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ABSTRACT
A new computational technique, Wave Confinement (WC), is extended here to account for sound diffraction around
arbitrary terrain. While diffraction around elementary scattering objects, such as a knife edge, single slit, disc, sphere,
etc. has been studied for several decades, realistic environments still pose significant problems. This new technique
is first validated against Sommerfeld’s classical problem of diffraction due to a knife edge. This is followed by
comparisons with diffraction over three-dimensional smooth obstacles, such as a disc and Gaussian hill. Finally,
comparisons with flight test acoustics data measured behinda hill are also shown. Comparison between experiment
and Wave Confinement prediction demonstrates that a Poissonspot occurred behind the isolated hill, resulting in
significantly increased sound intensity near the center of the shadowed region.

INTRODUCTION

Helicopters are widely used in many applications such as
commercial and private transportation, medical emergency,
tourism, evacuation and rescue, etc. While many advance-
ments have been made throughout the years, one area that
requires further attention is propagation of aerodynamically
generated noise over long distances (thousands of wave-
lengths). The main sources of rotorcraft noise are due to
the main rotor and tail rotor; both of which produce lower
frequency sounds that are especially capable of propagat-
ing over significant distances causing community annoyance
complaints across a wide area (Ref.1).

As a result of helicopter acoustic emissions, several re-
strictions (Refs.2, 3) have been imposed to limit the flight
operations to specific times and locations, posing an imme-
diate requirement for noise mitigation measures. A critical
step toward community noise reduction is to develop a com-
putationally fast noise propagation tool that can account for
atmospheric and ground effects, including diffraction. Such
a tool will be of great importance in assessing the acoustic
impact on populated areas and for finding flight trajectories
with optimal noise performance. The focus of this paper is on
one important propagation feature, diffraction, which is not
currently well modeled for the problem of interest.

Diffraction is a naturally occurring phenomenon that al-
lows waves (including acoustic, electromagnetic, seismic, wa-
ter waves, etc.) to propagate around objects. Some examples
of diffraction include the ability to hear people around cor-
ners, optical effects that result in “silver lining” or iridescence
of opaque objects, and water wave propagation through break-
waters. Similarly, when a helicopter flies near a hill or other
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large obstacle such as a building, significant noise levels are
observed due to diffraction of sound waves around the ob-
stacle. This is depicted schematically in Figure1, where the
waves from source, S, continue to propagate into the shadow
region despite the obstruction.
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Fig. 1. Schematic depiction of diffraction due to a Gaus-
sian obstruction.

There are several existing aeroacoustic methods that are
widely used to solve the above problem but have a broad range
of physical and numerical limitations, which restrict their ap-
plicability (Refs.4–6). Some of these methods are based on an
inhomogeneous wave equation derived by Lighthill (Ref.4),
where the computational domain is split into a nonlinear
source region where a turbulence model is used to evaluate
noise sources, and an acoustic region where integral methods
such as Kirchhoff (Ref.6) or Ffowcs-Williams-Hawkings For-
mulation 1A (F1A) (Ref.7) are used for propagation. These
propagation methods can be used for long distances but are
only feasible for uniform media with no scattering topograph-
ical features such as buildings or hills.

A closed form equation is usually required in the conven-
tional use of integral methods, to account for wave propaga-
tion from each point on an acoustic source surface in an as-
sumed medium to a specified observation point. Thus, for
each observation point, the equation has to be integrated over
the entire source surface. Reflective and refractive effects re-
quire a separate integration over the source surface, whichre-
sults in a nested integral for each observation point. Account-
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ing for each of these effects quickly becomes cumbersome to
solve. In such cases, it is more appropriate to use discretiza-
tion methods to automatically account for the effects due to
the environmental factors, including atmospheric conditions
(wind, temperature and humidity gradients), terrain (topog-
raphy, ground impedance) without changing the equations.
The price for this generality is that the equations can only be
solved over a very limited region since they are restricted to
finer grid sizes to reduce numerical dissipation and dispersion
errors. Fine grid sizes quickly exceed the memory require-
ment beyond the capacity of most computers when distances
or frequencies increase.

A reasonable alternative to this problem is to use high fre-
quency approximations, such as eikonal or ray tracing. These
methods are numerically fast but do not account for sound
diffraction effects in an environment with non-flat ground
(Ref. 8). To overcome the flat-ground limitation, parabolic
methods (Ref.9) or Geometric Theory of Diffraction (GTD)
(Ref. 10) have been coupled with conventional ray tracing
techniques. However, it is well known that the parabolic
methods tend to become computationally complex and expen-
sive in three dimensions. The latter model, GTD, is compu-
tationally cheaper but uses numerical fitting on geometric (2-
D) slices through a three dimensional terrain from source to
receiver. This method further restricts principle features of
the terrain to either: flat, concave, convex, thin screens, or
wedges (Ref.11). This is not physically appropriate in a gen-
eral sense, and has implications on the accuracy of the final
solution.

The persistence of computational difficulty of diffraction
modeling, even after decades of research, is a major inhibitor
to assess accurate acoustic footprints of rotorcraft. An accu-
rate method to solve diffraction can also help generate new op-
erational guidelines for flight paths and maneuvers that min-
imize noise levels in populated areas and improve land-use
planning. So, a new method that is both computationally fast
and accurate is required for propagation of rotor noise over
realistic distances and terrain.

It has been well established that grid-based methods are
more general in implementation for acoustic propagation over
long ranges, but they are currently limited to short ranges
(Ref. 12). An improvement that can eliminate this limitation
of conventional discrete methods would be a rational approach
to solve the problem of interest. A promising improvement is
Wave Confinement (WC). WC is a new finite difference for-
mulation of a basic formalism that, to the authors’ knowledge,
has not been used before in this context. Wave Confinement
uses nonlinear solitary waves as basis functions to determine
the wave fronts, as treated by Whitham (Ref.13). Thus, with
WC, the evolving acoustic field from a point source can be ac-
curately represented as these propagating wave fronts, which
obey the wave equation.

Even though Wave Confinement uses finite differences,
it produces stable, asymptotic solutions, unlike conventional
discretization methods that eventually decay the solutioneven
with higher order accuracy. This improvement is made pos-

sible by adding a nonlinear term to the wave equation, which
does not interfere with propagation dynamics, but controlsthe
width of the solution, while conserving the essential integrals
of the problem. Wave Confinement has already been proven
useful in long range acoustic propagation including effects
due to temperature and wind gradients with arbitrary topog-
raphy (Ref.14). In this paper, implementation and validation
of a new capability that automatically accounts for diffraction
is discussed.

METHOD DESCRIPTION

The linearized acoustic wave equation,

∂ 2
t φ = c2∇2φ (1)

whereφ is a scalar and c is the speed of sound, is solved using
a new grid-based method described below. This involves (a)
Wave Confinement for propagation of acoustic wave fronts as
asymptotic solutions, (b) Dynamic Surface Extension (DSE)
to compute a mapping function between source and far field
and (c) Scaling Law (for Diffraction) to apply a correction
factor to adjust the amplitude of wave fronts to that of physical
waves.

Wave Confinement

Conventional discretizations of Equation1 are linear and
based on polynomial expansions (with coefficients deter-
mined by Taylor expansion, perhaps with numerical disper-
sion minimization). The difficulty with the resulting dis-
cretization errors is that they accumulate and continually
grow. In these circumstances, higher order methods are of-
ten necessary; however, they only delay, rather than eliminate,
error accumulation.

By contrast, WC entails a discretization which contains dy-
namic terms that relax the solution to an equilibrium in the
frame of the propagating function. Therefore, error accumu-
lation does not occur; higher order methods become unneces-
sary since these solutions are stable and can propagate without
spreading or dispersing. These solutions are called nonlinear
solitary waves, which are well known to arise from a balance
between nonlinear and dispersive effects (Ref.13). The dy-
namic terms added to the RHS of Equation1 to produce sta-
ble, nondissipative waves are:

E = ∂t
[

∇2(µφ − εΦ)
]

(2)

whereΦ is a nonlinear harmonic mean defined as

Φn
i, j,k =







∑+1
l=−1 ∑+1

m=−1∑+1
o=−1

(

φ n
i+l, j+m,k+o

)−1

27







−1

. (3)

Here,ε andµ represent the diffusion coefficient and numer-
ical coefficient, respectively, which stay constant duringthe
entire computation. Equation1 (with the dynamic terms de-
fined in Equation2) in discretized form is then written as

φ n+1
i, j,k = 2φ n

i, j,k −φ n−1
i, j,k + v2(∇2φ )+aδ−

n [∇2(µφ − εΦ)] (4)
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where,

∇2 (•) = δ 2
i (•)+δ 2

j (•)+δ 2
k (•)

δ 2
i (•)n = (•)i+1−2 (•)i + (•)i−1

δ−
n (•)n = (•)n − (•)n−1,

and v = c∆t
h , a = ∆t2

h2 , ∆t is the time step, andh is the grid
cell size. Equation4 describes all the features of propagation
such as reflection, refraction, atmospheric and ground absorp-
tion, as well as diffraction. Taylor expansion of this equation
can be simplified to an eigenfunction equation with a fixed
eigenvalue, whose solutions are nonlinear solitary waves,the
details of which are provided in Ref.15.

This leads to a highly intuitive interpretation where the mo-
tion of the physical wave can be represented by evolving wave
fronts generated from WC. The main idea that makes this ap-
proach feasible is that the position, arrival time (phase),and
wavelength of a nonlinear solitary wave are essentially unaf-
fected by discretization error; the profile neither disperses nor
diffuses due to discretization effects. Instead, the wave re-
mains concentrated over a small number of grid cells1, mak-
ing it possible to consider discrete Eulerian methods as a prac-
tical approach for tracking wave fronts over long distances.

This allows the Wave Confinement method to use coarser
grids than required by conventional resolution considerations,
while accounting for the effects of varying atmospheric and
topographic features. Since WC is a grid-based method, it
is fairly simple to accommodate varying ground and atmo-
spheric properties. A unique advantage of WC is that it does
not need body conforming grids as any topography can be
simply immersed in a Cartesian grid. Further, Wave Confine-
ment employs a simple zero contour or level set representation
of the surface and can easily accommodate complex shapes
with little computational effort.

In addition to tracking position and phase of these non-
linear solitary waves, Wave Confinement also provides an at-
tenuation factor for each wave front2 arriving at an observer.
This allows WC to calculate acoustics amplitude associated
with: (a) geometrical distance of travel, (b) terrain acoustics
impedance (for ground reflections), (c) atmospheric sound ab-
sorption, and (d) sound diffraction. An important note here
is that (b), (c) and (d) are frequency-dependent effects. At
this initial stage of the computational chain, Wave Confine-
ment derived attenuation factors are strictly valid only for
the selected wavelength (see Footnote1). To accurately ac-
count for rotorcraft acoustics that contain a broad range offre-
quencies, attenuation factors derived from WC are “adjusted”
with frequency-dependent scaling laws as explained in ensu-
ing sections.

1The wavelength of the nonlinear solitary wave used in
current studies typically covers five to seven grid cells.

2There may be multiple wave fronts due to reflec-
tions/refractions that arrive at a single observer.

Dynamic Surface Extension

If the source is omnidirectional, computation of phase and at-
tenuation factor are enough to construct the acoustic signature
at any far field point. However, rotorcraft noise has angu-
lar dependence (i.e., nonuniform sound source), which can be
captured directly by propagating the waveform on the grid or
by using Dynamic Surface Extension (DSE) (Refs.14, 16).
The former is not feasible since grid-based methods dissipate
the waveform. The latter, which uses a mapping function that
maps each point inR3 to the source surface to compute the
waveform, is not numerically dissipative/dispersive. This in-
volves propagating a set of conserved variables (e.g., initial
emission angles) from known points on the source sphere to
far field locations in the same way as the scalar,φ , shown
in the previous section. These conserved variables propagate
on the characteristics, or lines that are normal to the evolv-
ing wave fronts (see Figure2), and therefore, stay invariant in
that direction. So, at any far field point,(x,y,z), a set of emis-
sion angles (qr,qs) corresponding to each pass of the wave are
computed.

qr (θ , ψ , t)

qs (θ , ψ , t)

(x, y, z)

Fig. 2. Dynamic surface extension mapping of source
sphere to destination location.

The acoustic signal at any far field point will then be

p(x, t) = ∑
i=1,n

Ri (x)∗ p(ψi (x) ,θi (x) , t + τi (x)) (5)

wherex is location in(x,y,z), R is the attenuation factor,i
is the index of the arrival,ψ and θ are azimuth and eleva-
tion angles respectively,τ is the emission time, andn is the
number of arrivals. Dynamic Surface Extension was later re-
named by others as “closest point method” (Ref.17); however,
the concept of mapping the surface along propagation paths is
identical. With this new approach, details of physical wave-
forms are not numerically propagated, only locations of the
origin where the waveforms are known. This approach has
already been validated for long range propagation, including
refraction and multiple reflections (Ref.14). Validation of this
method for diffraction will be demonstrated in this paper.

DIFFRACTION

According to Huygens’ principle of wave theory (Ref.18),
each point on a wave propagates as a point source. This is ex-
pressed asA = A0

r e−iωt , whereA0 is the source strength,r is
the distance of propagation andω is the frequency. For exam-
ple, in Figure3a, the wave front att2 = t1+ dt is constructed
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Fig. 3. Description of diffraction using Huygens’ Principle
for a (a) 2D and (b) 3D case.

by applying the principle of composition to the wavelets gen-
erated by each point on the wave front at an earlier time, t.
These wavelets cancel each other at oblique angles of inci-
dence in free space. However, when there is an obstruction,
only part of the wave travels unimpeded. These unimpeded
wavelets interact with the obstacle, essentially acting asnew
sources. The oblique wave portions no longer cancel each
other; instead, they form a secondary wave that propagates
into the shadow region. This is defined as a diffracted wave.

The total field associated with a scattering object is the
sum of the incident field, reflected field, and diffracted field.
High frequency approximations can accurately predict inci-
dent and reflected fields (if surface normals are specified with
reasonable accuracy). However, diffraction is a frequency
dependent problem that cannot be solved with a high fre-
quency assumption. Sommerfeld, Keller, Kirchhoff and other
researchers (Refs.10,19,20) have carefully studied this phe-
nomenon and presented solutions for diffraction due to a knife
edge, single slit, double slit, disk, sphere, etc. Althoughthese
methods work quite well for simple scattering objects, they
are not feasible in realistic environments, where obstacles are
not well defined and no closed form solutions exist.

Another attempt to solve the diffraction problem was to
couple the high frequency approximation to Geometric The-
ory of Diffraction (Ref.11). As previously discussed, how-
ever, this does not account for realistic spreading. For exam-
ple, Figure3b shows a plane wave propagating over a Gaus-

sian hill, each point on the wave front acts as a point source
and the information is propagated inall directions. The sec-
ondary waves in this case are spherical and not confined to a
single plane. Therefore, the amplitude at a point (P) is due to
the wavelets from all the planes. This also proves that solving
the diffraction problem as 2D slices neglects spherical spread-
ing.

To demonstrate this property, wave propagation over a
Gaussian hill is computed using both 2D and 3D approxima-
tions, shown in Figure4. For 2D, a cylindrical source, equiv-
alent to a line source in 3D, is propagated separately in each
y-slice, using a 2D wave equation. There is no interaction
between the slices and the spreading is confined to a specific
slice. It is as if the information from only one point (Q) is
reaching the far field point (P) in Figure3b.

Y
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y
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Fig. 4. Diffraction computation (a) solved as 2D slices vs
(b) 3D. Red identifies high sound intensity, while blue is
low sound intensity.

For the 3D case, a line source is propagated using the three
dimensional wave equation. The amplitude at a point, P, takes
into account spherical spreading from all points Q, which is
in agreement with Huygens’ Principle. As can be seen in Fig-
ure4, the amplitude computed with the 2D slice assumption is
significantly different from the 3D solution. Note that the am-
plitude is much stronger behind the object at the center of the
shadow region, due to constructive interference of the waves
emanating from the edge surface. This is called a Poisson
spot, which is not observed in the 2D computation, and has
implications to the flight test data.

Knife Edge Diffraction

The proposed method is first validated against the classic
diffraction problem of a plane wave propagating over a per-
fectly reflecting semi-infinite plane as shown in Figure5. The
exact solution of this problem was originally solved by Som-
merfeld (Ref.19) in the frequency domain. A number of other
researchers subsequently developed solutions using a variety
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Fig. 5. Schematic of a wave diffracting due to a knife edge.

of methods such as Green’s functions, Fourier/Laplace trans-
forms, etc.

Here we will use Wave Confinement to solve this problem,
with the following computational setup. The knife edge is
considered to be along the y-axis (vertical axis), extending to
y= 1000 ft, and is positioned atx= 1000 ft along the horizon-
tal axis. The computational plane wave is initialized atx = 0
ft, which is then propagated from left to right using Equa-
tion 4 as a codimension one structure,φ =A0(sechα(~x−~x0)).
Here,~x0 is the centroid (position) andα defines the width (or
the central wavelength) of the computational wave.α is a
function of the confinement parameters,ε and µ . The time
evolution of these propagating computational waves is shown
in Figure6, which demonstrates that unlike conventional high
frequency approximations that solve ODEs along the ray, the
linear wave equation does not discontinuously decrease am-
plitudes at the shadow boundary.
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y
 (
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)

Edge

ν = -1

ν = -2

ν = -3

0

2500

2000
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1500

1000
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3000

Fig. 6. Time evolution of codimension one surfaces propa-
gating (to the right) over a knife edge using Wave Confine-
ment.

The diffraction loss (Lc) is computed using the relations,

Lci, j,k = 20 log

(

Ai, j,k

A0

)

(6)

and
Ai, j,k =

∫

φi, j,k dt. (7)

As mentioned previously, Lc correspond to the wavelength of
the computational wave, which is scaled and compared to the

approximated analytical diffraction loss (La) defined by Ref.
21 as,

La =















































20log(0.225/ |v|), v <=−2.4

20log

[

0.4−

√

(

0.1184− (0.38−0.1v)2
)

]

,

−2.4< v <=−1

20log(0.5e0.95v), −1< v <= 0

20log(0.5+0.62v), 0< v <= 1

0, otherwise.

(8)

Here,ν is a nondimensional variable defined as

ν = h

√

2
λs

(

1
d1

+
1
d2

)

, (9)

whered1 is the normal distance between source (S) and the
edge, andd2 is the normal distance between the observation
point and the edge, as depicted in Figure5.

Since the incident wave is assumed to be planar (i.e.,

d1 → ∞), ν reduces toν = h
√

2
λsd2

. h is defined as,h= y−y0

wherey is the height of the observation point andy0 is the
height of the edge (1000 ft in Figure6). So, below the edge,
h< 0=⇒ v< 0. For example, in Figure6, contour lines corre-
sponding tov =−1,−2,−3 are shown, all of which are below
the edge of the semi-infinite plane.

Both Lc andLa are independent of wavelength when they
are plotted as a function ofv, which means Figure7 is true for
all wavelengths. It can be seen in Figure7 that the computed
diffraction loss (Lc) is in good agreement with the analytically
determined diffraction loss (La), validating the ability of Wave
Confinement to capture diffraction for the knife edge case.
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Fig. 7. Diffraction loss plotted as a function ofν , plotted at
x = 2000 ft from Figure 6.
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Scaling Law

While WC gives an accurate solution, it is not feasible to re-
peat Equation4 for each frequency separately. Thus, a scaling
law is required. This scaling law is used to correct the ampli-
tude of the computational wave,Ac, for any physical wave-
length, λp. This is generalized to an arbitrary shape of the
obstacle with reasonable accuracy, and is defined as,

Ap = Ac

√

λp

λc
(10)

where Ap is the amplitude of physical wave andλc is the
wavelength of the computational wave.

Equation10 can be checked using an analytical solution
from the knife edge diffraction case previously described.We
assume a computational (or reference) wavelength of 200 ft,
and calculateAp (for all wavelengths) andA200 using the
equationA• = 10La•/20, whereLa is defined in Equation8.
Figure8 shows the ratios,λp/200 andAp/A200, for different
values ofh below the edge, as defined in Figure5. It can
be seen from Figure8 that Equation10 becomes more accu-
rate further into the shadow region. So, a predetermined table
of ratios computed using the equations above can be used in
future simulations, with an assumption that the size of the ob-
stacle is greater than the computational wavelength.
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Fig. 8. Scaling factor plotted as a function of frequency.
Scaling factor is calculated at various heights beneath a
knife edge, for a given 200 ft computational wave.

Propagation over realistic terrain

In realistic environments, there are no flat grounds or knife
edges. The scattering surfaces are not aligned to the compu-
tational grid, and an accurate immersed boundary condition
is required. As mentioned earlier, Wave Confinement uses a
level set approximation to specify a boundary. This means

f ! "

f # "

f $ "

G%&'
()

A*+,-. /23,46

Computational 

789:;<

G%&'
()

G%&'
()

Fig. 9. Stencil used for computation.

that the boundary is represented by a function,f , which on
any grid point is<, >, or= 0. Since Cartesian grids are used
here, the physical boundary does not necessarily fall on grid
points, as shown in Figure9. The practical implementation
of this scheme is that the computational waves reflect from
the computational ground. This can result in a small error in
the phase computation, which is approximately constant ev-
erywhere and can be added during the post-processing. For
simplicity, it is assumed here that the computational ground
is the actual ground. Further, it is assumed that all reflections
are specular in nature.

The derivatives at the ground are computed using the sten-
cil shown in Figure9. At the ground, one or more grid nodes
in the stencil are below the boundary, in which case, they are
interpolated using the ones above. This does not involve com-
plicated logic since functionf automatically defines whether
a grid point is above or below ground. Also, Wave Confine-
ment uses low order discretizations. So, there is never more
than one grid point in each direction that needs to be inter-
polated, which makes WC computationally cheaper than ex-
isting grid-based methods. Also, despite the initial staircase
effect, the reflected wave fronts quickly become smooth due
to tangential dissipation (Ref.14).

To demonstrate the immersed boundary condition, diffrac-
tion of a normally incident plane wave due to a circular disk
is shown. This is a canonical diffraction problem, the closed
form solution of which is not as straightforward as that of
semi-infinite half plane (Ref.22). The diffraction pattern de-
pends on the ratio of perimeter to wavelength,2π

λ a or ka,
wherea is the radius of the disk andk is the wavenumber of
the plane wave. Forka >> 1, the diffraction pattern is calcu-
lated using the computational setup shown in Figure10. The
disk is aligned to they− z plane defined using the boundary
function, f = y2+ z2− a2 = 0, with radius (a) of 200 ft. The
plane wave is represented by the scalar,φ , and has a thickness
of 50 ft. As the wave propagates over the disk, each point
on the disk acts as an edge source, which constructively inter-
feres to form a bright spot (Poisson spot), shown in Figure11.

The quantity,
(

∫

φdt
φ0

)2
, which is a representation of Inten-

sity ratio, I
I0

is plotted on ay − z plane behind the disk in
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Fig. 11. Plot of intensity on they− z plane behind a disk.

Figure 11, to show the Poisson spot. The intensity ratio is
also plotted as a function of z/a, at y = 0 forv = x λ

π a2 (or

N = 1
v = 41.8) in Figure12. This is compared with an ana-

lytical solution from Ref.23. Note that this method does not
need to be used to compute the interference pattern in the il-
luminated region (z/a > 1), since the incident wave has much
higher amplitude. The solution for the proposed diffraction
model is shown to have a qualitative agreement with the ana-
lytical solution for locationsz/a< 1, with some discrepancies
at z/a < 0.4.

Ground topography can be more complex than elementary
objects like disks and spheres. However, it is still possible
to immerse highly complex geometry in a Cartesian grid in
a similar manner as described. Further, realistic ground can
lead to more than one reflection. An example of multiple re-
flections from a single point is shown in Figure13. The ray
reflected from one part of the ground (flat ground) can reflect
again from another location (Gaussian hill). In such cases,
there is a phase difference between both waves which can sig-
nificantly affect the total signal unless the phase difference is
much smaller than the wavelength.

Figure14adepicts an omnidirectional acoustic wave prop-
agating over an isolated hill. This figure shows a secondary
wave front due to multiple reflections, as described in Figure
13. Since Wave Confinement is a grid-based method, these
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Fig. 12. Intensity ratio from Figure 11, for y = 0 line. In-
tensity ratio (a) computed using Wave Confinement, com-
pared with an (b) analytical solution. (b) is digitally traced
from Ref. 23.

s

Fig. 13. Multiple reflections depicted using a Gaussian hill.

wave fronts need to be separated by at least 5 grid cells to
capture the phase difference between them (see Figure14b).
If the grid cell size is increased for the same computation,
there are not enough grid points to separate these waves, and
they merge as if there is no phase difference, shown in Figure
14c.

The merger of incident and reflected wave is an accept-
able approximation for waves on the same order as the com-
putational wave, but is invalid for the problem of interest,
where the physical waves are much shorter and phase dif-
ferences become significant. In other terms, if the ampli-
tudes of these two waves are|A1| and |A2|, respectively, the
intensity is computed as(|A1|+ |A2|)

2. However, a physi-
cally accurate calculation would yield|A1+A2|

2, which is
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Fig. 14.(a) Time snapshot of computational wave on fine grid. Close-up view of computational waves on a(b) fine and
(c) coarse grid. Darker colors (red) indicate higher sound intensity.

|A1|
2 + |A2|

2 + 2|A1| |A2|cosδ , whereδ is the phase differ-
ence. The current implementation of Wave Confinement re-
sults in this limitation, but it will be overcome in the future by
solving the reflected wave in a separate array.

FLIGHT TEST COMPARISON

Helicopter acoustic data from an AS350 SD1 vehicle were ac-
quired in Sweetwater, NV in 2014. The flight test data include
acoustic measurements from behind an isolated hill. Figure
15 shows the microphone locations with microphones behind
the isolated hill identified as microphones 27 thru 29. The
full test description can be found in Reference24, while rele-
vant parameters are provided here. The AS350 SD1 is a 3000
pound civilian aircraft with a main rotor blade passage fre-
quency of 20 Hz, with a tail rotor blade passage frequency
of 70 Hz. Acoustic data acquisition for each level flight case

started when the vehicle was approximately 4000 ft before the
main microphone array (microphones 1−21), and terminated
approximately 4000 ft after the main array.

Pressure time-series data from microphones 27 thru 29 are
high-pass filtered using a 5th order Butterworth filter with a
cutoff frequency below 10 Hz. This high-pass filtering is re-
quired to remove wind noise from the measurement data in
order to better identify the faint acoustic signals arriving from
the vehicle.

Source Hemisphere

Source hemispheres from steady level flight conditions can
be created using the main microphone array. The hemisphere
used for this paper has a radius of 100 ft, and comes from
a 105 knot level flight condition with very low background
wind speeds (less than 1 knot at flight altitude). Pressure

8
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Fig. 15. Equipment locations with notional vehicle flight
path and local geography shown.

data are corrected for pressure doubling at the ground, and
transformed from time of reception to time of emission, de-
Dopplerized, and corrected for spherical spreading (Ref.25).

Pressure time-series data from microphones 1-21 (sub-
sampled to 12 kHz) are stored in half-second increments, with
50% overlap, at the ‘average’ elevation and azimuth on the
vehicle, as experienced during each half second time incre-
ment. Figure16 is a Lambert projection of the overall sound
pressure level of the hemisphere for this run. Each dot repre-
sents a half second of stored pressure time-series data at every
quarter second (50% overlap) throughout the duration of the
steady level flight.

The AS350 SD1 main rotor rotates clockwise when viewed
from above, so the Lambert projection begins with an azimuth
of 0◦ at the tail, 90◦ azimuth is on the left side of the vehicle,
while 270◦ is on the right side of the vehicle. Elevation begins
in the plane of the rotor (0◦) at the edge of the Lambert projec-
tion and decreases radially such that directly beneath the rotor
(−90◦) is represented by the point in the center of the Lambert
projection. The pressure time-series hemisphere data are used
to propagate signals to microphones 27 thru 29, from a known
and measured vehicle location.
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Fig. 16. Lambert projection of the overall sound pressure
level [dB], with markers identifying each segment of half-
second pressure time-series data.

Far Field Computation

The computational-setup of the flight test for a fixed aircraft
position is described below:

First, the size of computational domain (in physical units)
centered at microphone 11 is defined as shown in Figure17.
Ground elevation data of≈ 150 ft resolution for this domain
are imported from Google earth. Terrain data were rotated to
align with the flight direction and then linearly interpolated on
a Cartesian grid (x,y) with nodes located every 20 ft and al-
titude (z) calculated through linear interpolation from nearest
neighbors. Interpolated altitude was grounded using the mea-
sured GPS location of microphone 11 and verified against all
microphone locations. The ground interpolation scheme was
accurate within−2.2 to+ 0.9 feet for the main microphone
array and within 8 feet for the diffracted microphones.

For the purposes of this paper,x is defined as the direction
of the flight path, withy to the left of the vehicle. The origin
is located at the reference microphone location (microphone
11). The terrain data are then immersed in a 20 ft incremented
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Fig. 17. Computational domain with origin at microphone
11, (reference altitude 6993 ft mean sea level). Contour
lines are every 50 ft of elevation.
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Cartesian grid (x,y,z) using the boundary function,

f =

{

0, z− zelevation <= 0

1, otherwise.
(11)

The locations of the microphones used for comparison
are shown in Table1. There is an offset between mea-
sured locations and computed location because the physical
ground does not align with the grid. Second, the source
surface, represented by isotropic spherical wave is initial-
ized at a radius of 170 ft, around the aircraft positioned at
(−3701,−48.5,−252.2) identified as ‘Vehicle Location’ in
Figure17.

Table 1. Microphone locations as measured versus nearest
computational grid locations.

Mic # Measured (x, y, z ft) Computed (x, y, z ft)
10 (2.1, 26.9, 1.6) (0, 20, 0)
13 (3.3, -60., -3.2) (0, -60, 0)
17 (-0.3, -235.6, -12.7) (0, -240, -20)
27 (-1480.2 -5345.6 -280.9) (-1480 -5340 -280)
28 (-1908.7 -6048.7 -316.8) (-1900 -6040 -320)
29 (-1732.6 -5780.6 -303.1) (-1740 -5780 -300)

With the vehicle location, source noise, and terrain de-
fined, Equation4 can now be solved to compute phase, at-
tenuation factor (which includes the effect due to diffraction),
and emission angles. For the purposes of this diffraction in-
vestigation, the terrain is assumed to be a hard surface and
atmospheric attenuation has been turned off. However, Wave
Confinement is capable of accounting for each of these ef-
fects (Ref.14).

The pressure time histories at microphones 10, 13 and
17, which are in line of sight, are extracted using the map-
ping function and compared to the measured data in Figure
18. Computed and measured data are in excellent agreement,
which is to be expected since the source surface is constructed
using the recorded data from these microphones. Further, the
data were forward propagated using the same atmospheric and
ground conditions as that of backward propagation used to
form the spheres. This validates that the computational setup
and the algorithm are in agreement with the source data for
the simple straight ray case.

Pressure signals from the source hemisphere are then prop-
agated to microphones 27-29, behind the isolated hill. Figure
19 shows the computed attenuation factor (for approximately
5 Hz3) near these microphones. It was anticipated that sound
intensity at microphones 27 and 28 would be higher than at
microphone 29, which is confirmed by the measured data as
shown in Figure20. It was anticipated that further behind
the hill, the sound intensity would decrease. However, as can
be seen from Figure19, microphone 28 is in a Poisson spot

3Wave front is 5-7 grid cells wide, with grid cells spaced
every 20 feet. This results in an approximately 4 to 5.5 Hz
wave.
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Fig. 18. Comparison of computed versus measured pres-
sure time-series data for microphone (top) 10, (middle) 13,
and (bottom) 17. Every 30th time stamp of the computed
signal is shown for clarity.
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Fig. 19. Computed attenuation factor (x10−4) for an ap-
proximately 5 Hz wave propagating around the isolated
hill, with microphones 27 thru 29 identified. Black lines
are 50 foot elevation lines from Figure17.

formed by the hill. This resulted in a higher measured value
than that seen by microphone 29, which was more “line of
sight”. The prediction of this Poisson spot not only helps val-
idate the proposed propagation method, it elucidates the ap-
parent anomaly seen in the measured data, and confirms that
2D methods are not adequate for real life scenarios.

Now, the frequency spectrum at each of the isolated hill
microphone locations is calculated using the closest available
data point on the source hemisphere. Table2 shows the dif-
ference in azimuth and elevation angles from available source
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Fig. 20. Measured spectral data of microphones 27, 28 and
29.

data (steady level flight over microphones 1 thru 21) and re-
quired emission direction.

Table 2. Computed emission angle compared with closest
available measured source location.

Mic # Computed emission anglesClosest data points
27 (248.1, -5.78) (249, -11)
28 (254.4, -6.1) (255, -12)
29 (251.1, -5.74) (252, -11)

Since microphone 27 is close to the shadow boundary, the
scaling factor is≈ 1 for all frequencies. Figure21 shows the
comparison of the propagated data versus measured spectra.
The computed data are close to measured values, with some
over predictions at the first tail rotor harmonic (70 Hz), andat
higher frequencies around 225 Hz.

There is an error in the near field data used for computation
since no data are available at the required emission angles,
so the closest measured data points are used. Further, since
the source data were measured many seconds further into the
run, it is possible that the tail rotor forces have changed for
this nominally steady flight, affecting the emitted noise signal.
Future work will look into subsequent steady level flight runs
to identify if this natural unsteadiness is affecting the results.

Contrary to microphone 27, microphones 28 and 29 are in
the shadow region of the hill, where the scaling factor is not
1. For these cases, Equation10 is used. The frequency spec-
trum for microphones 29 and 28 is plotted in Figures22 and
23, respectively, against measured data. Both figures show
the computed data with and without scaling. The scaling law
impacts frequencies above 5 Hz, with higher frequencies in-
curring lower attenuation factors, resulting in lower sound in-
tensity.
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Fig. 21. Microphone 27 spectra, measured data compared
with propagated (computed) data.
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Fig. 22. Measured versus propagated (computed) data for
microphone 29. The upper plot includes the computed
data without scaling factor applied and the lower plot con-
tains the computed data with the scaling factor applied.

Spectral data from the scaled computation are in good
agreement with measured data, although there is a slight over-
prediction at the first tail rotor harmonic. This overprediction
at the tail rotor harmonic is attributed to the lack of adequate
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Fig. 23. Measured versus propagated (computed) data for
Microphone 28. Top is computed data without scaling fac-
tor applied, while bottom has the scaling factor applied.

source noise data for this condition. There are more deviations
from measured data for microphone 28 as shown in Figure23,
which will be studied in the future.

Computational errors also exist at microphones 28 and 29,
because of the low frequency assumption of the computational
wave. As explained before, if there are not enough grid points
between two wave passes, the signals can merge due to dis-
cretization effects, losing the ability to capture the details of
each pass separately and compute interference. If multiple
reflections are present in the signal, the implemented compu-
tational setup is not currently able to identify them.

CONCLUSIONS

The wave equation (in PDE form) accounts for all the prop-
agation effects such as refraction, multiple reflections, and
diffraction. When discretized and numerically evaluated,the
propagating waves incur numerical dissipation, which plays a
detrimental role in propagation problems. Artificial dissipa-
tion is especially problematic when the range is on the order
of thousands of wavelengths. For this reason, finite differ-
ence methods are replaced by high frequency approximations,
which solve an ODE along each ray rather than a collection
of rays (or a wave front). Although this is a reasonable ap-
proximation for many wave propagation problems, ray tracing
tends to fail when diffraction effects are dominant.

Wave Confinement provides a method for solving the wave
equation for cases where ray tracing techniques fail. Wave
Confinement is a discretization technique that solves the linear
wave equation, where the solutions (nonlinear solitary waves)
are asymptotically stable. This makes WC a viable choice
for long range propagation problems. The asymptotic solu-
tions are representations of physical waves and can be used to
propagate details of short waveforms through Dynamic Sur-
face Extension. Since diffraction depends on the frequency,
each frequency component of the waveform needs to be re-
solved separately, which is computationally expensive. To
avoid that problem, a physics based scaling law is used to
transform information from the computational wavelength to
all the physical frequencies within the waveform.

Since the wave length of the nonlinear solitary wave is ap-
proximately 5 Hz (for the flight test computations shown in
this paper), the scaling factor is 1 at 5 Hz and is< 1 for fre-
quencies greater than 5 Hz. The scaling law plays an impor-
tant role in capturing the frequency dependent diffractionphe-
nomena, without which Wave Confinement would artificially
propagate higher frequency wave fronts into the shadow re-
gion. The scaling law that was developed in this paper cor-
rectly shielded higher frequency sounds and resulted in qual-
ity comparisons with classic diffraction problems as well as
flight test acoustics data.

Comparison of Wave Confinement with analytical solu-
tions shows that this new idea is capable of accounting for
diffraction effects with reasonable accuracy. A flight testcom-
parison is also completed, with a low frequency assumption
that assumes the effects of phase differences between multi-
ple reflected waves are negligible. For example, two wave
passes with small phase difference are treated as one pass. Fu-
ture work will show the capability to compute each pass sep-
arately to avoid merging. The flight test comparison showed
reasonable agreement with measured data. Further, the propa-
gation method was able to help explain the seemingly anoma-
lous readings from a microphone that was placed in a Poisson
spot of an isolated hill.
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