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Integral forms of the permeable surface formulation of the Ffowcs Williams and Hawkings (FW-H) equation often
require an input in the form of a near field Computational Fluid Dynamics (CFD) solution to predict noise in the near
or far field from various types of geometries. The FW-H equation involves three source terms; two surface terms
(monopole and dipole) and a volume term (quadrupole). Many solutions to the FW-H equation, such as several of
Farassat’s formulations, neglect the quadrupole term. Neglecting the quadrupole term in permeable surface formula-
tions leads to inaccuracies called spurious signals. This paper explores the concept of spurious signals, explains how
they are generated by specifying the acoustic and hydrodynamic surface properties individually, and provides methods
to determine their presence, regardless of whether a correction algorithm is employed. A potential approach based on
the equivalent sources method (ESM) and the sensitivity of Formulation 1A (Formulation S1A) is also discussed for
the removal of spurious signals.

Nomenclature
English:
a vortex ring core radius
A monopole source strength
A,B,C,D directivity coefficients
c speed of sound
d perturbation of equivalent sources
f integration surface defined by f = 0
F dipole source term
J Jacobian of surface area
J Jacobian of equivalent source pressure
H(x) Heaviside function
M Mach vector
n̂ outward directed unit normal vector
p′ acoustic pressure
P compressive stress tensor
Q monopole source term
R vortex ring radius
R(m1,m2) propagation function
r radiation vector
r,z spherical coordinates
s0 distance from vortex ring origin
Seq surface of equivalent sources
t observer time
T quadrupole source term
u1,u2 time-independent surface coordinates
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u,v Cartesian flow and surface velocity
V forward velocity
W convection velocity of vortex ring
x Cartesian coordinates
y sample location in vortex ring frame
y monopole source location
Greek:
α attenuation factor
Γ vortex ring strength
δ (x) Dirac delta function
δδδ Kronecker delta
∆ difference
ε total relative error
λ damping factor
ννν attenuated velocity
ρ fluid density
Σ retarded surface
τ source time
Φ angle around vortex ring center axis
Ψ stream function
ω monopole oscillation frequency
Subscript:
1,1A Formulation 1 and 1A
a,ss acoustic and spurious signal
eq,c equivalent source and collocation point
e vortex edge on core circumference
m,d,q monopole, dipole, and quadrupole
M point monopole noise source
r radiation direction
ret retarded time
s,v surface and volume noise sources
VR vortex ring noise source
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VC vortex core
Superscript:
∞ freestream quantity
n iteration
T Transpose
¯ generalized function
′ acoustic quantity
ˆ unit vector
Symbol:
�2 wave operator, 1/c2

∞
∂ 2/∂ t2− ∂ 2/∂xi∂x j

Background
The derivation of the FW-H equation (Ref. 1) uses gener-
alized function theory (Ref. 2) and Lighthill’s stress tensor
(Refs. 3, 4) to define the acoustic pressure from a surface in
arbitrary motion. Equation 1 shows the general form of the
FW-H equation, which includes two surface terms, identified
by the delta function operating on the surface, δ ( f ), and a
volume term, identified by the Heaviside function operating
on the surface, H( f ). These are the monopole, dipole, and
quadrupole noise sources, respectively. Q is the monopole
source term, Fi is the dipole source term, and Ti j is the
Lighthill stress tensor. The surface f , shown in Fig. 1, can
be impermeable, such as a rotor blade surface, or permeable,
such as a virtual data surface surrounding the entire rotor. The
permeable form of the FW-H equation is used often with a
CFD solution. The CFD solution is used to resolve the near
field hydrodynamics and provide the fluid properties at the
permeable (ρ , ρui, p) and/or impermeable (p) surface. Inte-
gral forms of the FW-H equation use the fluid properties pro-
vided by the CFD solution to predict the noise at any observer
location. This technique has been applied to many different
types of geometries such as helicopter rotors, open rotors,
landing gear, slats, flaps, trailing edges, and jets (Refs. 5–10).

Fig. 1: Description of a surface by f (x, t) = 0, n̂i =
∂ f
∂x ,

f (x, t)< 0 inside, and f (x, t)> 0 outside the surface.

Permeable data surfaces are used to encapsulate noise
sources and propagation effects that may be off the physi-
cal surface of the geometry. An example of this is jet mix-
ing noise, where turbulence mixing in the jet exhaust gener-
ates noise and the jet plume influences the propagation of the
noise to the far field. Noise prediction using an impermeable
surface does not provide the correct result because most of
the noise is generated away from the solid surface. There-
fore, a volume integration would be required to predict the
noise. Since solutions of the quadrupole term would require
a volume integration and complex Green’s function, the com-
putational requirements are significant. If the noise sources

and plume region were to be captured inside a permeable sur-
face that surrounds the plume region, the monopole and dipole
terms of the FW-H equation would include the noise from the
sources and propagation effects inside the permeable data sur-
face. This removes the need for a volume integration, signifi-
cantly decreasing computation time.

Solutions of the FW-H equation, such as Farassat’s For-
mulation 1A (Ref. 11) shown in Eq. 2 and 3, do not include
volume integration terms, but instead provide both permeable
and impermeable solution options. In many applications, such
as the noise from a low tip-speed hovering rotor, the imper-
meable solution is acceptable because most noise is gener-
ated by the impermeable surface. In configurations that re-
quire a permeable solution, neglecting the quadrupole term
is thought to be satisfactory because the permeable data sur-
face encapsulates any noise sources and nonlinear propaga-
tion effects. Neglecting the quadrupole term in the perme-
able surface method is only valid if the quadrupole flow fea-
tures are completely encapsulated inside the permeable sur-
face. If quadrupole terms outside the permeable data surface
are not negligible, then ignoring them leads to errors, which
are called ‘spurious signals.’ These errors are the result of
only a partial accounting for volume terms, those inside the
penetrable data surface; whereas, volume terms outside the
surface are neglected. These spurious signals can occur in
many applications that employ permeable surfaces mentioned
above when the permeable surface does not encapsulate all
quadrupole terms. This paper will begin with a technique to
identify if spurious signals are present in a noise prediction
using permeable FW-H surfaces. Then two examples of the
application of the technique will be provided. Finally, this
paper will propose a method that can be used to negate the
spurious signals using the sensitivity of the noise prediction.

�̄2 p′ =
∂

∂ t
{Qδ ( f )}− ∂

∂xi
{Fiδ ( f )}+ ∂̄ 2

∂xi∂x j
{Ti jH( f )} (1)

4π p′m(xi, t) =
∫

f=0

[
(Q̇J+QJ̇)A1A +QJB1A

]
ret

du1du2 (2)

4πc∞ p′d(xi, t) =
∫

f=0

[
(ḞiJ+FiJ̇)C1A,i +FiJD1A,i

]
ret

du1du2 (3)

A1A = R(0,1)A1, B1A = R(0,1)Ȧ1, A1 = R(1,1)

C1A = R(0,1)B1, D1A = R(0,1)Ḃ1 +C1

B1 = R(1,1)r̂, C1 = c∞R(2,1)r̂
r = x(t)− y(τ), r =

√
riri, r̂ = r/r

R(m1,m2) = r−m1(1−Mir̂i)
−m2

Cause of Spurious Signals
Equation 1 is the general form of the FW-H equation, where,
for a permeable surface, the source terms are defined by Eqs. 4
through 6 and include the monopole, dipole, and quadrupole
term, respectively. The right hand side of the FW-H equation
can be classified into two types of source terms: surface and
volume. The surface terms are the combination of monopole
and dipole terms; the volume term is equal to quadrupole
term. These are shown in Eqs. 7 and 8. The total acous-
tic pressure is the sum of the surface and volume pressures,
p′ = p′s + p′v.

Q = ρ∞v jn̂ j +ρ(u jn̂ j− v jn̂ j) (4)
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Fi = pi jn̂ j +ρui(u jn̂ j− v jn̂ j) (5)

Ti j = ρuiu j +Pi j + c∞ρδδδ i j (6)

�̄2 p′s = �̄2 p′m + �̄2 p′d =
∂

∂ t
{Qδ ( f )}− ∂

∂xi
{Fiδ ( f )} (7)

�̄2 p′v = �̄2 p′q =
∂̄ 2

∂xi∂x j
{Ti jH( f )} (8)

Figure 2 shows a diagram of a source geometry causing a
wake region and acoustic sources. This is a simple represen-
tation of a CFD solution that would be used as input into the
FW-H equation. The freestream flow velocity is from left to
right. The noise is generated by the volume displacement by
the body (monopole noise), pressures on the physical surface
(dipole noise), and from turbulence mixing inside the wake, as
well as propagation effects (quadrupole noise). In Fig. 3, the
same configuration is shown with a permeable FW-H surface
that encapsulates the source geometry and a portion of the
wake region near the body. The monopole and dipole noise
emitted by the permeable surface replaces the noise from the
sources inside the surface, including any quadrupoles and
propagation effects inside, and hence the sources and wake
inside are not shown in the figure. The monopole and dipole
noise can be calculated by applying a free space Green’s func-
tion to a surface integration over the permeable surface, such
as Farassat’s Formulation 1A (Ref. 11). The quadrupole noise
generated outside the surface is calculated by a volume in-
tegration of the entire region outside the surface, similar to
Equation 14 from Reference 12. The noise at the observer is
the combination of the acoustic pressure from the permeable
surface, p′s, and from the volume, p′v. The noise everywhere
inside the surface, by definition of the generalized functions
employed in the derivation of the FW-H equation, is exactly
zero (i.e., if the acoustic pressure is calculated inside the sur-
face, the sum of the surface and volume terms equates to ex-
actly zero).

Fig. 2: Diagram of source geometry placed in uniform flow
generating a wake and acoustic sources. Observer is also
shown.

Fig. 3: Diagram of permeable surface placed around source
geometry and part of the wake and acoustic sources. Noise
at an observer is the combination of the surface and volume
terms. p′ is zero everywhere inside thee surface.

The volume term, p′v, is computationally intensive to cal-
culate. In many FW-H solvers, p′v is neglected with the as-
sumption that its contribution to the noise is small. This as-
sumption is argued to be valid because the majority of the
noise generation occurs near the body, which is inside the per-
meable surface. However, the FW-H equation is an exact re-
arrangement of the Navier-Stokes equations and includes all
hydrodynamic flow and acoustic phenomena. Because the
hydrodynamic flow is included in the right hand side of the
FW-H equation and solutions to the FW-H equation employ
a free space Green’s function, the hydrodynamic wake pass-
ing through the permeable surface radiates from the surface as
an acoustic wave. The volume term, when included, cancels
out acoustics that radiate due to the hydrodynamics passing
through the surface via Lighthill’s stress tensor. When the
volume term is excluded from the FW-H solution, the hydro-
dynamic contribution from the surface source terms are not
cancelled out properly. Figure 4 shows a diagram of the case
where the volume term is not included in the computation,
hence the noise sources and wake outside the surface are not
included in the diagram. The noise at the observer is no longer
equal to the combination of the surface and volume terms. The
noise inside the surface is no longer zero and is equal to only
the surface terms. Becauseuse the noise inside is zero when
all sources are accounted for, when the volume term is not
accounted for, the noise inside is equal to the negative of the
volume term that was excluded.

Fig. 4: Diagram of permeable surface placed around source
geometry without volume term. Noise inside the surface is no
longer zero and is equal to the negative of the volume term
that was excluded.

The noise predicted from the surface terms includes noise
from acoustic sources that are located inside the permeable
surface, shown as small circles in Fig. 2 and whose noise at
the observer is denoted by p′a, and noise from flow that crosses
the surface that would have been cancelled by the quadrupole
term if it had been included. The noise from the permeable
surface caused by the acoustic sources inside the surface is
zero inside the surface and nonzero outside. The contribu-
tions from the surface that should have been cancelled by
the quadrupole term are identified as spurious signals, p′ss.
The spurious signals, because they should have been can-
celled out by the volume term, are equal to the negative of
the quadrupole noise, p′ss =−p′v =−p′q. This error occurs in-
side and outside the permeable surface, shown in Fig 5. It is
also important to note that the reciprocal is also possible; i.e.,
if a noise source is outside the FW-H surface, it will radiate
inward and be zero everywhere outside. However, this does
not change the spurious signal, which will radiate inward and
outward.
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Fig. 5: Diagram of spurious signals caused by not including
the quadrupole term. These occur inside and outside the per-
meable surface.

Without predicting the quadrupole noise, the noise out-
side the permeable surface contains acoustic pressure from
the sources inside the surface as well as spurious signals. It
is impossible to determine if the acoustic pressure predicted
outside the surface contains spurious signals without knowl-
edge of the flow field inside because the noise generation in-
side the surface is unknown; i.e., it is unclear whether flow
phenomena on the surface are acoustic or hydrodynamic in
nature. However, as the next section will show, spurious sig-
nals can be identified by predicting the noise from the perme-
able surface inside the surface where the noise from acoustic
sources is calculated as zero. Because the spurious signals
are the negative of the quadrupole noise, the nonzero noise in-
side the surface provides guidance to the inaccuracy incurred
when ignoring the quadrupole term. If the quadrupole noise is
small, the spurious signal noise inside the surface will also be
small. If the noise inside the surface is large, the spurious sig-
nal noise is large and the noise predicted outside may contain
large amounts of spurious signals.

In the next section, two example cases are shown that re-
produce spurious signals. The examples include a cube with
theoretical flow quantities and a 2-bladed rotor where the tip
vortex convects through the permeable surface.

Identification of Spurious Signals
This section contains results from two example cases demon-
strating the identification and behavior of spurious signals.
The first example is a permeable surface in the shape of a
cube. The surface terms are provided by a theoretical point
monopole inside the surface and a vortex ring passing through
the surface. Because the contributions on the surface from the
point monopole and vortex ring are determined analytically,
they can be included or excluded from the source terms on the
permeable surface. The second demonstration compares the
noise from a permeable surface in the shape of a ‘tuna can’
around a rotor and from impermeable surfaces that coincide
with the rotor blades. This demonstrates a practical exam-
ple where predicting the noise inside the surface can provide
insight into the identification of spurious signals in the noise
outside the surface.

Theoretical Flow Quantities on Cube-Shaped Permeable
Surface

The first example is a permeable surface in the shape of a cube
whose surface properties are determined by a stationary point
monopole located at the center of the cube and a simplifica-

tion of a nondeforming vortex ring that convects through a
wall of the cube. Because a nondeforming vortex generates
no noise, the noise prediction should only include the noise
from the point monopole. However, as the previous section
explained, if a noise prediction does not correctly account for
flow phenomena passing through the surface, the noise from
the surface would be predicted incorrectly; i.e., the vortex ring
passing through the surface, if everything is not correctly ac-
counted for, would contribute to the noise at the observer.

Figure 6 shows a schematic of the permeable surface, point
monopole, and vortex ring. The ambient flow field is uniform
and stationary. The flow properties on the permeable sur-
face caused by the point monopole are determined by Eqs. 9
and 10 (Ref. 13) and are denoted with a subscript M. The flow
properties on the permeable surface caused by the vortex ring
are determined by an equation for the stream function, shown
in Eq. 11 (Ref. 14), and do not include the motion of the vor-
tex ring. Definition of the vortex ring strength, Γ, is provided
in the Appendix. From the stream function, Eqs. 12 and 13
are used to determine velocity and acoustic pressure caused
by the presence of the vortex ring, denoted with a subscript
VR. The influence of the convecting motion of the vortex ring
on the pressure and velocity is zero, and the acoustic density
due to the vortex ring is approximated as zero everywhere (in-
compressible). The point monopole is located at (0,0,0.5) m,
is oscillating in strength at a frequency of 2 Hz, where ω is 2π

times the frequency, has a source strength A of 10 Pa·m, and
exists over an observer time range of 10 seconds starting at
0 seconds with 2049 samples. Figure 7 shows a schematic of
the coordinate system used to determine the fluid properties of
the vortex ring, which exists over a time range and sample rate
that coincides with the point monopole. Each side of the per-
meable surface cube contains 512 evenly spaced grid points
where the flow from the point monopole and/or vortex ring
are sampled. In this example, the fluid properties at the per-
meable surface will be set to those from the point monopole
alone, vortex ring alone, then the combination of the point
monopole and vortex ring. As stated in the previous section,
if the quadrupole term is not included, we would expect true
acoustic sources, such as that from the point monopole, to ra-
diate outward from the permeable surface and be zero inside
the permeable surface. Similarly, as stated in the previous sec-
tion, if the quadrupole term is not included, we would expect
hydrodynamics, such as that from the vortex ring, to radiate
inward and outward from the permeable surface.
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Fig. 6: Schematic of cube example problem.

Fig. 7: Schematic of coordinate system for vortex ring
(Ref. 14).

p′M(x, t) =
A
r

eiωτ , ρ
′
M(x, t) = p′M/c2

∞ (9)

r = x(t)− y(τ), r =
√

riri, r̂ = r/r, t = τ + r/c∞

uM(x, t) = r̂
√

1+(c∞/ωr)2

ρ∞c∞

p′M(x, t− 1
ω

tan−1(c∞/ωr)) (10)

Ψ(y) =
ΓRr
4π

∫ 2π

0

cosΦ0

s0
dΦ0 (11)

s2
0 = z2 + r2 +R2−2Rr cosΦ0

z = yik̂i, r =
√

(yi− zk̂i)(yi− zk̂i)

uVR,x1(x, t) =
1
r

dΨ(x−Wt)
dz

sin(Φ),

uVR,x2(x, t) =
1
r

dΨ(x−Wt)
dz

cos(Φ),

uVR,x3(x, t) =
1
r

dΨ(x−Wt)
dr

(12)

uVR(x, t) =
√uVR,iuVR,i,

p′VR(x, t) =−
1
2

ρ∞u2
VR,

ρ
′
VR(x, t) =0

(13)

The first prediction is for noise emitted by the point
monopole alone. The equations for a point monopole,
Eq. 9 and 10, are used to determine the flow quantities

on the permeable surface, which are provided as input to
ANOPP2 (Ref. 15). ANOPP2 includes Farassat’s Formu-
lation 1A (F1A), which uses a free space Green’s function
to solve the monopole and dipole terms of the FW-H equa-
tion, called ANOPP2-F1A. ANOPP2-F1A does not include
the quadrupole noise term. Figure 8(a) shows the noise pre-
diction at the observer just inside the surface. The contri-
bution to the total acoustic pressure from the surface terms,
monopole and dipole terms, of F1A, shown in Eqs. 2 and 3,
respectively, are shown and are exactly out of phase, summing
to zero. This is true everywhere inside the permeable surface.
The acoustic pressure caused by the point monopole directly
at the inside observer is also shown. Figure 8(b) shows the
prediction at the observer just outside the surface. At this
observer location, the acoustic pressure from the monopole
and dipole terms are no longer exactly out of phase, and the
dipole term is significantly different due to the sides of the
cube permeable surface cancelling; the sum of the monopole
and dipole terms is no longer zero, and is similar to the acous-
tic pressure from the point monopole. This is true every-
where outside the surface. This example shows that as long
as the noise-generating mechanisms are contained inside the
permeable surface, the noise inside will be zero everywhere
and outside will be nonzero. It is important to note that the
cancellation of the monopole and dipole terms inside and the
sum of the monopole and dipole terms being similar to the
point monopole outside are strongly dependent on the spatial
resolution of the permeable surfaces. It was found that the
closer the observer was to the permeable surface, the higher
the spatial resolution needed to be to cause an effective can-
cellation inside and matching outside. This is due to the sur-
face integration technique employed in ANOPP2-F1A, which
is a Riemann sum of the acoustic pressure caused by each
node on the permeable surface. As mentioned by Farassat in
Reference 16, a better surface integration, such as a Gauss-
Legendre, would ease this limitation.

The next prediction is for a permeable surface whose flow
properties are determined by the convecting vortex ring alone.
Since the vortex ring is nondeforming, if all terms of the FW-
H equation are included, the acoustic pressure should be zero
everywhere. Figure 9(a) shows the noise prediction from the
permeable surface whose flow properties are caused by only
the vortex ring at the location just inside the cube. The noise
predictions in Fig. 9(a) are not zero and, hence, suggest spuri-
ous signals are present. Figure 9(b) shows the noise prediction
from the permeable surface whose flow properties are caused
by only the vortex ring at the location just outside the cube.
The predictions are not zero and are very similar to the results
shown in Fig. 9(a). This coincides with the previous state-
ment: that hydrodynamics that pass through the surface do
not obey the rules outlined by the generalized functions em-
ployed in the derivation of the FW-H equation.

Figures 10 shows ANOPP2-F1A predictions from a sur-
face whose properties are determined by the vortex ring and
the point monopole. The noise at the inside observer is the
same as the vortex alone, and the noise outside is the sum
of the monopole and vortex ring alone cases. This shows
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Fig. 8: ANOPP2-F1A prediction of noise from permeable surface whose flow properties are determined by the point monopole.
(a) Observer is just inside the surface. (b) Observer just outside the surface.

Fig. 9: ANOPP2-F1A prediction of noise from permeable surface whose flow properties are determined by the vortex ring. (a)
Observer is just inside the surface. (b) Observer just outside the surface.

Fig. 10: ANOPP2-F1A prediction of noise from permeable surface caused by the vortex ring and monopole source. (a) Observer
is just inside the surface. (b) Observer just outside the surface.
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that hydrodynamic flow phenomena passing through the sur-
face cause spurious noise inside and outside the surface while
acoustic sources contained inside the surface radiate only out-
side the surface.

In addition to a single point, contours of acoustic pressure
inside the permeable surface can be calculated to see the in-
fluence of spurious signals. Figure 11 shows a contour of
acoustic pressure on a plane normal to the x1 axis inside the
cube-shaped permeable surface whose flow properties are de-
fined by the point monopole and vortex ring. The grid inside
consists of 242 evenly spaced observer locations ranging from
-2.4 m to 2.4 m in the x2 and x3 axis directions centered at
the origin. The range was chosen because, as mentioned be-
fore, the closer the observers to the permeable surface, the
finer the permeable surface grid resolution required to accu-
rately capture the cancellation from the point monopole. Fig-
ure 11(a) shows the acoustic pressure at an observer time of
5 seconds, when the vortex ring is in the center of the perme-
able surface. Notice that there is no sign of acoustic pressure
from the point monopole. Figures 11(b) through 11(d) show
the acoustic pressure at different observer times as the vortex
passes through the permeable surface. Figure 11(f) shows the
acoustic pressure as the vortex has passed fully through the
permeable surface.

The next example shows that performing a similar calcula-
tion on a realistic configuration where the acoustic and hydro-
dynamic properties cannot be so easily separated can provide
identification of spurious signals.

CFD Extracted Flow Quantities on Tuna Can-Shaped Per-
meable Surface

For the case of a low tip-speed hovering rotor, the im-
permeable formulation of the FW-H equation without the
quadrupole term is expected to give acceptable results be-
cause the quadrupole noise source is minimal; i.e., the near
field does not contain any acoustic sources, and the propaga-
tion of noise through the nonuniform medium is not signifi-
cantly different than through a uniform medium. In this next
example, a CFD computation of a two bladed hovering ro-
tor is used to populate permeable and impermeable surfaces,
which are then fed to ANOPP2-F1A for use in Farassat’s For-
mulation 1A to predict the noise at an observer. Since the
impermeable formulation without the quadrupole term is ex-
pected to give acceptable results, comparing the noise from
the impermeable and permeable surface provides an estimate
of the inaccuracy caused by the spurious signals. The com-
parison is only an estimate because a prediction using the per-
meable surface includes any dissipation of the acoustic waves
as they propagate from the blade surface to the permeable sur-
face, as well as the aforementioned propagation effects; how-
ever, these are assumed small compared to any spurious sig-
nals that may be present. Figure 12 shows a schematic of the
rotor setup. The impermeable surfaces are the physical, rigid,
1 meter long blade surfaces, and the permeable surfaces are
in the shape of a ‘tuna can’ around the entire rotor. The ra-
dius of the permeable surface is 1.125 m, and the height is 0.7
m. The observer locations are in the shape of a square 4 m

by 4 m located 1.5 m below the lower surface of the perme-
able surface and contain 1012 evenly spaced observer nodes.
The conditions on the permeable and impermeable surfaces
are provided by an OVERFLOW2 (Refs. 17, 18) computa-
tion which performs a fourth order in space, second order in
time numerical solution to the Unsteady Reynolds-Averaged
Navier-Stokes (URANS) equations using a Spalart-Allmaras
turbulence model (Ref. 19). The computational method pre-
sented here is similar to that presented in Reference 20, except
that because the rotor is rigid and the collective pitch is fixed,
only OVERFLOW2 is necessary. That is, no coupling with a
structural dynamics code was required. The computation con-
tains 80 million points with an inner body around the rotor of
radius 1.1 times the rotor radius and height of 4.5 times the
rotor radius. The off body grid is uniform with grid resolution
of 0.1 times the blade chord. The blades are NACA 23012 air-
foil cross sections at 5 degree collective pitch. OVERFLOW2
was run for 10 revolutions before sampling for the imperme-
able and permeable surfaces was initiated.

Figure 13 shows ANOPP2-F1A predictions of pressure at
the observer surface at a single instant in time from the im-
permeable (a) and permeable surfaces (b), including the dif-
ference (c), ∆, and relative error (d), ε , using Eqs. 14 and 15,
respectively. The permeable surface, due to the propagation
speed of acoustic waves through the CFD domain, adds a time
delay which exacerbates the relative error; however, the error
due to spurious signals can clearly be identified. The pre-
dictions show that the permeable surface predictions contain
much higher acoustic pressure than the impermeable surfaces
due to spurious signals.

∆ = p′permeable− p′impermeable (14)

ε =
|p′impermeable− p′permeable|
|p′impermeable|+ |p

′
permeable|

(15)

Spurious signals can be identified in Fig. 13 because pre-
dictions using the impermeable surface can provide accept-
able pressures. If the noise prediction from the imperme-
able surface is not acceptable (i.e., if the tip Mach number
is higher) then using the knowledge that the noise predicted
inside will not be zero can be used to identify if spurious
signals are present. The noise from the permeable surface
around the rotor contains wakes passing through it. Further-
more, the quadrupole term is not accounted for, and there-
fore, spurious signals inside the surface are expected. Fig-
ures 14(a) through (e) shows ANOPP2-F1A predictions of
noise at 5 slices through an unstructured volume of observers
(19781 observer nodes) placed inside the permeable surface.
Toward the bottom of the permeable surface, x3 = −0.35
m, the prediction shows a high gradient of acoustic pressure
toward the outer radius of the permeable surface. This is
due to the tip vortex passing through the permeable surface.
The noise toward the center is near zero due to the minimal
wake passing through the surface near the center. The slices
through the volume toward the middle of the permeable sur-
face, xi = (0.175,0.0,−0.175) m, do not have spurious signal
strengths as large as near the permeable surface because they
are further away from the tip vortices passing through the bot-
tom surface. However, the values of acoustic pressure are still

7



Fig. 11: Contours of acoustic pressure inside permeable surface whose properties are defined by point monopole and vortex
ring. (a) through (f) show different instances of observer time. a) also shows the grid of observer locations.
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Fig. 12: Schematic of 2-bladed rotor prediction setup.

Fig. 13: ANOPP2-F1A predictions of instantaneous acoustic pressure from impermeable (a) and permeable (b) surfaces. (c) ∆

as defined by Eq. 14. (d) Percent error defined as 100∗ ε where ε is defined by Eq. 15.
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Fig. 14: ANOPP2-F1A predictions of acoustic pressure inside the tuna can-shaped permeable surface.
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high due to the proximity of the observers to the permeable
surface. Toward the top of the permeable surface, x3 = 0.35
m, the spurious noise is caused by the inflow of the rotor. As
the fluid velocity passes through the surface, this causes spuri-
ous signals. Here we see that predicting the noise on the inside
of the permeable surface has provided us a way to identify if
spurious signals are present.

ANOPP2-F1A provides a diagnostic tool that communi-
cates the source terms on the surface in retarded time, called
the Σ−surface, which derives its name from Formulation 3 of
Farassat (Ref. 11), that contribute to the pressure at a single
observer location and time. Figure 15 shows the Σ−surface
for an observer located at (0.0,1.8,0.0) m, inside the perme-
able surface, at the peak noise observer time, with contours
of the sum of monopole and dipole noise. The upper and
lower surfaces are both shown. The Σ−surface shows that
the sources of noise at the observer located inside the perme-
able surface are from the tip vortex passing through the bot-
tom of the surface and the flow through the top of the surface.
Figure 15(a) shows a highlighted area where noise from the
upper surface is contributing to the observer; this is indicative
of the true acoustic source, and a surface integral of just the
true acoustic source’s influence on the surface would integrate
to zero, similar to the previously shown monopole in cube ex-
ample. Figure 15(b) shows a highlighted area where a noise
source is caused by the tip vortex passing through the lower
surface. This shows again that predicting noise on the inside
of the permeable surface can identify when spurious signals
may be contaminating the noise prediction.

Removal of Spurious Signals
In realistic situations, calculation of acoustic pressure caused
by the quadrupole term of the FW-H equation is not possi-
ble due to the size of the numerical calculation that would
be required to accurately capture the complete influence of
the quadrupole term. Therefore, an algorithm is needed that
uses only the knowledge of the behavior of spurious signals to
negate any nonacoustic sources. An approach was proposed
by Lockard and Casper (Ref. 21) for airframe noise predic-
tion by applying a frequency domain, frozen gust assumption
at low Mach numbers (around Mach number 0.2). Agreement
was acceptable for some test cases but failed to correct for
spurious signals due to a wake induced by flow over a cylin-
der passing through a permeable surface. Another correction
method is to completely ignore portions of a permeable sur-
face, typically downstream, where wakes are known to pass
through. However, this also means that true acoustic waves
on the downstream permeable surface are also ignored. Fig-
ure 16 shows predictions of acoustic pressure similar to those
shown in Fig. 10 but with the side of the cube where the vor-
tex passes through removed. The figures show that although
the influence of the vortex ring is dampened, the acoustic
pressure from the surface terms on the ‘outside’ no longer
match the point monopole. Similarly, ‘inside’ the surface, the
acoustic pressure from the surface terms is still nonzero. A
third approach is to average the flow properties on the down-
stream direction in the frequency domain (Ref. 22). Because

the convection velocity of the hydrodynamics is slower than
the acoustics, averaging allows separation of the phenom-
ena. While averaging has been shown to work for some jet
noise predictions, it is not a general purpose solution, because
the surface is required to be stationary or in uniform motion.
Also, the technique of averaging suffers from the question of
which surfaces to use. Despite multiple studies on the ap-
proach, it is still unclear when to average and what surfaces to
average. Clearly, given all the research performed on address-
ing spurious signals for certain applications, a more robust,
fundamental correction approach is needed that does not suf-
fer from the above limitations.

In the current effort, before an algorithm can be proposed,
a few constraints are defined that coincide with those imposed
by Farassat on his solutions to the FW-H equation. Faras-
sat (Ref. 23) proposed that any general solution to the FW-
H equation satisfy the following constraints, which are taken
verbatim from Reference 23:1

1. There must be no restrictions on the geometry of the
noise generator (blades, airframe, etc.). This means that
results for a flat (infinitely thin) plate are not acceptable.

2. There must be no restrictions on the kinematics of the
noise generator. This means that the motion of the source
cannot be restricted to lie on a straight line or a helicoidal
surface.2

3. The result must be valid in the near and far fields.

4. One should be able to calculate the noise for an observer
that is stationary in the medium, or in motion with the
aircraft.

Noise from spurious signals cannot be separated from that
of true acoustic sources outside the permeable surface; how-
ever, inside the permeable surface, true acoustic sources lo-
cated inside the permeable surface generate no noise. Any
predictions of noise made within the permeable surface, there-
fore, are from only spurious signals. The authors propose a
method that leverages this behavior of spurious signals and is
based on the equivalent source method (ESM) (Refs. 25, 26)
and sensitivity of Formulation 1A, called Formulation S1A
(Ref. 27). Figure 17 shows a schematic of an approach that
uses equivalent sources on the permeable surface (surface of
equivalent sources). These equivalent sources, which consist
of pressure, momentum, and density at every grid point and
time step of the original permeable surface, can potentially
be tailored to produce an acoustic field that cancels any noise
within the surface at a series of collocation points, p′c, similar
to the observers shown in Fig. 11. If the surface of equiva-
lent sources, Seq, is tailored such that it cancels the flow field

1An exception is Formulation 1B of Casper and Faras-
sat[24] that failed to satisfy requirement 1 because of the ap-
plication of a flat plate assumption. However, a more robust
implementation that satisfied the requirements was proposed
by Farassat and Casper in Formulation 2B[23].

2In addition to constraint 2, the authors add that the surface
may be rigid or deforming.
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Fig. 15: Σ−surface at observer location (0.0,1.8,0.0) m at peak noise observer time. Noise is caused from vortex passing
through bottom of permeable surface and from flow through the top of the surface.

Fig. 16: ANOPP2-F1A prediction of noise from permeable surface caused by the vortex ring and monopole source using 5 of
the 6 sides of the cube. (a) Observer is just inside the closed surface. b) Observer just outside the closed surface.
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caused by only the hydrodynamics passing through the sur-
face, then the noise within the permeable surface would can-
cel the spurious signals (p′eq = −p′c = −p′ss), and the sum of
the noise outside from the permeable surface and from the
surface of equivalent sources would be those from only true
acoustic sources, p′ = p′a + p′ss + p′eq = p′a. It is important
to note that this does not reproduce the quadrupole term, i.e.,
any noise generated outside the surface is not reproduced;3

the surface of equivalent sources merely cancel the spurious
signals. Other than the size of the proposed computation for
realistic problems, the challenge with this approach is that it is
an ill-posed problem; there are more equations than unknowns
and potentially more than one configuration to the equivalent
sources that satisfy the condition. This is not unlike other
problems that employ the ESM, such as beamforming, which
have achieved great success regardless.

Fig. 17: Schematic of equivalent source method proposed for
the correction of spurious signals.

Ultimately, we wish to solve the system of equations,
shown in Eq. 16, where: p′c is the acoustic pressure at each
collocation point at every time step from the permeable sur-
face, p′eq is the acoustic pressure at each collocation point at
every time step from the surface of equivalent sources, Seq
is the surface of equivalent sources defined at every loca-
tion on the permeable surface and every time step, and [F1A]
is the matrix representation of the numerical implementation
of Farassat’s Formulation 1A. The authors propose solving
this system of equations via the Levenberg-Marquardt algo-
rithm (Refs. 28, 29) that utilizes the Jacobian of the pressure
with respect to the surface quantities, which can be provided
by Formulation S1A, denoted as J. This is shown in Eq. 17,
where S is the sum of the squares to be minimized, superscript
n denotes iterations, and m denotes observer time and space
indices. d is the perturbation of Seq between iteration and is
determined by setting the derivative of S with respect to d to
zero, which leads to Eq. 18, where λ is a damping factor. Im-
plementation and application of this approach is left for future
work. It is suggested that this method be tested by applying
the technique to the fundamental problems demonstrated in
this work.

−p′c = p′eq = [F1A]Seq, J = ∂p′eq/∂Seq (16)

Sn+1(Sn
eq +dn)≈

m

∑
i=1

(−p′c,i− p′neq,i−Jn
i dn)2 (17)

3Because true acoustic sources outside the permeable sur-
face propagate on the inside, the surface of equivalent sources
would reproduce the flow quantities caused by those sources.
However, the surface of equivalent sources would not propa-
gate outside the surface and, therefore, would not reproduce
the influence of the quadrupole term.

[JTJ+λdiag(JTJ)]dn+1 = JT(−p′c−p′neq) (18)

Conclusion
This paper explored the concept of spurious signals, explained
how they are generated, and provided a method to identify if
they are present. Two examples were shown that demonstrate
the presence of spurious signals in the prediction of acous-
tic pressure that utilize a permeable FW-H surface. The first
example used a theoretical point monopole and a convecting
vortex ring to determine the fluid properties on a permeable
surface. It was shown that true acoustic sources inside the
permeable surface radiate noise only outside the surface; pre-
dictions of noise inside the permeable surface result in zero
acoustic pressure. It was also shown that hydrodynamic flow
features passing through the permeable surface, such as that
from a vortex ring, radiate noise inside and outside the perme-
able surface. A second example, that from a CFD computation
for a hovering rotor, showed that predicting the noise inside
the surface can provide insight into the potential contamina-
tion of the noise prediction outside the permeable surface due
to spurious signals. Finally, a potential approach based on the
equivalent source method (ESM) and the sensitivity of For-
mulation 1A (Formulation S1A) for the removal of spurious
signals was also discussed.
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Fig. 18: Acoustic pressure from point monopole and permeable surfaces whose flow properties are defined by the point
monopole and vortex ring with core radius a of 0.01 m and forward velocity W of 1 m/s.

Appendix
This section explains the technique employed to determine the
flow properties caused by the vortex ring. Lugt (Ref. 14) de-
fined the stream function caused by a vortex ring as a function
of vorticity, Γ, shown in Eq. 11. The vorticity can be defined
as a function of vortex core diameter, a, ring diameter, R, and
convection velocity aligned with the x3 axis, W3, shown in
Eq. 19 (Ref. 30).

Γ =W3
4πR

ln
(

8
R
a

)
− 1

4

(19)

This left choice of the vortex core, ring diameter, and con-
vection velocity up to the authors. With the size of the cube-
shaped permeable surface in the above study, a vortex ring ra-
dius of 1 m was chosen and fixed. A study was then performed
on the influence of vortex core radius and convection veloc-
ity. Figures 19(a), (c), and (e) (left hand column) show the
induced velocity field given a = 1 m, a = 0.1 m, and a = 0.01
m, respectively, with convection velocity fixed at 1 m/s. Two
things were observed: 1) near the core, the velocity was un-
realistically large, especially for large vortex core diameters4,
shown in Fig. 19, and 2) small vortex core diameters led to
very large, very sharp acoustic pressure. The second observa-
tion is shown in Fig 18, where the noise caused by the point
monopole is compared to that of a vortex ring with vortex core
radius of a= 0.01 m. Comparison between the vortex ring and
point monopole became difficult due to the nature of the pulse
caused by the vortex ring.

To overcome these issues, a large vortex core size was cho-
sen, a = 1 m, but required an attenuation near the core of the
vortex ring. The flow velocities were attenuated inside the
core using an attenuation factor, α , that varied with the scaled

4Lugt stated that at the core the velocity would go to infin-
ity. The authors found that this was not the case. The velocity
would go to a very large and unrealistic value but then quickly,
but smoothly, to zero at the core.

radius, r/a. This was done by first determining the coordi-
nates of the sampling location in the vortex ring coordinates,
denoted with (r, z, Φ), to the vortex core coordinates, denoted
as (rVC, zVC, ΦVC), as shown in Eq. 20. A line was then drawn
to connect the core of the vortex ring through the sample lo-
cation. The intersection of this line with the outer edge of
the vortex core was then found and is denoted as (re, ze, Φe),
shown in Eq. 21.

ΦVC = atan2(z,r−R), rVC =
√
(r−R)2− z2 (20)

ze = asinΦVC, re = R+acos(ΦVC) (21)

The flow velocities at the edge, ue = u(re,ze), and core,
u0 = u(R,0), were then used to determine a baseline velocity,
ub, using Eq. 22. The attenuation factor, α , was then deter-
mined by a Gaussian fit between the center of the core and the
outer edge of the core, as shown in Eq. 23. The application of
the attenuation factor to the flow velocity, u = u(r,z), to cal-
culate attenuated velocity, ννν (Eq. 24), is shown in Figs. 19(b),
(d), (f) (right hand column).

ub = u0 +(ue−u0)
√

rVR/a (22)

α =
rVC

a

(
1− exp

{
− (rVC/a)2

0.005

})3
(23)

ννν = ub +α(u−ub) (24)

A sweep of different convection velocities was also per-
formed to study the influence of W on the induced flow field.
Three calculations were performed for W of 0.5, 1, and 5 m/s;
this is shown in Fig. 20. The strength of the vortex field is
strongly dependent on the choice of W.
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Fig. 19: Flow field induced by vortex ring as a function of core radius. Motion of vortex is aligned with positive x3 axis; plane
centered at origin and normal to x1 axis. (a) a = 1 m unattenuated, (b) a = 1 m, attenuated, (c) a = 0.1 m, unattenuated, (d)
a = 0.1 m, attenuated, (e) a = 0.01 m, unattenuated, (f) a = 0.01 m, attenuated. W3 = 1 m/s for all cases; core size shown as
white line and is excluded from Figs. (e) and (f) (too small to be visible).
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Fig. 20: Flow field induced by vortex ring as a function of convection velocity. Motion of vortex is aligned with positive x3
axis; plane centered at origin and normal to x1 axis. (a) W3 = 5 m/s unattenuated, (b) W3 = 5 m/s, attenuated, (c) W3 = 1 m/s,
unattenuated, (d) W3 = 1 m/s, attenuated, (e) W3 = 0.1 m/s, unattenuated, (f) W3 = 0.1 m/s, attenuated. a = 1 m for all cases;
core size shown as white line.
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