the $\mathrm{N}+2$ level. The LPT is uncooled which is an advancement over the $\mathrm{N}+2$ technology level. This would typically lead to higher aerodynamic efficiency; however, the N+3 LPT assumed a higher loading to eliminate the need for increased stage count. Since a loading increase will typically reduce efficiency, the benefit from reduced cooling and the penalty from higher loading were assumed to offset each other.
- Combustor-the burner has a 4 percent stagnation pressure drop. The advanced combustor is envisioned to be a lean-burn design. Based on NASA/industry testing, this technology appears to enable significant reductions in Landing-Takeoff $\mathrm{NO}_{\mathrm{x}}\left(\mathrm{LTO} \mathrm{NO}_{\mathrm{x}}\right)$ levels which will meet or exceed the $\mathrm{N}+3$ goal values.
- Fan Nozzle-the fan nozzle has a variable exit area. The required area at top-of-climb is roughly 25 percent less than the maximum sea-level-static (SLS) value. Nozzle area is varied to maintain the fan operating line along the peak efficiency contour on the fan map. No limit was placed on the amount of fan nozzle area variation; at low thrust levels this resulted in extremely large nozzle areas.

Overall Cycle Design

The overall engine cycle design observed specific design rules and assumptions. From previous vehicle studies, it was determined that the in-house model of the 737-800 had a thrust target requirement of 22800 lbf at rolling takeoff conditions (RTO). A net thrust of approximately 6000 lbf was also required at maximum climb conditions (MCL). It was decided to set the fan pressure ratio equal to 1.3 at the MCL condition. This decision was based on making FPR as low as possible in order to achieve the minimum uninstalled SFC, but not so low as to create engine diameters in excess of 100 in . Installation effects would also drive the optimum fan pressure ratio away from lower values. Rather than vary the LPC/HPC pressure ratio split, the LPC pressure ratio was set equal to 3.0 at MCL, and the overall pressure ratio was allowed to vary from 30 to 80 , effectively determining the MCL HPC pressure ratio. The cycle maximum turbine inlet temperature, T_{4}, was allowed to vary between 3000 to $3800^{\circ} \mathrm{R}$. This maximum temperature occurs at the RTO condition; the turbine inlet temperature at the MCL condition was set to match the thrust lapse requirement. Engine airflow (or fan diameter) was set to provide the required RTO net thrust. At the sea-level-static (SLS) condition, the turbine inlet temperature was set to provide a net thrust of 28620 lbf based on the Boeing Equivalent Thrust target (1.2553*RTO thrust (Ref. 2)). Engine bypass ratio was determined by a lower limit on the ratio of core nozzle jet velocity to the ideally expanded fan nozzle jet velocity; this ratio was not permitted below 1.4 at the notional cruise point (90 percent of the MCL thrust). Component polytropic efficiencies at the MCL point were set as indicated above, with the exception of HPC polytropic efficiency. Due to the large variation in HPC blade height with engine OPR, the HPC polytropic efficiency was varied as a function of the core size parameter as shown in Figure 2. This efficiency penalty is considered conservative given current research in the area of small core gas turbines. Turbine cooling flow percentages were also varied as functions of the cooling air temperature, T_{3}, and maximum gas path temperature, T_{4}.

The results from the $\mathrm{OPR} / \mathrm{T}_{4}$ design space study are shown in Figure 3. Under the assumptions made, it is clear that little improvement can be made in SFC once OPR reaches 55; also, the impact of core size and turbine cooling prevent taking advantage of very high cycle temperatures. However, it should be noted that slight reductions in the core size penalty can alter the shape of the SFC contours and permit slight improvements for higher T_{4} and OPR cycles. Therefore, a maximum cycle T_{4} of $3400^{\circ} \mathrm{R}$ and an OPR of 55 were chosen for the reference $\mathrm{N}+3$ cycle design, even though a slightly better optimum could be found closer to $3300{ }^{\circ} \mathrm{R}$ and 60 OPR. The design space and cycle analyses were done in the Numerical Propulsion System Simulation (NPSS) code (Ref. 3); results for the MCL, cruise, RTO, and SLS points are shown in Table 1(a) to (d). The N +3 reference engine thrust and SFC performance over a relevant range of flight Mach numbers, altitudes, and throttle settings is shown in the Appendix.

Figure 2.—Assumed High Pressure Compressor Efficiency Trend.

Figure 3.-N+3 Engine Cycle Design Space.
Model：
MN
0.800
N＋3 Gear Drive Reference Turbofan Engine，Top of Climb Conditions

 density
lbm／ft＾3
0.023697
0.026479
0.034818
0.034818
0.034818
0.034470
0.073138
0.072041
0.475735
0.475735
0.231061
0.076066
0.071642
0.011565
0.011792
0.008240
0.034296
0.024011

 に6．66を

FLOW STATION DATA
FAR
$\begin{array}{rr}\text { Wfuel } & \text { BPR } \\ 2815.79 & 23.9878\end{array}$
$\begin{array}{rr}\text { Fnet } & \text { SFC } \\ 6073.2 & 0.4636\end{array}$

$$
\begin{array}{r}
\mathrm{lbm} / \mathrm{s} \\
2098.93
\end{array}
$$

VTAS
461.27
$\begin{array}{rr}\text { dTamb } & \text { Fnet } \\ 0.00 & 6073.2\end{array}$

3
0
4
4

 core nozzle exit əっuexquə ətzzou uef

station

altitude
35000.0

HP shaft
fP shaft
fan shaft

FAR EINOX
FAR EINOX
$0.02833 \quad 13.113$
 Wfuel
0.78216

$d P t / P t$
0.0400
 $\begin{array}{llllll}\Perp & 0 & 0 & 0 & 0 & 0 \\ n & 0 & n & 0 & 0 & 1 \\ 1 & -1 & \ddots & 0 & -1 & -1 \\ \mu & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}$

 burner

TURBOMACHINERY PERFORMANCE D
fan nozzle
core nozzle inlet
TABLE 1(b).-ENGINE PROPERTIES AT THE FLIGHT MN 0.80 , 35000 ft ALTITUDE, STANDARD DAY CRUISE POWER CONDITION

MN altitude	dTamb	Fnet	SFC	Wfuel	BPR	VTAS	OPR	T4	T41	core size	q
$0.250 \quad 0.0$	27.00	22800.0	0.2891	6590.89	25.7674	169.59	42.892	3400.0	3299.5	2.96	92.57
FLOW STATION DATA											
station	flow	Pt	Tt	FAR	Wc	Ps	Ts	density	area	MN	gamma
	lbm/s	psia	Rankine		lbm/s	psia	Rankine	lbm/ft^3	in^2		
inlet entrance	1903.72	15.349	552.49	0.0000	1881.21	14.696	545.67	0.072692	13173.8	0.2500	1.39973
fan entrance	1903.72	15.303	552.49	0.0000	1886.87	12.673	523.51	0.065338	7109.8	0.5261	1.39973
fan exit	1903.72	18.633	585.49	0.0000	1595.26	16.496	565.49	0.078738	7098.0	0.4208	1.39912
fan bypass	1832.60	18.633	585.49	0.0000	1535.67	16.483	565.36	0.078690	6813.9	0.4223	1.39912
fan core	71.12	18.633	585.49	0.0000	59.60	16.808	568.53	0.079799	284.1	0.3866	1.39912
LPC entrance	71.12	18.495	585.49	0.0000	60.04	16.695	568.63	0.079246	286.9	0.3854	1.39912
LPC exit	71.12	49.276	789.40	0.0000	26.17	43.317	761.21	0.153594	113.8	0.4340	1.39228
HPC entrance	71.12	48.588	789.40	0.0000	26.54	42.727	761.29	0.151488	115.6	0.4335	1.39228
HPC exit	69.70	642.433	1721.97	0.0000	2.91	603.389	1694.79	0.960952	17.2	0.3070	1.33952
burner entrance	60.32	642.433	1721.97	0.0000	2.51	603.389	1694.79	0.960952	14.9	0.3070	1.33952
burner exit	62.15	616.736	3400.00	0.0304	3.79	612.934	3395.48	0.487315	67.5	0.1002	1.26566
HPT exit	71.53	149.113	2430.94	0.0263	15.26	140.578	2398.29	0.158246	92.9	0.3035	1.29490
LPT entrance	71.53	148.350	2430.96	0.0263	15.34	129.992	2358.32	0.148810	66.3	0.4559	1.29490
LPT exit	72.95	17.817	1517.63	0.0257	102.93	16.988	1499.69	0.030582	691.6	0.2682	1.33189
core nozzle entrance	72.95	17.713	1517.69	0.0257	103.54	17.277	1508.31	0.030925	945.0	0.1936	1.33188
core nozzle exit	72.95	17.713	1517.75	0.0257	103.54	14.696	1448.46	0.027391	393.4	0.5350	1.33188
fan nozzle entrance	1832.60	18.387	585.49	0.0000	1556.23	16.274	565.45	0.077681	6917.7	0.4214	1.39912
fan nozzle exit	1832.60	18.387	585.49	0.0000	1556.23	14.696	549.22	0.072222	5531.9	0.5750	1.39912

[^0]
ducts
fan to LPC
LPC to HPC
HPT to LPT
LPT exit
fan bypass
burner

$\begin{array}{rrrrr}\text { CV } & \text { Athroat } & \text { Vactual } & \text { Fg } & \text { Videal } \\ 0.9975 & 5531.92 & 658.9 & 37528.0 & 660.5 \\ 0.9999 & 393.42 & 974.7 & 2210.1 & 974.8\end{array}$

TABLE 1(d).-ENGINE PROPERTIES AT THE FLIGHT MN 0.0, 0 ft ALTITUDE, HOT DAY CONDITION

Engine Flowpath and Weight Estimation

Following the cycle design, estimates of the engine weight and flowpath dimensions were developed for the $\mathrm{N}+3$ reference engine. The NASA software tool WATE++ (Weight Analysis of Turbine Engines (Ref. 4)), was used to create an engine diagram and weight associated with the thermodynamic cycle detailed in the previous section. The cycle data required for WATE ++ execution, such as air mass flow, temperatures, pressures, pressure ratios, etc., were obtained from the NPSS cycle output. Data from both the aerodynamic design point (top-of-climb) and a set of off-design cases was used to encompass the maximum thermodynamic conditions experienced (i.e., temperature and pressure) in order to size each engine component. The cycle data was combined with material properties and component design rules to determine an acceptable engine flowpath; the component design rules considered geometric, stress, and turbomachinery stage-loading limits. Notable component technology improvements are discussed below.

The fan diameter of the reference engine is about 100 in ., significantly larger than previous engines in this thrust class. Without improvements in inlet and nacelle design and technology, much of the propulsive efficiency benefits derived from reducing the FPR will be eroded by increased nacelle drag. The $\mathrm{N}+3$ engine design targeted similar levels of nacelle drag despite the increased diameter; the $\mathrm{N}+3$ engine's inlet length-to-diameter ratio was about 0.4 , the minimum required to avoid flow separation for this geometry (Ref. 5). Advanced, short inlets face operability challenges such as maintaining good performance in crosswinds and distorted flow: it was assumed that the $\mathrm{N}+3$ inlet could be designed to maintain high performance despite these challenges.

The N +3 reference engine HPT and LPT stator vane material was assumed to be high temperature (i.e., 3rd generation) CMCs. Nickel-based alloys were used for the turbine rotor blades, with the exception of the last stage LPT which used titanium aluminide. No cooling air was required for the LPT.

An empirical correlation was used to calculate the gearbox and lubrication system weight required as part of the LP shaft. The correlation is a function of maximum delivered output power and gear ratio; it was developed based on data from over fifty rotorcraft, tilt rotor, and turboprop aircraft. This correlation is shown in Figure 4 where hp is the power delivered to the fan in horsepower and RPM is the fan speed in revolutions per minute. The $\mathrm{N}+3$ reference engine gear ratio is equal to 3.1.

Figure 4.-Transmission and Lubrication System Correlation.

For the $\mathrm{N}+3$ turbomachinery design, stage counts from the $\mathrm{N}+2$ engine were maintained despite an increase in OPR. This required an increase of 10 to 25 percent in loading for the $\mathrm{N}+3$ compressors and turbines. This decision was deliberate; these loading increases provided turbomachinery discipline experts with aggressive goals in formulation of their technology development plans. Should the targets be deemed too infeasible as technology matures, the engine flowpath can be modified accordingly.

In summary, a conceptual-level systems analysis study was conducted to quantify the potential fuel burn reduction of propulsion system technologies envisioned in the $\mathrm{N}+3$ timeframe. An engine cycle analysis identified an "optimal" engine design that took advantage of an array of aerodynamic, materials, structures and cooling improvements. Upon completion of the cycle analysis, an engine flowpath was created and an overall propulsion system weight was produced. Table 2 lists some of the aeromechanical design features of the $\mathrm{N}+3$ reference engine; a cross section of the engine from the performance and weight estimation is shown in Figure 5 . Table 3 shows a comparison between the $\mathrm{N}+3$ reference engine and an in-house model of a current technology system similar to the CFM56-7B turbofan. It is readily obvious that the improvement in fuel efficiency of the advanced engine comes at a significant cost in propulsion system size and weight. Although it was not done for this study, maximizing the fuel burn benefit to the aircraft therefore requires balancing the trade between engine efficiency and engine size.

TABLE 2.-PRINCIPAL MECHANICAL DESIGN PARAMETERS

Mechanical design parameter	Value
Total engine pod weight (lbm)	9350
Fan diameter (in.)	100
Nacelle maximum diameter (in.)	121
Engine length, fan face to nozzle (in.)	135
Fan/LPC/HPC/HPT/LPT stages	$1-3-8-2-3$
LP RPM, gear ratio	$6800,3.1$
HP RPM	21000
LPC 1st stage loading, $\Delta \mathrm{h} / \mathrm{Ut}_{\mathrm{t}}{ }^{2}$	0.30
HPC 1st stage loading, $\Delta \mathrm{h} / \mathrm{U}_{\mathrm{t}}{ }^{2}$	0.26
HPT 1st stage loading, $\Delta \mathrm{h} / \mathrm{U}_{\mathrm{t}}{ }^{2}$	1.20
LPT 1st stage loading, $\Delta \mathrm{h} / \mathrm{U}_{\mathrm{t}}{ }^{2}$	3.05
HPC last stage blade height (in.)	0.42

Figure 5.-Cross-Section of the Engine.

TABLE 3.-SUMMARY OF NASA MODEL OF CURRENT TECHNOLOGY ENGINE

AND N+3 ENGINE		
	CFM56	$\mathrm{N}+3$
FPR	1.7	1.3
OPR	32	55
BPR	5.3	24
T4max, Rankine	3160	3400
Secondary flows, $\%$	19%	15%
Fan diameter, inches	63	100
MCL net thrust, lbf	5780	6070
MCL SFC, lbm/hr/lbf	0.650	0.464
RTO net thrust, lbf	22800	22800
RTO SFC, lbm/hr/lbf	0.474	0.289
System weight, lbm	7700	9300

Fuel Burn Improvement

Because the study objective was to isolate the fuel burn benefit of the advanced propulsion system from that of an advanced vehicle, a current technology baseline airframe was employed. NASA Langley's Systems Analysis Branch has made a rigorous in-house representation of the 737-800 aircraft (Ref. 6). The results of the cycle analysis work indicated the $\mathrm{N}+3$ engine has a 28 percent improvement in SFC. The weight analysis predicted the $\mathrm{N}+3$ engine would show a weight increase of about 21 percent over the baseline CFM56-7B engine. Figure 6 shows the sensitivity of the in-house 737-800 aircraft fuel burn to changes in engine SFC and weight. The aforementioned $\mathrm{N}+3$ characteristics combine to produce about a 30 percent reduction in fuel burn on this size vehicle, about half of the $\mathrm{N}+3$ overall goal. It must be noted that penalties for increased nacelle drag and landing gear length/weight are not captured in this assessment. Although the impact was beyond the scope of this effort, previous work (Ref. 7) provides some insight into the potential magnitude of these effects. As seen in Figure 7, nacelle drag has a penalty on the order of twice that of the engine weight at the 1.3 FPR of the $\mathrm{N}+3$ engine. Conversely, the required weight increase coming from extending the landing gear length has minimal effect.

The conceptual design study indicated a potential for fuel burn improvement of 25 to 30 percent utilizing $\mathrm{N}+3$ propulsion system technologies on a single-aisle aircraft. Achieving these ambitious gains will require overcoming a multitude of technology development challenges, such as:

- Maintaining high efficiency and tight tolerances in axial turbomachinery with extremely small blade passage heights
- Development of robust materials with high temperature and increased loading capability
- Advances in subsonic inlet design to maintain short length while maintaining operability

The $\mathrm{N}+3$ engine cycle described here should be viewed as an initial foray into the potential system performance that could be available in the future should near-term technology advancements occur as predicted. These results should be viewed as a reference system, or "stake-in-the-ground", allowing AATT projects and the disciplines it supports to best direct their efforts. It is expected that this reference propulsion system will be updated as technology matures, more information becomes available, and further investigations are conducted.

Figure 6.-Fuel Burn Sensitivities for NASA's 737-800 Airplane.

Figure 7.—Penalty Sensitivities for Representative Single-Aisle Aircraft.

Appendix-N+3 Engine Performance

Mach	altitude ft	dTamb degF	\%Thrust	Net Thrust lbf	Fuel Flow lbm/hr	$\begin{gathered} \mathrm{TSFC} \\ \mathrm{l.bm} /(\mathrm{hr}-\mathrm{lbf}) \end{gathered}$
0.00	0.0	27.0	100.	28620.6	5011.2	0.1751
0.00	0.0	27.0	90.	25758.5	4424.2	0.1718
0.00	0.0	27.0	80.	22896.8	3850.9	0.1682
0.00	0.0	27.0	70.	20034.3	3296.0	0.1645
0.00	0.0	27.0	60.	17172.3	2786.1	0.1622
0.00	0.0	27.0	50.	14310.3	2289.4	0.1600
0.00	0.0	27.0	40.	11448.2	1840.8	0.1608
0.00	0.0	27.0	30.	8586.2	1414.6	0.1648
0.00	0.0	27.0	20.	5724.1	1015.1	0.1773
0.10	0.0	27.0	100.	25604.0	5588.2	0.2183
0.10	0.0	27.0	90.	23043.6	4956.2	0.2151
0.10	0.0	27.0	80.	20483.2	4384.9	0.2141
0.10	0.0	27.0	70.	17922.7	3818.3	0.2130
0.10	0.0	27.0	60.	15362.3	3266.7	0.2126
0.10	0.0	27.0	50.	12801.9	2748.7	0.2147
0.10	0.0	27.0	40.	10241.5	2238.8	0.2186
0.10	0.0	27.0	30.	7681.2	1768.1	0.2302
0.10	0.0	27.0	20.	5120.8	1311.5	0.2561
0.20	0.0	27.0	100.	23549.4	6233.7	0.2647
0.20	0.0	27.0	90.	21194.5	5564.5	0.2625
0.20	0.0	27.0	80.	18840.3	4933.3	0.2619
0.20	0.0	27.0	70.	16484.6	4348.9	0.2638
0.20	0.0	27.0	60.	14129.7	3762.5	0.2663
0.20	0.0	27.0	50.	11774.6	3190.9	0.2710
0.20	0.0	27.0	40.	9419.8	2636.7	0.2799
0.20	0.0	27.0	30.	7064.8	2090.3	0.2959
0.20	0.0	27.0	20.	4709.9	1567.1	0.3327
0.25	0.0	27.0	100.	22799.7	6590.8	0.2891
0.25	0.0	27.0	90.	20519.6	5903.6	0.2877
0.25	0.0	27.0	80.	18239.8	5240.5	0.2873
0.25	0.0	27.0	70.	15959.8	4630.1	0.2901
0.25	0.0	27.0	60.	13679.9	4025.3	0.2943
0.25	0.0	27.0	50.	11399.9	3424.1	0.3004
0.25	0.0	27.0	40.	9119.9	2843.0	0.3117
0.25	0.0	27.0	30.	6839.9	2261.9	0.3307
0.25	0.0	27.0	20.	4559.9	1698.5	0.3725
0.30	0.0	27.0	100.	21211.2	6648.2	0.3134
0.30	0.0	27.0	90.	19090.1	5976.7	0.3131
0.30	0.0	27.0	80.	16969.0	5325.7	0.3138
0.30	0.0	27.0	70.	14847.8	4722.0	0.3180
0.30	0.0	27.0	60.	12726.7	4123.7	0.3240
0.30	0.0	27.0	50.	10605.5	3524.4	0.3323
0.30	0.0	27.0	40.	8484.5	2940.0	0.3465
0.30	0.0	27.0	30.	6363.4	2352.6	0.3697
0.30	0.0	27.0	20.	4242.2	1774.8	0.4184
0.00	5000.0	27.0	100.	25683.8	4514.7	0.1758
0.00	5000.0	27.0	90.	23115.5	3948.7	0.1708
0.00	5000.0	27.0	80.	20546.9	3445.9	0.1677

0.00	5000.0	27.0	70.	17978.7	2945.9	0.1639
0.00	5000.0	27.0	60.	15410.2	2482.1	0.1611
0.00	5000.0	27.0	50.	12841.9	2038.3	0.1587
0.00	5000.0	27.0	40.	10273.5	1632.0	0.1589
0.00	5000.0	27.0	30.	7705.1	1254.2	0.1628
0.00	5000.0	27.0	20.	5136.8	897.9	0.1748
0.20	5000.0	27.0	100.	21372.0	5594.5	0.2618
0.20	5000.0	27.0	90.	19234.8	4989.2	0.2594
0.20	5000.0	27.0	80.	17097.6	4401.5	0.2574
0.20	5000.0	27.0	70.	14960.2	3862.3	0.2582
0.20	5000.0	27.0	60.	12823.3	3341.3	0.2606
0.20	5000.0	27.0	50.	10685.9	2823.9	0.2643
0.20	5000.0	27.0	40.	8548.8	2330.6	0.2726
0.20	5000.0	27.0	30.	6411.5	1841.8	0.2873
0.20	5000.0	27.0	20.	4274.4	1375.8	0.3219
0.30	5000.0	27.0	100.	19329.3	5959.7	0.3083
0.30	5000.0	27.0	90.	17396.2	5348.5	0.3075
0.30	5000.0	27.0	80.	15463.5	4754.3	0.3075
0.30	5000.0	27.0	70.	13530.5	4186.1	0.3094
0.30	5000.0	27.0	60.	11597.6	3654.0	0.3151
0.30	5000.0	27.0	50.	9664.7	3119.5	0.3228
0.30	5000.0	27.0	40.	7731.7	2593.6	0.3355
0.30	5000.0	27.0	30.	5798.8	2071.1	0.3572
0.30	5000.0	27.0	20.	3865.8	1556.9	0.4027
0.25	10000.0	27.0	100.	18480.5	5218.0	0.2824
0.30	10000.0	27.0	100.	17333.4	5276.0	0.3044
0.40	10000.0	27.0	100.	15536.2	5423.3	0.3491
0.50	10000.0	27.0	100.	14109.7	5597.1	0.3967
0.30	15000.0	0.0	100.	17165.2	5082.7	0.2961
0.40	15000.0	0.0	100.	15588.3	5240.2	0.3362
0.50	15000.0	0.0	100.	14366.7	5435.5	0.3783
0.60	15000.0	0.0	100.	13481.5	5676.4	0.4210
0.50	20000.0	0.0	100.	12179.0	4521.5	0.3713
0.60	20000.0	0.0	100.	11785.9	4871.6	0.4133
0.70	20000.0	0.0	100.	11394.2	5182.6	0.4549
0.60	25000.0	0.0	100.	9510.8	3844.4	0.4042
0.70	25000.0	0.0	100.	9436.7	4200.3	0.4451
0.75	25000.0	0.0	100.	9487.5	4415.6	0.4654
0.80	25000.0	0.0	100.	9598.1	4659.8	0.4855
0.70	30000.0	0.0	100.	7545.6	3283.3	0.4351
0.70	30000.0	0.0	90.	6791.1	2952.7	0.4348
0.70	30000.0	0.0	80.	6036.5	2639.1	0.4372
0.70	30000.0	0.0	70.	5282.0	2337.2	0.4425
0.70	30000.0	0.0	60.	4527.6	2051.2	0.4531
0.70	30000.0	0.0	50.	3772.8	1765.1	0.4678
0.70	30000.0	0.0	40.	3018.2	1487.1	0.4927
0.70	30000.0	0.0	30.	2263.7	1207.5	0.5334
0.70	30000.0	0.0	20.	1509.2	929.0	0.6155
0.70	30000.0	0.0	5.	377.3	459.7	1.2184

0.80	30000.0	0.0	100.	7672.9	3639.5	0.4743
0.80	30000.0	0.0	90.	6905.6	3275.4	0.4743
0.80	30000.0	0.0	80.	6138.3	2930.7	0.4774
0.80	30000.0	0.0	70.	5371.0	2596.7	0.4835
0.80	30000.0	0.0	60.	4603.8	2281.5	0.4956
0.80	30000.0	0.0	50.	3836.5	1965.0	0.5122
0.80	30000.0	0.0	40.	3069.0	1655.3	0.5394
0.80	30000.0	0.0	30.	2301.9	1344.1	0.5839
0.80	30000.0	0.0	20.	1534.6	1033.4	0.6734
0.80	30000.0	0.0	5.	383.6	506.6	1.3205
0.85	30000.0	0.0	100.	7807.1	3855.0	0.4938
0.85	30000.0	0.0	90.	7026.3	3468.1	0.4936
0.85	30000.0	0.0	80.	6245.6	3103.3	0.4969
0.85	30000.0	0.0	70.	5464.9	2750.8	0.5033
0.85	30000.0	0.0	60.	4684.2	2416.6	0.5159
0.85	30000.0	0.0	50.	3903.5	2082.3	0.5335
0.85	30000.0	0.0	40.	3122.8	1753.7	0.5616
0.85	30000.0	0.0	30.	2342.1	1424.0	0.6080
0.85	30000.0	0.0	20.	1561.4	1093.7	0.7004
0.85	30000.0	0.0	5.	390.4	534.7	1.3697
0.70	35000.0	0.0	100.	5974.0	2543.0	0.4257
0.70	35000.0	0.0	90.	5376.5	2290.6	0.4260
0.70	35000.0	0.0	80.	4779.2	2051.4	0.4292
0.70	35000.0	0.0	70.	4181.9	1819.6	0.4351
0.70	35000.0	0.0	60.	3584.7	1600.1	0.4464
0.70	35000.0	0.0	50.	2987.0	1380.8	0.4623
0.70	35000.0	0.0	40.	2389.5	1167.0	0.4884
0.70	35000.0	0.0	30.	1792.2	953.2	0.5319
0.70	35000.0	0.0	20.	1194.8	741.1	0.6203
0.70	35000.0	0.0	5.	298.7	382.3	1.2799
0.80	35000.0	0.0	100.	6073.2	2815.8	0.4636
0.80	35000.0	0.0	90.	5465.9	2538.4	0.4644
0.80	35000.0	0.0	80.	4858.7	2275.2	0.4683
0.80	35000.0	0.0	70.	4251.3	2019.3	0.4750
0.80	35000.0	0.0	60.	3644.0	1776.6	0.4876
0.80	35000.0	0.0	50.	3036.6	1533.6	0.5051
0.80	35000.0	0.0	40.	2429.2	1296.3	0.5336
0.80	35000.0	0.0	30.	1822.0	1058.1	0.5807
0.80	35000.0	0.0	20.	1214.7	820.5	0.6755
0.80	35000.0	0.0	5.	303.7	417.0	1.3731
0.85	35000.0	0.0	100.	6178.8	2981.2	0.4825
0.85	35000.0	0.0	90.	5561.2	2686.5	0.4831
0.85	35000.0	0.0	80.	4943.0	2408.0	0.4872
0.85	35000.0	0.0	70.	4325.2	2137.2	0.4941
0.85	35000.0	0.0	60.	3707.4	1880.8	0.5073
0.85	35000.0	0.0	50.	3089.4	1624.1	0.5257
0.85	35000.0	0.0	40.	2471.4	1371.8	0.5551
0.85	35000.0	0.0	30.	1853.6	1119.1	0.6037
0.85	35000.0	0.0	20.	1235.8	866.6	0.7012
0.85	35000.0	0.0	5.	308.9	437.5	1.4162

0.70	40000.0	0.0	100.	4700.2	2002.4	0.4260
0.70	40000.0	0.0	90.	4230.2	1807.1	0.4272
0.70	40000.0	0.0	80.	3760.1	1621.8	0.4313
0.70	40000.0	0.0	70.	3290.1	1441.7	0.4382
0.70	40000.0	0.0	60.	2820.1	1270.1	0.4504
0.70	40000.0	0.0	50.	2350.1	1099.9	0.4680
0.70	40000.0	0.0	40.	1880.1	933.5	0.4965
0.70	40000.0	0.0	30.	1410.1	769.2	0.5455
0.70	40000.0	0.0	20.	940.1	605.5	0.6442
0.70	40000.0	0.0	5.	235.0	328.0	1.3955
0.80	40000.0	0.0	100.	4777.7	2215.6	0.4637
0.80	40000.0	0.0	90.	4299.9	2000.5	0.4652
0.80	40000.0	0.0	80.	3822.1	1796.1	0.4699
0.80	40000.0	0.0	70.	3344.3	1597.1	0.4775
0.80	40000.0	0.0	60.	2866.7	1407.8	0.4911
0.80	40000.0	0.0	50.	2388.8	1218.7	0.5102
0.80	40000.0	0.0	40.	1911.1	1034.1	0.5411
0.80	40000.0	0.0	30.	1433.3	849.7	0.5928
0.80	40000.0	0.0	20.	955.5	666.5	0.6975
0.80	40000.0	0.0	5.	238.9	352.9	1.4772
0.85	40000.0	0.0	100.	4860.8	2344.4	0.4823
0.85	40000.0	0.0	90.	4374.8	2116.1	0.4837
0.85	40000.0	0.0	80.	3888.6	1899.8	0.4886
0.85	40000.0	0.0	70.	3402.6	1689.4	0.4965
0.85	40000.0	0.0	60.	2916.5	1489.1	0.5106
0.85	40000.0	0.0	50.	2430.4	1288.9	0.5303
0.85	40000.0	0.0	40.	1944.4	1093.1	0.5622
0.85	40000.0	0.0	30.	1458.2	897.4	0.6154
0.85	40000.0	0.0	20.	972.2	701.9	0.7220
0.85	40000.0	0.0	5.	243.0	368.1	1.5146
0.70	45000.0	0.0	100.	3698.1	1589.9	0.4299
0.70	45000.0	0.0	90.	3328.2	1438.5	0.4322
0.70	45000.0	0.0	80.	2958.5	1293.9	0.4374
0.70	45000.0	0.0	70.	2588.6	1153.7	0.4457
0.70	45000.0	0.0	60.	2218.9	1018.7	0.4591
0.70	45000.0	0.0	50.	1849.0	886.1	0.4792
0.70	45000.0	0.0	40.	1479.3	757.0	0.5117
0.70	45000.0	0.0	30.	1109.4	631.1	0.5688
0.70	45000.0	0.0	20.	739.6	502.6	0.6796
0.70	45000.0	0.0	5.	184.9	293.8	1.5890
0.80	45000.0	0.0	100.	3759.4	1757.5	0.4675
0.80	45000.0	0.0	90.	3383.5	1590.6	0.4701
0.80	45000.0	0.0	80.	3007.5	1431.0	0.4758
0.80	45000.0	0.0	70.	2631.6	1275.6	0.4847
0.80	45000.0	0.0	60.	2255.7	1126.6	0.4995
0.80	45000.0	0.0	50.	1879.7	978.9	0.5208
0.80	45000.0	0.0	40.	1503.8	835.2	0.5554
0.80	45000.0	0.0	30.	1127.8	692.7	0.6142
0.80	45000.0	0.0	20.	751.9	550.0	0.7315
0.80	45000.0	0.0	5.	188.0	308.6	1.6415

0.85	45000.0	0.0	100.	3824.4	1858.6	0.4860
0.85	45000.0	0.0	90.	3441.9	1681.2	0.4884
0.85	45000.0	0.0	80.	3059.5	1512.0	0.4942
0.85	45000.0	0.0	70.	2677.1	1347.8	0.5035
0.85	45000.0	0.0	60.	2294.6	1190.0	0.5186
0.85	45000.0	0.0	50.	1912.2	1033.3	0.5404
0.85	45000.0	0.0	40.	1529.8	880.9	0.5759
0.85	45000.0	0.0	30.	1147.3	729.3	0.6357
0.85	45000.0	0.0	20.	764.9	577.5	0.7550
0.85	45000.0	0.0	5.	191.2	318.3	1.6644

References

1. Nickol, C.L. and Haller, W.J., "Assessment of the Performance Potential of Advanced Subsonic Transport Concepts for NASA's Environmentally Responsible Aviation Project," AIAA-2016-1030. 54th AIAA Aerospace Sciences Meeting, January, 4-8, 2016.
2. Daggett, D.L., Brown, S.T., and Kawai, R.T., "Ultra-Efficient Engine Diameter Study," NASA/CR-2003-212309, May 2003.
3. Jones, S.M., "An Introduction to Thermodynamic Performance Analysis of Aircraft Gas Turbine Engine Cycles Using the Numerical Propulsion System Simulation Code," NASA/TM—2007214690.
4. Tong, M.T. and Naylor, B.A., "An Object-Oriented Computer Code for Aircraft Engine Weight Estimation," GT2008-50062, ASME Turbo-Expo 2008, June 9-13, 2008.
5. Albers, J.A. and Felderman, E.J., "Boundary-Layer Analysis of Subsonic Inlet Diffuser Geometries for Engine Nacelles," NASA TN D-7520, March 1974.
6. Guynn, M.D., "First Order Altitude Effects on the Cruise Efficiency of Subsonic Transport Aircraft," NASA/TM-2011-21173.
7. Guynn, M.D., Berton, J.J., Tong, M.T. and Haller, W.J., "Advanced Single Aisle Transport Propulsion Design Options Revisited," AIAA-2013-4330, 2013 Aviation Technology, Integration and Operations Conference, August 12-14, 2013.

[^0]:

