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An N+3 Technology Level Reference Propulsion System

Scott M. Jones, William J. Haller, and Michael T. Tong
National Aeronautics and Space Administration
Glenn Research Center
Cleveland, Ohio 44135

Abstract

An N+3 technology level engine, suitable as a propulsion system for an advanced single-aisle
transport, was developed as a reference cycle for use in technology assessment and decision-making
efforts. This reference engine serves three main purposes: it provides thermodynamic quantities at each
major engine station, it provides overall propulsion system performance data for vehicle designers to use
in their analyses, and it can be used for comparison against other proposed N+3 technology-level
propulsion systems on an equal basis. This reference cycle is meant to represent the expected capability of
gas turbine engines in the N+3 timeframe given reasonable extrapolations of technology improvements
and the ability to take full advantage of those improvements.

Nomenclature

AATT  Advanced Air Transport Technology Project

BPR Bypass ratio

ERA Environmentally Responsible Aviation Project

FPR Fan pressure ratio

HPC High pressure compressor

HPT High pressure turbine

LPC Low pressure compressor

LPT Low pressure turbine

MCL Maximum climb (flight Mach number 0.80, altitude 35000 ft) condition
NASA  National Aeronautics and Space Administration

OPR Overall or operating pressure ratio

RTO Rolling takeoff (flight Mach number 0.25, altitude 0 ft) condition
SFC Engine thrust specific fuel consumption

SLS Sea level static (flight Mach number 0.00, altitude 0 ft) condition
T; High pressure compressor exit temperature

T, Burner exit temperature, high pressure turbine entrance temperature

VAFN  Variable area fan nozzle

Introduction

The Advanced Air Transport Technology (AATT) Project has an overarching goal to investigate and
develop technologies and concepts with the potential to revolutionize the energy efficiency and
environmental compatibility of fixed wing transport aircraft. The primary focus of the AATT project is
the N+3, or far term, timeframe. Figure 1 shows the potential benefits for a set of NASA-generated
environmental metrics that serve as goals to guide technology development. N+3 represents an entry-into-
service aircraft in the 2030 to 2040 timeframe. Because of constrained budgets, it is imperative that
projects prioritize investment decisions in an attempt to maximize value for their limited technology

NASA/TM—2017-219501 1
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TECHNOLOGY GENERATIONS
TECHNOLOGY (Technology Readiness Level = 4-6)
BENEFITS*
N+1 (2015) N+2 (2020*) N+3 (2025)
Motee 32dB -42dB 52dB
(cum margin rel. to Stage 4)

LTO NOx Emissions D 2 4
(rel. to CAEP 6) 60% 75% 80%

Cruise NOx Emissions - - ano
(rel. to 2005 best in class) ok 10% 905

Aircraft Fuel/Energy Consumption* A% e ana
(rel. to 2005 best in class) 3% S0% | 90%

* Projected benefits once technologies are matured and implemented by industry. Benefits vary by vehicle size and mission. N+1 and N+3 values
are referenced to a 737-800 with CFM56-TB engines, N+2 values are referenced to a 777-200 with GE90 engines

** ERA's time-phased approach includes advancing "long-pole™ technologies to TRL 6 by 2015

1 CO2 emission benefits dependent on life-cycle CO2e per MJ for fuel andfor energy source used

Figure 1.—NASA'’s Subsonic Transport System Level Metrics.

development resources. To support this objective, the systems analysis team within the AATT project was
tasked with performing an assessment to quantify the potential fuel burn reduction for an advanced, N+3
propulsion system applicable to a single-aisle commercial aircraft (e.g., CFM56-7 thrust class system
suitable for a Boeing 737-800 aircraft). The results provided AATT project management with an initial
estimate of how much progress the advanced propulsion system technologies make toward meeting the
aggressive, long-term fuel burn reduction targets. In addition, the assumptions utilized in the study
provide discipline experts with improvement targets to assist in the formulation of technology
development plans.

The approach for the conceptual design activity began with the formulation of an N+3 technology
level propulsion system. To ensure consistency, a review of the propulsion technology levels used in
previous NASA system assessments was conducted. The Environmentally Responsible Aviation (ERA)
effort was a NASA project that focused on development of technologies for advanced, commercial
transports in the N+2 timeframe (Ref. 1). The N+3 technology assumptions leverage this previous work,
in addition to NASA-sponsored small core engine research conducted under multiple NASA Research
Announcements. Consequently, an N+3 technology level engine suitable as a propulsion system for an
advanced single-aisle transport was developed as the reference cycle for use in this assessment. This
reference engine serves three main purposes:

e Provides thermodynamic quantities at each major engine station, allowing component researchers to
have relevant information about the engine environment necessary for their design

e Provides overall propulsion system performance data for vehicle designers to use in their analyses

e (Can be compared to other proposed N+3 technology level propulsion systems on an equal basis

This reference cycle is meant to represent the expected capability of gas turbine engines in the N+3
timeframe given reasonable extrapolations of technology improvements and the ability to take full
advantage of those improvements. It is not meant to represent an actual engine product for which cost,
among other practical trade-offs, will impact the final propulsion system design.

NASA/TM—2017-219501 2



Assumptions

The N+3 reference propulsion system is an advanced engine sized to meet the thrust required for a
737-800 class transport. Since the study’s goal was to quantify the potential fuel burn reduction from
advanced propulsion, a current technology in-house representation of the 737-800 airframe was used. The
engine architecture was assumed to be a two-spool, separate flow gas turbine engine, but with features
that make it an evolution of currently-fielded aircraft propulsion systems. Engines in the single-aisle
thrust class, such as the CFM56-7B, have bypass ratios (BPR) on the order of 5; but advancements in
turbomachinery and materials technology have enabled higher bypass ratios. In a move to improve
propulsive efficiency, fan pressure ratio was decreased to the point that a geared system was required to
match optimal speeds for the fan and low pressure turbine (LPT). Therefore, the N+3 system employs a
gear box and a variable area fan nozzle (VAFN). The VAFN was required to maintain reasonable fan
performance over the entire flight envelope. Other technology areas in the engine are also assumed to
have been enhanced over N+2 levels. These technologies include improved turbomachinery
aerodynamics, advanced turbine cooling techniques, and ceramic matrix composite (CMC) materials.
Other engine technologies envisioned for future generations of propulsion systems, such as cooled
cooling air, alternative fuels, or intercooled/regenerative cycles that use heat exchangers, were not
considered.

The specific technology improvements for the reference engine were based primarily on research and
studies from the ERA Project. The ERA assessments characterized the expected technology performance
levels for a wide array of propulsion systems spanning the envisioned breadth of vehicle size classes in the
N+2 timeframe. The N+3 reference engine system assumed performance levels at least as good as the ERA
N+2 single-aisle system. Based on those efforts, the following component-specific performance was used:

e Fan—the N+3 fan technology is similar to the N+2 level, but the fan pressure ratio (FPR) has been
reduced to 1.3 to improve specific fuel consumption. The fan polytropic efficiency is 97 percent,
about the same as the N+2 level. This value may seem aggressive, but not overly so due to the low
pressure ratio and the gearing, allowing the fan to spin at a much lower speed than the low pressure
compressor (LPC) and low pressure turbine (LPT) to which it is mechanically coupled. Gear loss is
1 percent. Fan diameter is about 100 in.

e LPC—the gear system allows the LPC to rotate at a much higher speed and, therefore, an increase in
the pressure ratio to around three was assumed for this component. The peak LPC polytropic
efficiency is about 93 percent, roughly 1 percent higher than the N+2 level.

e High Pressure Compressor (HPC)—the HPC pressure ratio is approximately 14 to yield the target
Overall Pressure Ratio (OPR) of 55. The HPC polytropic efficiency was a function of the core size
parameter, which is a corrected mass flow surrogate for the blade height of the last stage of the HPC.
The nominal efficiency of 91 percent is for a core size of 6.0 Ibm/sec; the N+3 HPC has a core size of
approximately 3.0 Ibm/sec and an assumed polytropic efficiency roughly 2 percent below the nominal
value was employed.

e High Pressure Turbine (HPT)—the HPT is a two-stage turbine with a polytropic efficiency of
91 percent, 1 percent higher than the N+2 level. The HPT is assumed to have 3160 °R (2700 °F)
CMCs for its vanes and advanced thermal barrier coatings and improved cooling features for the
rotors. The maximum turbine inlet temperature (T4) is about 3360 °R and required HPT cooling is
about 15 percent, with 13 percent of that for the four HPT blade rows and 2 percent for the turbine
disks and cavity cooling. In current engines, a small amount of HPT power is extracted along with a
portion of high pressure bleed air for external, aircraft-related needs. However, for the N+3 timeframe
it was assumed there would be no engine air extracted. Therefore, the amount of horsepower required
to support external (customer) requirements was increased accordingly.
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e LPT—the LPT has a polytropic efficiency of 92 percent which is the same as the N+2 level. The LPT
is uncooled which is an advancement over the N+2 technology level. This would typically lead to
higher aerodynamic efficiency; however, the N+3 LPT assumed a higher loading to eliminate the
need for increased stage count. Since a loading increase will typically reduce efficiency, the benefit
from reduced cooling and the penalty from higher loading were assumed to offset each other.

o Combustor—the burner has a 4 percent stagnation pressure drop. The advanced combustor is
envisioned to be a lean-burn design. Based on NASA/industry testing, this technology appears to
enable significant reductions in Landing-Takeoff NOx (LTO NOx) levels which will meet or exceed
the N+3 goal values.

e Fan Nozzle—the fan nozzle has a variable exit area. The required area at top-of-climb is roughly
25 percent less than the maximum sea-level-static (SLS) value. Nozzle area is varied to maintain the
fan operating line along the peak efficiency contour on the fan map. No limit was placed on the
amount of fan nozzle area variation; at low thrust levels this resulted in extremely large nozzle areas.

Overall Cycle Design

The overall engine cycle design observed specific design rules and assumptions. From previous
vehicle studies, it was determined that the in-house model of the 737-800 had a thrust target requirement
of 22800 Ibf at rolling takeoff conditions (RTO). A net thrust of approximately 6000 Ibf was also required
at maximum climb conditions (MCL). It was decided to set the fan pressure ratio equal to 1.3 at the MCL
condition. This decision was based on making FPR as low as possible in order to achieve the minimum
uninstalled SFC, but not so low as to create engine diameters in excess of 100 in. Installation effects
would also drive the optimum fan pressure ratio away from lower values. Rather than vary the LPC/HPC
pressure ratio split, the LPC pressure ratio was set equal to 3.0 at MCL, and the overall pressure ratio was
allowed to vary from 30 to 80, effectively determining the MCL HPC pressure ratio. The cycle maximum
turbine inlet temperature, T4, was allowed to vary between 3000 to 3800 °R. This maximum temperature
occurs at the RTO condition; the turbine inlet temperature at the MCL condition was set to match the
thrust lapse requirement. Engine airflow (or fan diameter) was set to provide the required RTO net thrust.
At the sea-level-static (SLS) condition, the turbine inlet temperature was set to provide a net thrust of
28620 Ibf based on the Boeing Equivalent Thrust target (1.2553*RTO thrust (Ref. 2)). Engine bypass
ratio was determined by a lower limit on the ratio of core nozzle jet velocity to the ideally expanded fan
nozzle jet velocity; this ratio was not permitted below 1.4 at the notional cruise point (90 percent of the
MCL thrust). Component polytropic efficiencies at the MCL point were set as indicated above, with the
exception of HPC polytropic efficiency. Due to the large variation in HPC blade height with engine OPR,
the HPC polytropic efficiency was varied as a function of the core size parameter as shown in Figure 2.
This efficiency penalty is considered conservative given current research in the area of small core gas
turbines. Turbine cooling flow percentages were also varied as functions of the cooling air temperature,
T3, and maximum gas path temperature, Ta.

The results from the OPR/T4 design space study are shown in Figure 3. Under the assumptions made,
it is clear that little improvement can be made in SFC once OPR reaches 55; also, the impact of core size
and turbine cooling prevent taking advantage of very high cycle temperatures. However, it should be
noted that slight reductions in the core size penalty can alter the shape of the SFC contours and permit
slight improvements for higher T4 and OPR cycles. Therefore, a maximum cycle T4 of 3400 °R and an
OPR of 55 were chosen for the reference N+3 cycle design, even though a slightly better optimum could
be found closer to 3300 °R and 60 OPR. The design space and cycle analyses were done in the Numerical
Propulsion System Simulation (NPSS) code (Ref. 3); results for the MCL, cruise, RTO, and SLS points
are shown in Table 1(a) to (d). The N+3 reference engine thrust and SFC performance over a relevant
range of flight Mach numbers, altitudes, and throttle settings is shown in the Appendix.
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Engine Flowpath and Weight Estimation

Following the cycle design, estimates of the engine weight and flowpath dimensions were developed
for the N+3 reference engine. The NASA software tool WATE++ (Weight Analysis of Turbine Engines
(Ref. 4)), was used to create an engine diagram and weight associated with the thermodynamic cycle
detailed in the previous section. The cycle data required for WATE++ execution, such as air mass flow,
temperatures, pressures, pressure ratios, etc., were obtained from the NPSS cycle output. Data from both
the aerodynamic design point (top-of-climb) and a set of off-design cases was used to encompass the
maximum thermodynamic conditions experienced (i.e., temperature and pressure) in order to size each
engine component. The cycle data was combined with material properties and component design rules to
determine an acceptable engine flowpath; the component design rules considered geometric, stress, and
turbomachinery stage-loading limits. Notable component technology improvements are discussed below.

The fan diameter of the reference engine is about 100 in., significantly larger than previous engines in
this thrust class. Without improvements in inlet and nacelle design and technology, much of the
propulsive efficiency benefits derived from reducing the FPR will be eroded by increased nacelle drag.
The N+3 engine design targeted similar levels of nacelle drag despite the increased diameter; the N+3
engine’s inlet length-to-diameter ratio was about 0.4, the minimum required to avoid flow separation for
this geometry (Ref. 5). Advanced, short inlets face operability challenges such as maintaining good
performance in crosswinds and distorted flow: it was assumed that the N+3 inlet could be designed to
maintain high performance despite these challenges.

The N+3 reference engine HPT and LPT stator vane material was assumed to be high temperature
(i.e., 3rd generation) CMCs. Nickel-based alloys were used for the turbine rotor blades, with the
exception of the last stage LPT which used titanium aluminide. No cooling air was required for the LPT.

An empirical correlation was used to calculate the gearbox and lubrication system weight required as
part of the LP shaft. The correlation is a function of maximum delivered output power and gear ratio; it
was developed based on data from over fifty rotorcraft, tilt rotor, and turboprop aircraft. This correlation
is shown in Figure 4 where hp is the power delivered to the fan in horsepower and RPM is the fan speed
in revolutions per minute. The N+3 reference engine gear ratio is equal to 3.1.

, _ 0.754 0.15
Parametric Value = (hp/RPM__ )" "*(RPM, /RPM_ )
Gearbox & Lube System Weight (Ibs) = -37.4262 + 116.3297*(Parametric Value)
- 10000 +
7]
2
-
=
= -
Q
z .
Q @
L 1000 -
- | &
-d o %
o3 °
x @
o]
K]
—
s &
) ®
100 A °
1 10 100

Parametric Value

Figure 4.—Transmission and Lubrication System Correlation.
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For the N+3 turbomachinery design, stage counts from the N+2 engine were maintained despite an
increase in OPR. This required an increase of 10 to 25 percent in loading for the N+3 compressors and
turbines. This decision was deliberate; these loading increases provided turbomachinery discipline experts
with aggressive goals in formulation of their technology development plans. Should the targets be deemed
too infeasible as technology matures, the engine flowpath can be modified accordingly.

In summary, a conceptual-level systems analysis study was conducted to quantify the potential fuel
burn reduction of propulsion system technologies envisioned in the N+3 timeframe. An engine cycle
analysis identified an “optimal” engine design that took advantage of an array of aerodynamic, materials,
structures and cooling improvements. Upon completion of the cycle analysis, an engine flowpath was
created and an overall propulsion system weight was produced. Table 2 lists some of the aeromechanical
design features of the N+3 reference engine; a cross section of the engine from the performance and
weight estimation is shown in Figure 5. Table 3 shows a comparison between the N+3 reference engine
and an in-house model of a current technology system similar to the CFM56-7B turbofan. It is readily
obvious that the improvement in fuel efficiency of the advanced engine comes at a significant cost in
propulsion system size and weight. Although it was not done for this study, maximizing the fuel burn
benefit to the aircraft therefore requires balancing the trade between engine efficiency and engine size.

TABLE 2.—PRINCIPAL MECHANICAL

DESIGN PARAMETERS

Mechanical design parameter Value
Total engine pod weight (Ibm) 9350
Fan diameter (in.) 100
Nacelle maximum diameter (in.) 121
Engine length, fan face to nozzle (in.) 135
Fan/LPC/HPC/HPT/LPT stages 1-3-8-2-3
LP RPM, gear ratio 6800, 3.1
HP RPM 21000
LPC 1st stage loading, Ah/U¢ 0.30
HPC 1st stage loading, Ah/U¢ 0.26
HPT Ist stage loading, Ah/U¢ 1.20
LPT Ist stage loading, Ah/U2 3.05
HPC last stage blade height (in.) 0.42

Figure 5.—Cross-Section of the Engine.
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TABLE 3.—SUMMARY OF NASA MODEL
OF CURRENT TECHNOLOGY ENGINE
AND N+3 ENGINE

CFM56 | N+3
FPR 1.7 1.3
OPR 32 55
BPR 53 24
T4max, Rankine 3160 3400
Secondary flows, % 19% 15%
Fan diameter, inches 63 100
MCL net thrust, 1bf 5780 6070
MCL SFC, lbm/hr/Ibf | 0.650 0.464
RTO net thrust, Ibf 22800 | 22800
RTO SFC, lbm/hr/Ibf 0.474 0.289
System weight, lbm 7700 9300

Fuel Burn Improvement

Because the study objective was to isolate the fuel burn benefit of the advanced propulsion system
from that of an advanced vehicle, a current technology baseline airframe was employed. NASA Langley’s
Systems Analysis Branch has made a rigorous in-house representation of the 737-800 aircraft (Ref. 6).
The results of the cycle analysis work indicated the N+3 engine has a 28 percent improvement in SFC.
The weight analysis predicted the N+3 engine would show a weight increase of about 21 percent over the
baseline CFM56-7B engine. Figure 6 shows the sensitivity of the in-house 737-800 aircraft fuel burn to
changes in engine SFC and weight. The aforementioned N+3 characteristics combine to produce about a
30 percent reduction in fuel burn on this size vehicle, about half of the N+3 overall goal. It must be noted
that penalties for increased nacelle drag and landing gear length/weight are not captured in this
assessment. Although the impact was beyond the scope of this effort, previous work (Ref. 7) provides
some insight into the potential magnitude of these effects. As seen in Figure 7, nacelle drag has a penalty
on the order of twice that of the engine weight at the 1.3 FPR of the N+3 engine. Conversely, the required
weight increase coming from extending the landing gear length has minimal effect.

The conceptual design study indicated a potential for fuel burn improvement of 25 to 30 percent
utilizing N+3 propulsion system technologies on a single-aisle aircraft. Achieving these ambitious gains
will require overcoming a multitude of technology development challenges, such as:

e Maintaining high efficiency and tight tolerances in axial turbomachinery with extremely small blade
passage heights

e Development of robust materials with high temperature and increased loading capability

e Advances in subsonic inlet design to maintain short length while maintaining operability

The N+3 engine cycle described here should be viewed as an initial foray into the potential system
performance that could be available in the future should near-term technology advancements occur as
predicted. These results should be viewed as a reference system, or “stake-in-the-ground”, allowing
AATT projects and the disciplines it supports to best direct their efforts. It is expected that this reference
propulsion system will be updated as technology matures, more information becomes available, and
further investigations are conducted.
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Figure 6.—Fuel Burn Sensitivities for NASA’s 737-800 Airplane.
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Appendix—N+3 Engine Performance

Mach altitude dTamb $%$Thrust Net Thrust Fuel Flow TSFEC
ft degF 1bf lbm/hr lbm/ (hr-1bf)
0.00 0.0 27.0 100. 28620.6 5011.2 0.1751
0.00 0.0 27.0 90. 25758.5 4424 .2 0.1718
0.00 0.0 27.0 80. 22896.8 3850.9 0.1682
0.00 0.0 27.0 70. 20034.3 3296.0 0.1645
0.00 0.0 27.0 60. 17172.3 2786.1 0.1622
0.00 0.0 27.0 50. 14310.3 2289.4 0.1600
0.00 0.0 27.0 40. 11448.2 1840.8 0.1608
0.00 0.0 27.0 30. 8586.2 1414.6 0.1648
0.00 0.0 27.0 20. 5724.1 1015.1 0.1773
0.10 0.0 27.0 100. 25604.0 5588.2 0.2183
0.10 0.0 27.0 90. 23043.6 4956.2 0.2151
0.10 0.0 27.0 80. 20483.2 4384.9 0.2141
0.10 0.0 27.0 70. 17922.7 3818.3 0.2130
0.10 0.0 27.0 60. 15362.3 3266.7 0.2126
0.10 0.0 27.0 50. 12801.9 2748.7 0.2147
0.10 0.0 27.0 40. 10241.5 2238.8 0.2186
0.10 0.0 27.0 30. 7681.2 1768.1 0.2302
0.10 0.0 27.0 20. 5120.8 1311.5 0.2561
0.20 0.0 27.0 100. 23549.4 6233.7 0.2647
0.20 0.0 27.0 90. 21194.5 5564.5 0.2625
0.20 0.0 27.0 80. 18840.3 4933.3 0.2619
0.20 0.0 27.0 70. 16484.6 4348.9 0.2638
0.20 0.0 27.0 60. 14129.7 3762.5 0.2663
0.20 0.0 27.0 50. 11774.6 3190.9 0.2710
0.20 0.0 27.0 40. 9419.8 2636.7 0.2799
0.20 0.0 27.0 30. 7064.8 2090.3 0.2959
0.20 0.0 27.0 20. 4709.9 1567.1 0.3327
0.25 0.0 27.0 100. 22799.7 6590.8 0.2891
0.25 0.0 27.0 90. 20519.6 5903.6 0.2877
0.25 0.0 27.0 80. 18239.8 5240.5 0.2873
0.25 0.0 27.0 70. 15959.8 4630.1 0.2901
0.25 0.0 27.0 60. 13679.9 4025.3 0.2943
0.25 0.0 27.0 50. 11399.9 3424.1 0.3004
0.25 0.0 27.0 40. 9119.9 2843.0 0.3117
0.25 0.0 27.0 30. 6839.9 2261.9 0.3307
0.25 0.0 27.0 20. 4559.9 1698.5 0.3725
0.30 0.0 27.0 100. 21211.2 6648.2 0.3134
0.30 0.0 27.0 90. 19090.1 5976.7 0.3131
0.30 0.0 27.0 80. 16969.0 5325.7 0.3138
0.30 0.0 27.0 70. 14847.8 4722.0 0.3180
0.30 0.0 27.0 60. 12726.7 4123.7 0.3240
0.30 0.0 27.0 50. 10605.5 3524 .4 0.3323
0.30 0.0 27.0 40. 8484.5 2940.0 0.3465
0.30 0.0 27.0 30. 6363.4 2352.6 0.3697
0.30 0.0 27.0 20. 4242 .2 1774.8 0.4184
0.00 5000.0 27.0 100. 25683.8 4514.7 0.1758
0.00 5000.0 27.0 90. 23115.5 3948.7 0.1708
0.00 5000.0 27.0 80. 20546.9 3445.9 0.1677
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0.85  45000.0 0.0 100. 3824.4 1858.6 0.4860
0.85  45000.0 0.0 90. 3441.9 1681.2 0.4884
0.85  45000.0 0.0 80. 3059.5 1512.0 0.4942
0.85  45000.0 0.0 70. 2677.1 1347.8 0.5035
0.85  45000.0 0.0 60. 2294.6 1190.0 0.5186
0.85  45000.0 0.0 50. 1912.2 1033.3 0.5404
0.85  45000.0 0.0 40. 1529.8 880.9 0.5759
0.85  45000.0 0.0 30. 1147.3 729.3 0.6357
0.85  45000.0 0.0 20. 764.9 577.5 0.7550
0.85  45000.0 0.0 5. 191.2 318.3 1.6644
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