
Land surface Verification Toolkit 
(LVT)!

!   LVT is a framework developed to provide an automated, consolidated environment for 
systematic land surface model evaluation!

!   Includes support for a range of in-situ, remote-sensing and other model and reanalysis 
products. !

!   Supports the analysis of outputs from various LIS subsystems, including LIS-DA, LIS-OPT, 
LIS-UE!

Kumar et al. (2012), Land surface Verification Toolkit (LVT) – A generalized framework for land surface model evaluation, Geosci. Model. Dev.  !

https://ntrs.nasa.gov/search.jsp?R=20170005517 2019-08-31T08:15:53+00:00Z



Design of LVT!

!   Designed as a stand-alone system; Analysis instances are enabled by specifying a 
configuration file (much like LIS). No external scripting is required. !

!   Designed as an object-oriented framework with extensible features enabled for !

!   Specifying new metrics!

!   Specifying new observational datasets. !
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Fig. 2. Three-layer software architecture of Land surface Verification Toolkit (LVT).

in-situ and remote sensing measurements are presented in
Rodell et al. (2004a) and Kato et al. (2007). The LandFlux-
EVAL project, a more recent initiative, evaluated evapotran-
spiration estimates from a number of LSMs against in-situ
data based estimates (Jiminez et al., 2011). Approaches to
define a minimum acceptable performance benchmark of
LSMs by comparing them to calibrated noncausal (statisti-
cal/correlational) models are explored in Abramowitz et al.
(2008). Though these efforts cover a wide spectrum of model
evaluation and benchmarking of model process advance-
ments, the evaluation criteria and the performance metrics
tend to be specific to each application. LVT consolidates the
requirements identified in these efforts within a single frame-
work.
A number of software environments for conducting model

verification has been reported in the literature. The Ensem-
ble Verification System (EVS; Brown et al., 2010) developed
at the US National Oceanic and Atmospheric Administra-
tion’s (NOAA) Office of Hydrologic Development (OHD)
provides an environment to verify ensemble forecasts of
hydrologic and atmospheric variables such as precipitation,
temperature and streamflow, and is used by forecasters at the
US River Forecast Centers (RFCs). Protocol for the Anal-
ysis of Land Surface models (PALS) is a web-based appli-
cation for evaluating land surface models against observed
datasets and calibrated statistical models (Abramowitz et al.,
2008). LVT and PALS will continue to be developed con-
currently to address community goals for benchmarking and
MDF. Model Evaluation Toolkit (MET; Brown et al., 2009)

is a system developed by the Developmental Testbed Cen-
ter (DTC) for the numerical weather prediction community to
evaluate model performance. MET includes several methods
for the diagnostic and spatial verification of NWPmodel out-
puts. However, MET requires that the input datasets (model
output and the observational data) be reformatted to certain
predefined file formats. LVT shares many features with these
existing environments, but focuses on the native use of obser-
vational and model data sets, since the interpretation of the
data formats and reporting procedures is a critical and time
consuming step in the evaluation process. LVT is designed
as a framework that can be directly used and extended by the
individual users and also includes a number of advanced fea-
tures such as the evaluation of data assimilation diagnostics,
standardized land surface diagnostics and uncertainty and in-
formation theory based analysis features. The following sec-
tions describe the design and capabilities of LVT.

3 Design of the LVT framework

LVT is implemented using object oriented framework de-
sign principles as a modular, extensible and reusable system.
The software architecture of the system follows a three layer
structure, as shown in Fig. 2. LVT core, the top layer, encom-
passes generic modeling features, such as the management
of time, I/O, configuration, logging and geospatial transfor-
mations. The middle layer, called “Abstractions” represents
the extensible interfaces defined for incorporating additional
functionalities into LVT. These include plugin interfaces for

Geosci. Model Dev., 5, 869–886, 2012 www.geosci-model-dev.net/5/869/2012/



Observational data support – A growing list!874 S. V. Kumar et al.: Land surface Verification Toolkit

Table 1. List of datasets supported in LVT.

Dataset Measurement
variables

Model/reanalysis outputs

Agricultural Meteorology Water and energy fluxes,
Model (AGRMET) from the Soil moisture, soil temperature,
Air Force Weather Agency (AFWA) Snow conditions, meteorology

NLDAS model outputs Water and energy fluxes
Mitchell et al. (2004) Soil moisture, soil temperature,

snow conditions, meteorology

GLDAS model outputs Water and energy fluxes,
Rodell et al. (2004b) Soil moisture, soil temperature,

snow conditions, meteorology

Canadian Meteorological Center Snow depth
(CMC) snow depth analysis
Brown and Brasnett (2010)

Snow Data Assimilation System Snow depth, snow water
SNODAS; Barrett (2003) equivalent

In-situ measurements

AMMA Water and energy fluxes,
(database.amma-international.org/) soil moisture, soil temperature

Atmospheric Radiation Water and energy fluxes,
Measurement (ARM) Soil moisture, soil temperature,
(www.arm.gov) meteorology

Ameriflux Water and energy fluxes
(public.ornl.gov/ameriflux/)

Coordinated Energy and water cycle Water and energy fluxes,
Observations Project (CEOP) soil moisture, soil temperature,
(www.ceop.net/) meteorology

National Weather Service Snow depth, precipitation,
Cooperative Observer Program (COOP) land surface temperature
(www.nws.noaa.gov/om/coop/)

NOAA CPC unified Precipitation
Higgins et al. (1996)

Gridded FLUXNET Water and energy fluxes
Jung et al. (2009)

Finnish Meteorological Institute Snow water equivalent
FMI/SYKE; www.environment.fi/syke

Global Summary of the Day (GSOD) Snow depth

International Soil Moisture Network Soil moisture
(www.ipf.tuwien.ac.at/insitu/)

Soil Climate Analysis Network Soil moisture
(SCAN; www.wcc.nrcs.usda.gov/scan/) Soil temperature

Geosci. Model Dev., 5, 869–886, 2012 www.geosci-model-dev.net/5/869/2012/
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Table 1. Continued.

WMO synoptic observations Snow depth

NRCS SNOwpack TELemetry network Snow water equivalent
(SNOTEL; www.wcc.nrcs.usda.gov/snow/)

Surface Radiation Network (SURFRAD) Downwelling shortwave,
(www.srrb.noaa.gov/surfrad/) downwelling longwave

Southwest Watershed Research Center Soil moisture,
(SWRC; www.tucson.ars.ag.gov/dap/) soil temperature

USGS water data Streamflow
(waterdata.usgs.gov/nwis)

AMSR-E radiances Brightness temperature for
(mrain.atmos.colostate.edu/LEVEL1C/) different channels

Satellite and remote sensing data

AFWA NASA Snow Algorithm Snow cover, snow depth,
ANSA; Foster et al., 2011 snow water equivalent

GlobSnow; Pulliainen (2006) Snow cover,
(www.globsnow.info/) snow water equivalent

International Satellite Cloud Climatology Land surface temperature
Project; ISCCP; Rossow and Schiffer (1991)
(isccp.nasa.gov)

MODIS/Terra Snow cover 500m Snow cover
MOD10A1; Hall et al. (2006)

MODIS Evapotranspiration product Evapotranspiration
MOD16; Mu et al. (2007)

NASA Level-3, soil moisture Soil moisture
retrieval from AMSR-E (AE�Land3)
Njoku et al. (2003)

Land Parameter Retrieval Model (LPRM) Soil moisture
from NASA GSFC and VU Amsterdam
Owe et al. (2008)

may also differ significantly based on the targeted applica-
tion (Gupta et al., 2009). Model evaluation studies quite of-
ten use accuracy-based metrics that quantify model perfor-
mance using residual-based measures. These metrics, how-
ever, may not provide further insights on the robustness of
the model under future or unobserved scenarios (Pachepsky
et al., 2006). They are also inadequate in capturing estimates
of associated uncertainties (Gulden et al., 2008), relative im-
portance and sensitivity of model parameters to the overall
accuracy and uncertainty, tradeoffs in performance due to
spatial scales and the tradeoffs between actual information
content and variabilities introduced by random noise. Gupta
et al. (2008) emphasize the need for sophisticated diagnostic
evaluation methods that help in isolating the limitations of
the model representations.
A number of analysis metric types is supported in

LVT including (1) statistical accuracy measures that are

conventionally used for model evaluation by comparing the
model simulation against independent measurements and ob-
servations (e.g., RMSE, Bias), (2) ensemble measures that
provide assessments of the accuracy of probabilistic model
outputs against observations, (3) metrics that help in quan-
tifying the apportionment of uncertainty and sensitivity of
model simulations to model parameters, (4) information
theory-based measures that provide estimates of information
content and complexity associated with model simulations
and measurements, (5) spatial similarity and scale decompo-
sition methods that assist in quantifying the impact of spatial
scales in model improvements and errors and (6) standard
diagnostics to evaluate the efficiency of computational algo-
rithms such as data assimilation. Table 2 presents a list of
supported metric implementations within LVT. The details of
the metric implementations are discussed in Sect. 5 through a
number of illustrative examples. The availability of this suite

www.geosci-model-dev.net/5/869/2012/ Geosci. Model Dev., 5, 869–886, 2012
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Metrics development in LVT!
!   A large suite of analysis metrics, including accuracy-

based metrics, ensemble and uncertainty measures, 
information theory metrics and similarity measures has 
been built into LVT!

Metric Class! Examples!

Accuracy metrics! RMSE, Bias, Correlation!

Ensemble metrics! Mean, Standard deviation, Likelihood!

Uncertainty metrics! Uncertainty importance!

Information theory 
metrics!

Entropy, Complexity!

Data assimilation 
metrics!

Mean, variance, lag correlations of innovation 
distributions!

Spatial similarity metrics! Hausdorff distance!

Scale decomposition 
metrics!

Discrete wavelet transforms!

NASA AMSR-E!

LPRM AMSR-E!
Metric entropy provides a measure of the 
randomness in the soil moisture time series at 
each grid point. The availability of information 
theory metrics in LVT provides a way to 
discriminate model simulations based on their 
information content.  !
!

Change in Metric entropy as a result of the assimilation of soil 
moisture retrievals of AMSR-E from NASA and LPRM 
algorithms!



Capabilities!
!   LVT reconciles the differences in spatial and temporal resolutions by bringing the model (LIS) 

and observational datasets to a common (user-specified) space and time domain. !

!   Support for datasets in their “native” formats; Once the specific plugin to process a particular 
dataset is built, datasets can be directly employed within LVT. E.g. ARM-CART 
measurements. !

!   Supports non-LIS datasets for intercomparisons – (An observational processing mode in LVT 
enables the conversion of an external dataset to a “LIS like” form. !

!   Miscellaneous: !

!   Confidence intervals on analysis statistics!

!   Analysis outputs in ASCII, binary, GriB, NETCDF formats!

!   Probability density functions of computed metrics!

!   Stratify analysis by external datasets!

!   Stratify analysis based on a model variable (e.g. day-night stratification)!

!   Land surface diagnostics!



lvt.config !
Running mode supports LSM 
intercomparisons/added analysis, analysis of 
DA diagnostics, processing of observational 
datasets. !
!
Supports the analysis of both LSM and other 
surface model outputs!
!
Supports all output formats and styles (grid/
vector/ensemble) from LIS!
!

The analysis time period is a subset of the LIS 
output !
!
Allows analysis restarts – for long analysis 
integrations. !



lvt.config !
The analysis domain can be a subset of the 
LIS output domain!
!
LVT supports both upscaling and downscaling 
of the LIS outputs!

!
The attributes file specifies the 
variables included in the 
analysis!

!
The first column indicates the variables included in the LIS output; the last column indicates the variables that needs 
to be included in the LVT analysis (LIS output contains Qle, Qh, Qg, LVT output contains Qle and Qh)!



lvt.config !

!
Supports external masks; A variety of metrics; !
Pixel-by-pixel and basin-scale averaging and computation of metrics!
Use of water years, temporal smoothing, lagged computations!



Analysis of LIS-DA outputs!

!   Deviations from the expected mean and standard deviations of the 
normalized innovation distribution is used as a measure of the 
optimality of the data assimilation configuration. !

Model evaluation and verification are essential 
processes in the development and application of 
all simulation models. The process of systematic 
model evaluation and verification helps in the 
characterization of accuracy and uncertainty in 
model predictions and helps in improving the 
usage and acceptability of model outputs for 
real-world applications.  "

The Land surface Verification Toolkit 
(LVT) is a framework developed to provide an 
automated, consolidated environment for 
intercomparing disparate datasets and for 
conducting both deterministic and probabilistic 
evaluation of land surface model (LSM) and data 
assimilation outputs. "

LVT is primarily built as a post-processor to the 
NASA Land Information System (LIS; 
http://lis.gsfc.nasa.gov; Kumar et al. 2006, 
Peters-Lidard et al. 2007), which is a 

comprehensive land surface modeling and data 
assimilation framework."

LIS includes several subsystems to exploit the 
information content of observational data 
products for improving model predictions, 
including data assimilation, optimization and 
uncertainty estimation, radiative transfer and 
emission models and  various end-use application 
models. LVT supports the analysis of outputs 
from these subsystems by connecting them to 
the relevant observational data. Together, LIS 
and LVT encompass a comprehensive set of 
computational tools for enabling end-to-end 
Model Data Fusion (MDF) experiments."

The development of a formal, systematic 
environment for model evaluation is expected to 
aid in bridging the gaps between the model and 
observations and in improving the 
“observability” of LSM outputs. "

Land surface Verification Toolkit (LVT): "
A formal benchmarking and evaluation framework for land surface models"

Sujay V. Kumara,b, Christa D. Peters-Lidardb, Joseph A. Santanellob,"
Kenneth W. Harrisonb,c,Yuqiong Liub,c and Michael Shawa,b,d"

aScience Applications International Corporation, McLean, VA. "
bHydrological Sciences Branch, NASA Goddard Space Flight Center, Greenbelt, MD."
cEarth System Science Interdisciplinary Center, University of Maryland, College Park, MD. "
dAir Force Weather Agency, Offutt, NE. "
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LVT software is designed as an object-oriented 
framework with extensible interfaces for 
incorporating observational datasets and analysis 
metrics. "

LVT currently supports an array of terrestrial 
hydrology datasets from in-situ measurements, 
satellite and remote-sensing platforms, and model 
and reanalysis products, representing a wide range of 
land surface and terrestrial hydrologic regimes across 
the globe. These datasets are supported in their 
native formats and LVT handles the temporal and 
spatial transformations required in the analysis. "

LVT also supports a large suite of analysis metrics. In 
addition to the traditional accuracy-based measures, 
LVT supports ensemble and uncertainty measures, 
metrics based on information theory, similarity metrics 

and methods to quantify the impact of spatial scales on 
model performance. "

Metric Class" Examples"
Accuracy metrics" RMSE, Bias, Correlation"
Ensemble metrics" Mean, Standard deviation, 

Likelihood"
Uncertainty 
metrics"

Uncertainty importance"

Information 
theory metrics"

Entropy, Complexity"

Data assimilation 
metrics"

Mean, variance, lag correlations 
of innovation distributions"

Spatial similarity 
metrics"

Hausdorff distance"

Scale 
decomposition 
metrics"

Discrete wavelet transforms"

EXAMPLES!
Evaluation of surface flux 
estimates from LDAS simulations 
against ARM measurements . "

Mean diurnal cycles of latent and sensible heat fluxes 
from the offline Noah LSM (version 3.2) evaluated across 
ARM stations in the Southern Great Plains using default 
and calibrated model parameters for the period of April – 
September, 2006. "
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The LSM simulations with default parameters show large errors, with a significant 
underestimation in latent heat fluxes and an overestimation in sensible heat fluxes. The 
calibration of model parameters helps in improving the model performance by correcting these 
systematic biases. This example illustrates an instance of  the MDF paradigm that 
includes model characterization, reformulation through parameter estimation and 
verification using LVT. $

Model evaluation using remotely-sensed data over 
an uninstrumented region"

Probability of detection (POD) of snow cover estimates 
from Noah LSM (version 2.7.1), for a three year time period of 
1 Oct 2007 to 1 May 2010, over Afghanistan.  The POD values 
are computed by comparing the model estimates against the 
fractional snow extent global 500m product (MOD10A1) 
from the MODIS sensor on Terra spacecraft. "

This example provides an instance of model 
evaluation against satellite data over a region such 
as Afghanistan, where in-situ measurements are 
sparse. LVT facilitates model evaluation through 
the use of MODIS snow cover estimates. "

Analysis of 
data 
assimilation 
diagnostics "

Mean of 
normalized 
Innovations"

Variance of 
normalized 
Innovations"

Spatial distribution of the mean and variance of normalized innovations from a 
synthetic soil moisture data assimilation simulation. The experiment is 
conducted over the Continental U.S. domain at 1° spatial resolution, for a time 
period of 1 Jan 2000 to 1 Jan 2006. The synthetic soil moisture observations are 
assimilated using the Ensemble Kalman Filter (EnKF) algorithm.  "

The metric entropy metric provides a 
measure of the randomness in the soil 
moisture time series at each grid point. The 
assimilation of NASA retrievals introduce 
more randomness in several parts of the 
modeling domain, whereas LPRM 
assimilation introduces less randomness. 
The availability of information theory 
metrics in LVT provides a way to 
discriminate model simulations based 
on their information content.  $

Characterization of uncertainty diagnostics "
An ensemble model simulation is conducted using the 
Noah LSM  (version 3.2) during 1 May to 1 September, 
2010 over the Walnut Gulch watershed. The ensemble 
run is conducted by sampling 4 soil hydraulic properties 
from assumed prior distributions. "

(A) shows the time series comparison of the model 
simulation of surface soil moisture against in-situ 
observations. The cyan shading indicates the ensemble 
spread. (B) provides the uncertainty importance 
measure, which is an assessment of the relative 
contribution of each parameter to the ensemble spread. 
This metric is computed as the correlation between the 
simulated variable and the parameter, across the 
ensemble. "

(A) Indicates that soil moisture uncertainty is 
small during the dry period and grows 
significantly during the wet periods. (B) shows 
that among the four parameters, simulations are 
most sensitive to θs. LVT enables the 
quantification of parameter sensitivities for 
uncertainty simulations"

Information theory metrics"

Scale 
decomposition 
analysis"

Two simulations with Noah LSM 
(version 2.7.1) are conducted over a 
domain in Afghanistan at 1km spatial 
resolution to generate snow cover 
estimates: one that employs a 
terrain based correction of shortwave 
radiation input and one that does not 
include such adjustments. The 
improvement in POD as a result of 
the terrain correction is computed, 
and the scale decomposition 
technique is applied to this difference 

field to quantify how the 
improvements at 1km spatial 
resolution translate to coarser scales. "

Intensity scale approach of Casati et 
al. (2004) using a two dimensional 
discrete Haar wavelet transform 
is used to decompose a spatial field 
into sum of orthogonal components 
at different spatial scales. "

(A)"

(B)"

porosity"
saturated matric potential"saturated hydraulic conductivity"
pore size distribution index"

Change in Metric entropy fields as a result of the 
assimilation of soil moisture retrievals of AMSR-E 
from NASA and LPRM. "

NASA AMSR-E"

LPRM AMSR-E"

The deviations from the expected mean and standard deviation of the normalized 
innovation distribution is used as a measure of the optimality of the data assimilation 
configuration. In this instance, a near optimal performance is observed (mean close to zero, 
variance close to 1). The assimilation diagnostics can be processed through LVT and 
the model and observation error specifications can be revised to ensure optimal data 
assimilation performance. "

The percentage 
contribution to the total 
POD improvement at 
each spatial scale is 
shown. Most 
improvements are 
obtained at fine spatial 
scales and the 
contribution of the 
scale drops to below 
10% at scales coarser 
than 16km. $

26th Conference on Hydrology, 92nd American Meteorological Society Annual Meeting, January 22-26, 2012, New Orleans, LA."
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Model evaluation and verification are essential 
processes in the development and application of 
all simulation models. The process of systematic 
model evaluation and verification helps in the 
characterization of accuracy and uncertainty in 
model predictions and helps in improving the 
usage and acceptability of model outputs for 
real-world applications.  "

The Land surface Verification Toolkit 
(LVT) is a framework developed to provide an 
automated, consolidated environment for 
intercomparing disparate datasets and for 
conducting both deterministic and probabilistic 
evaluation of land surface model (LSM) and data 
assimilation outputs. "

LVT is primarily built as a post-processor to the 
NASA Land Information System (LIS; 
http://lis.gsfc.nasa.gov; Kumar et al. 2006, 
Peters-Lidard et al. 2007), which is a 

comprehensive land surface modeling and data 
assimilation framework."

LIS includes several subsystems to exploit the 
information content of observational data 
products for improving model predictions, 
including data assimilation, optimization and 
uncertainty estimation, radiative transfer and 
emission models and  various end-use application 
models. LVT supports the analysis of outputs 
from these subsystems by connecting them to 
the relevant observational data. Together, LIS 
and LVT encompass a comprehensive set of 
computational tools for enabling end-to-end 
Model Data Fusion (MDF) experiments."

The development of a formal, systematic 
environment for model evaluation is expected to 
aid in bridging the gaps between the model and 
observations and in improving the 
“observability” of LSM outputs. "

Land surface Verification Toolkit (LVT): "
A formal benchmarking and evaluation framework for land surface models"

Sujay V. Kumara,b, Christa D. Peters-Lidardb, Joseph A. Santanellob,"
Kenneth W. Harrisonb,c,Yuqiong Liub,c and Michael Shawa,b,d"

aScience Applications International Corporation, McLean, VA. "
bHydrological Sciences Branch, NASA Goddard Space Flight Center, Greenbelt, MD."
cEarth System Science Interdisciplinary Center, University of Maryland, College Park, MD. "
dAir Force Weather Agency, Offutt, NE. "
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LVT software is designed as an object-oriented 
framework with extensible interfaces for 
incorporating observational datasets and analysis 
metrics. "

LVT currently supports an array of terrestrial 
hydrology datasets from in-situ measurements, 
satellite and remote-sensing platforms, and model 
and reanalysis products, representing a wide range of 
land surface and terrestrial hydrologic regimes across 
the globe. These datasets are supported in their 
native formats and LVT handles the temporal and 
spatial transformations required in the analysis. "

LVT also supports a large suite of analysis metrics. In 
addition to the traditional accuracy-based measures, 
LVT supports ensemble and uncertainty measures, 
metrics based on information theory, similarity metrics 

and methods to quantify the impact of spatial scales on 
model performance. "

Metric Class" Examples"
Accuracy metrics" RMSE, Bias, Correlation"
Ensemble metrics" Mean, Standard deviation, 

Likelihood"
Uncertainty 
metrics"

Uncertainty importance"

Information 
theory metrics"

Entropy, Complexity"

Data assimilation 
metrics"

Mean, variance, lag correlations 
of innovation distributions"

Spatial similarity 
metrics"

Hausdorff distance"

Scale 
decomposition 
metrics"

Discrete wavelet transforms"

EXAMPLES!
Evaluation of surface flux 
estimates from LDAS simulations 
against ARM measurements . "

Mean diurnal cycles of latent and sensible heat fluxes 
from the offline Noah LSM (version 3.2) evaluated across 
ARM stations in the Southern Great Plains using default 
and calibrated model parameters for the period of April – 
September, 2006. "
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The LSM simulations with default parameters show large errors, with a significant 
underestimation in latent heat fluxes and an overestimation in sensible heat fluxes. The 
calibration of model parameters helps in improving the model performance by correcting these 
systematic biases. This example illustrates an instance of  the MDF paradigm that 
includes model characterization, reformulation through parameter estimation and 
verification using LVT. $

Model evaluation using remotely-sensed data over 
an uninstrumented region"

Probability of detection (POD) of snow cover estimates 
from Noah LSM (version 2.7.1), for a three year time period of 
1 Oct 2007 to 1 May 2010, over Afghanistan.  The POD values 
are computed by comparing the model estimates against the 
fractional snow extent global 500m product (MOD10A1) 
from the MODIS sensor on Terra spacecraft. "

This example provides an instance of model 
evaluation against satellite data over a region such 
as Afghanistan, where in-situ measurements are 
sparse. LVT facilitates model evaluation through 
the use of MODIS snow cover estimates. "

Analysis of 
data 
assimilation 
diagnostics "

Mean of 
normalized 
Innovations"

Variance of 
normalized 
Innovations"

Spatial distribution of the mean and variance of normalized innovations from a 
synthetic soil moisture data assimilation simulation. The experiment is 
conducted over the Continental U.S. domain at 1° spatial resolution, for a time 
period of 1 Jan 2000 to 1 Jan 2006. The synthetic soil moisture observations are 
assimilated using the Ensemble Kalman Filter (EnKF) algorithm.  "

The metric entropy metric provides a 
measure of the randomness in the soil 
moisture time series at each grid point. The 
assimilation of NASA retrievals introduce 
more randomness in several parts of the 
modeling domain, whereas LPRM 
assimilation introduces less randomness. 
The availability of information theory 
metrics in LVT provides a way to 
discriminate model simulations based 
on their information content.  $

Characterization of uncertainty diagnostics "
An ensemble model simulation is conducted using the 
Noah LSM  (version 3.2) during 1 May to 1 September, 
2010 over the Walnut Gulch watershed. The ensemble 
run is conducted by sampling 4 soil hydraulic properties 
from assumed prior distributions. "

(A) shows the time series comparison of the model 
simulation of surface soil moisture against in-situ 
observations. The cyan shading indicates the ensemble 
spread. (B) provides the uncertainty importance 
measure, which is an assessment of the relative 
contribution of each parameter to the ensemble spread. 
This metric is computed as the correlation between the 
simulated variable and the parameter, across the 
ensemble. "

(A) Indicates that soil moisture uncertainty is 
small during the dry period and grows 
significantly during the wet periods. (B) shows 
that among the four parameters, simulations are 
most sensitive to θs. LVT enables the 
quantification of parameter sensitivities for 
uncertainty simulations"

Information theory metrics"

Scale 
decomposition 
analysis"

Two simulations with Noah LSM 
(version 2.7.1) are conducted over a 
domain in Afghanistan at 1km spatial 
resolution to generate snow cover 
estimates: one that employs a 
terrain based correction of shortwave 
radiation input and one that does not 
include such adjustments. The 
improvement in POD as a result of 
the terrain correction is computed, 
and the scale decomposition 
technique is applied to this difference 

field to quantify how the 
improvements at 1km spatial 
resolution translate to coarser scales. "

Intensity scale approach of Casati et 
al. (2004) using a two dimensional 
discrete Haar wavelet transform 
is used to decompose a spatial field 
into sum of orthogonal components 
at different spatial scales. "

(A)"

(B)"

porosity"
saturated matric potential"saturated hydraulic conductivity"
pore size distribution index"

Change in Metric entropy fields as a result of the 
assimilation of soil moisture retrievals of AMSR-E 
from NASA and LPRM. "

NASA AMSR-E"

LPRM AMSR-E"

The deviations from the expected mean and standard deviation of the normalized 
innovation distribution is used as a measure of the optimality of the data assimilation 
configuration. In this instance, a near optimal performance is observed (mean close to zero, 
variance close to 1). The assimilation diagnostics can be processed through LVT and 
the model and observation error specifications can be revised to ensure optimal data 
assimilation performance. "

The percentage 
contribution to the total 
POD improvement at 
each spatial scale is 
shown. Most 
improvements are 
obtained at fine spatial 
scales and the 
contribution of the 
scale drops to below 
10% at scales coarser 
than 16km. $
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Analysis of LIS-UE outputs!

Model evaluation and verification are essential 
processes in the development and application of 
all simulation models. The process of systematic 
model evaluation and verification helps in the 
characterization of accuracy and uncertainty in 
model predictions and helps in improving the 
usage and acceptability of model outputs for 
real-world applications.  "

The Land surface Verification Toolkit 
(LVT) is a framework developed to provide an 
automated, consolidated environment for 
intercomparing disparate datasets and for 
conducting both deterministic and probabilistic 
evaluation of land surface model (LSM) and data 
assimilation outputs. "

LVT is primarily built as a post-processor to the 
NASA Land Information System (LIS; 
http://lis.gsfc.nasa.gov; Kumar et al. 2006, 
Peters-Lidard et al. 2007), which is a 

comprehensive land surface modeling and data 
assimilation framework."

LIS includes several subsystems to exploit the 
information content of observational data 
products for improving model predictions, 
including data assimilation, optimization and 
uncertainty estimation, radiative transfer and 
emission models and  various end-use application 
models. LVT supports the analysis of outputs 
from these subsystems by connecting them to 
the relevant observational data. Together, LIS 
and LVT encompass a comprehensive set of 
computational tools for enabling end-to-end 
Model Data Fusion (MDF) experiments."

The development of a formal, systematic 
environment for model evaluation is expected to 
aid in bridging the gaps between the model and 
observations and in improving the 
“observability” of LSM outputs. "

Land surface Verification Toolkit (LVT): "
A formal benchmarking and evaluation framework for land surface models"

Sujay V. Kumara,b, Christa D. Peters-Lidardb, Joseph A. Santanellob,"
Kenneth W. Harrisonb,c,Yuqiong Liub,c and Michael Shawa,b,d"

aScience Applications International Corporation, McLean, VA. "
bHydrological Sciences Branch, NASA Goddard Space Flight Center, Greenbelt, MD."
cEarth System Science Interdisciplinary Center, University of Maryland, College Park, MD. "
dAir Force Weather Agency, Offutt, NE. "
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LVT software is designed as an object-oriented 
framework with extensible interfaces for 
incorporating observational datasets and analysis 
metrics. "

LVT currently supports an array of terrestrial 
hydrology datasets from in-situ measurements, 
satellite and remote-sensing platforms, and model 
and reanalysis products, representing a wide range of 
land surface and terrestrial hydrologic regimes across 
the globe. These datasets are supported in their 
native formats and LVT handles the temporal and 
spatial transformations required in the analysis. "

LVT also supports a large suite of analysis metrics. In 
addition to the traditional accuracy-based measures, 
LVT supports ensemble and uncertainty measures, 
metrics based on information theory, similarity metrics 

and methods to quantify the impact of spatial scales on 
model performance. "

Metric Class" Examples"
Accuracy metrics" RMSE, Bias, Correlation"
Ensemble metrics" Mean, Standard deviation, 

Likelihood"
Uncertainty 
metrics"

Uncertainty importance"

Information 
theory metrics"

Entropy, Complexity"

Data assimilation 
metrics"

Mean, variance, lag correlations 
of innovation distributions"

Spatial similarity 
metrics"

Hausdorff distance"

Scale 
decomposition 
metrics"

Discrete wavelet transforms"

EXAMPLES!
Evaluation of surface flux 
estimates from LDAS simulations 
against ARM measurements . "

Mean diurnal cycles of latent and sensible heat fluxes 
from the offline Noah LSM (version 3.2) evaluated across 
ARM stations in the Southern Great Plains using default 
and calibrated model parameters for the period of April – 
September, 2006. "
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The LSM simulations with default parameters show large errors, with a significant 
underestimation in latent heat fluxes and an overestimation in sensible heat fluxes. The 
calibration of model parameters helps in improving the model performance by correcting these 
systematic biases. This example illustrates an instance of  the MDF paradigm that 
includes model characterization, reformulation through parameter estimation and 
verification using LVT. $

Model evaluation using remotely-sensed data over 
an uninstrumented region"

Probability of detection (POD) of snow cover estimates 
from Noah LSM (version 2.7.1), for a three year time period of 
1 Oct 2007 to 1 May 2010, over Afghanistan.  The POD values 
are computed by comparing the model estimates against the 
fractional snow extent global 500m product (MOD10A1) 
from the MODIS sensor on Terra spacecraft. "

This example provides an instance of model 
evaluation against satellite data over a region such 
as Afghanistan, where in-situ measurements are 
sparse. LVT facilitates model evaluation through 
the use of MODIS snow cover estimates. "

Analysis of 
data 
assimilation 
diagnostics "

Mean of 
normalized 
Innovations"

Variance of 
normalized 
Innovations"

Spatial distribution of the mean and variance of normalized innovations from a 
synthetic soil moisture data assimilation simulation. The experiment is 
conducted over the Continental U.S. domain at 1° spatial resolution, for a time 
period of 1 Jan 2000 to 1 Jan 2006. The synthetic soil moisture observations are 
assimilated using the Ensemble Kalman Filter (EnKF) algorithm.  "

The metric entropy metric provides a 
measure of the randomness in the soil 
moisture time series at each grid point. The 
assimilation of NASA retrievals introduce 
more randomness in several parts of the 
modeling domain, whereas LPRM 
assimilation introduces less randomness. 
The availability of information theory 
metrics in LVT provides a way to 
discriminate model simulations based 
on their information content.  $

Characterization of uncertainty diagnostics "
An ensemble model simulation is conducted using the 
Noah LSM  (version 3.2) during 1 May to 1 September, 
2010 over the Walnut Gulch watershed. The ensemble 
run is conducted by sampling 4 soil hydraulic properties 
from assumed prior distributions. "

(A) shows the time series comparison of the model 
simulation of surface soil moisture against in-situ 
observations. The cyan shading indicates the ensemble 
spread. (B) provides the uncertainty importance 
measure, which is an assessment of the relative 
contribution of each parameter to the ensemble spread. 
This metric is computed as the correlation between the 
simulated variable and the parameter, across the 
ensemble. "

(A) Indicates that soil moisture uncertainty is 
small during the dry period and grows 
significantly during the wet periods. (B) shows 
that among the four parameters, simulations are 
most sensitive to θs. LVT enables the 
quantification of parameter sensitivities for 
uncertainty simulations"

Information theory metrics"

Scale 
decomposition 
analysis"

Two simulations with Noah LSM 
(version 2.7.1) are conducted over a 
domain in Afghanistan at 1km spatial 
resolution to generate snow cover 
estimates: one that employs a 
terrain based correction of shortwave 
radiation input and one that does not 
include such adjustments. The 
improvement in POD as a result of 
the terrain correction is computed, 
and the scale decomposition 
technique is applied to this difference 

field to quantify how the 
improvements at 1km spatial 
resolution translate to coarser scales. "

Intensity scale approach of Casati et 
al. (2004) using a two dimensional 
discrete Haar wavelet transform 
is used to decompose a spatial field 
into sum of orthogonal components 
at different spatial scales. "

(A)"

(B)"

porosity"
saturated matric potential"saturated hydraulic conductivity"
pore size distribution index"

Change in Metric entropy fields as a result of the 
assimilation of soil moisture retrievals of AMSR-E 
from NASA and LPRM. "

NASA AMSR-E"

LPRM AMSR-E"

The deviations from the expected mean and standard deviation of the normalized 
innovation distribution is used as a measure of the optimality of the data assimilation 
configuration. In this instance, a near optimal performance is observed (mean close to zero, 
variance close to 1). The assimilation diagnostics can be processed through LVT and 
the model and observation error specifications can be revised to ensure optimal data 
assimilation performance. "

The percentage 
contribution to the total 
POD improvement at 
each spatial scale is 
shown. Most 
improvements are 
obtained at fine spatial 
scales and the 
contribution of the 
scale drops to below 
10% at scales coarser 
than 16km. $

26th Conference on Hydrology, 92nd American Meteorological Society Annual Meeting, January 22-26, 2012, New Orleans, LA."

ACKNOWLEDGEMENTS$

E
m

ai
l: 

S
uj

ay
.V

.K
um

ar
@

na
sa

.g
ov

,  
w

eb
: h

tt
p:

//
li

s.g
sf

c.
n.

as
a.

go
v

 "

Model evaluation and verification are essential 
processes in the development and application of 
all simulation models. The process of systematic 
model evaluation and verification helps in the 
characterization of accuracy and uncertainty in 
model predictions and helps in improving the 
usage and acceptability of model outputs for 
real-world applications.  "

The Land surface Verification Toolkit 
(LVT) is a framework developed to provide an 
automated, consolidated environment for 
intercomparing disparate datasets and for 
conducting both deterministic and probabilistic 
evaluation of land surface model (LSM) and data 
assimilation outputs. "

LVT is primarily built as a post-processor to the 
NASA Land Information System (LIS; 
http://lis.gsfc.nasa.gov; Kumar et al. 2006, 
Peters-Lidard et al. 2007), which is a 

comprehensive land surface modeling and data 
assimilation framework."

LIS includes several subsystems to exploit the 
information content of observational data 
products for improving model predictions, 
including data assimilation, optimization and 
uncertainty estimation, radiative transfer and 
emission models and  various end-use application 
models. LVT supports the analysis of outputs 
from these subsystems by connecting them to 
the relevant observational data. Together, LIS 
and LVT encompass a comprehensive set of 
computational tools for enabling end-to-end 
Model Data Fusion (MDF) experiments."

The development of a formal, systematic 
environment for model evaluation is expected to 
aid in bridging the gaps between the model and 
observations and in improving the 
“observability” of LSM outputs. "

Land surface Verification Toolkit (LVT): "
A formal benchmarking and evaluation framework for land surface models"

Sujay V. Kumara,b, Christa D. Peters-Lidardb, Joseph A. Santanellob,"
Kenneth W. Harrisonb,c,Yuqiong Liub,c and Michael Shawa,b,d"

aScience Applications International Corporation, McLean, VA. "
bHydrological Sciences Branch, NASA Goddard Space Flight Center, Greenbelt, MD."
cEarth System Science Interdisciplinary Center, University of Maryland, College Park, MD. "
dAir Force Weather Agency, Offutt, NE. "
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LVT software is designed as an object-oriented 
framework with extensible interfaces for 
incorporating observational datasets and analysis 
metrics. "

LVT currently supports an array of terrestrial 
hydrology datasets from in-situ measurements, 
satellite and remote-sensing platforms, and model 
and reanalysis products, representing a wide range of 
land surface and terrestrial hydrologic regimes across 
the globe. These datasets are supported in their 
native formats and LVT handles the temporal and 
spatial transformations required in the analysis. "

LVT also supports a large suite of analysis metrics. In 
addition to the traditional accuracy-based measures, 
LVT supports ensemble and uncertainty measures, 
metrics based on information theory, similarity metrics 

and methods to quantify the impact of spatial scales on 
model performance. "

Metric Class" Examples"
Accuracy metrics" RMSE, Bias, Correlation"
Ensemble metrics" Mean, Standard deviation, 

Likelihood"
Uncertainty 
metrics"

Uncertainty importance"

Information 
theory metrics"

Entropy, Complexity"

Data assimilation 
metrics"

Mean, variance, lag correlations 
of innovation distributions"

Spatial similarity 
metrics"

Hausdorff distance"

Scale 
decomposition 
metrics"

Discrete wavelet transforms"

EXAMPLES!
Evaluation of surface flux 
estimates from LDAS simulations 
against ARM measurements . "

Mean diurnal cycles of latent and sensible heat fluxes 
from the offline Noah LSM (version 3.2) evaluated across 
ARM stations in the Southern Great Plains using default 
and calibrated model parameters for the period of April – 
September, 2006. "
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The LSM simulations with default parameters show large errors, with a significant 
underestimation in latent heat fluxes and an overestimation in sensible heat fluxes. The 
calibration of model parameters helps in improving the model performance by correcting these 
systematic biases. This example illustrates an instance of  the MDF paradigm that 
includes model characterization, reformulation through parameter estimation and 
verification using LVT. $

Model evaluation using remotely-sensed data over 
an uninstrumented region"

Probability of detection (POD) of snow cover estimates 
from Noah LSM (version 2.7.1), for a three year time period of 
1 Oct 2007 to 1 May 2010, over Afghanistan.  The POD values 
are computed by comparing the model estimates against the 
fractional snow extent global 500m product (MOD10A1) 
from the MODIS sensor on Terra spacecraft. "

This example provides an instance of model 
evaluation against satellite data over a region such 
as Afghanistan, where in-situ measurements are 
sparse. LVT facilitates model evaluation through 
the use of MODIS snow cover estimates. "

Analysis of 
data 
assimilation 
diagnostics "

Mean of 
normalized 
Innovations"

Variance of 
normalized 
Innovations"

Spatial distribution of the mean and variance of normalized innovations from a 
synthetic soil moisture data assimilation simulation. The experiment is 
conducted over the Continental U.S. domain at 1° spatial resolution, for a time 
period of 1 Jan 2000 to 1 Jan 2006. The synthetic soil moisture observations are 
assimilated using the Ensemble Kalman Filter (EnKF) algorithm.  "

The metric entropy metric provides a 
measure of the randomness in the soil 
moisture time series at each grid point. The 
assimilation of NASA retrievals introduce 
more randomness in several parts of the 
modeling domain, whereas LPRM 
assimilation introduces less randomness. 
The availability of information theory 
metrics in LVT provides a way to 
discriminate model simulations based 
on their information content.  $

Characterization of uncertainty diagnostics "
An ensemble model simulation is conducted using the 
Noah LSM  (version 3.2) during 1 May to 1 September, 
2010 over the Walnut Gulch watershed. The ensemble 
run is conducted by sampling 4 soil hydraulic properties 
from assumed prior distributions. "

(A) shows the time series comparison of the model 
simulation of surface soil moisture against in-situ 
observations. The cyan shading indicates the ensemble 
spread. (B) provides the uncertainty importance 
measure, which is an assessment of the relative 
contribution of each parameter to the ensemble spread. 
This metric is computed as the correlation between the 
simulated variable and the parameter, across the 
ensemble. "

(A) Indicates that soil moisture uncertainty is 
small during the dry period and grows 
significantly during the wet periods. (B) shows 
that among the four parameters, simulations are 
most sensitive to θs. LVT enables the 
quantification of parameter sensitivities for 
uncertainty simulations"

Information theory metrics"

Scale 
decomposition 
analysis"

Two simulations with Noah LSM 
(version 2.7.1) are conducted over a 
domain in Afghanistan at 1km spatial 
resolution to generate snow cover 
estimates: one that employs a 
terrain based correction of shortwave 
radiation input and one that does not 
include such adjustments. The 
improvement in POD as a result of 
the terrain correction is computed, 
and the scale decomposition 
technique is applied to this difference 

field to quantify how the 
improvements at 1km spatial 
resolution translate to coarser scales. "

Intensity scale approach of Casati et 
al. (2004) using a two dimensional 
discrete Haar wavelet transform 
is used to decompose a spatial field 
into sum of orthogonal components 
at different spatial scales. "

(A)"

(B)"

porosity"
saturated matric potential"saturated hydraulic conductivity"
pore size distribution index"

Change in Metric entropy fields as a result of the 
assimilation of soil moisture retrievals of AMSR-E 
from NASA and LPRM. "

NASA AMSR-E"

LPRM AMSR-E"

The deviations from the expected mean and standard deviation of the normalized 
innovation distribution is used as a measure of the optimality of the data assimilation 
configuration. In this instance, a near optimal performance is observed (mean close to zero, 
variance close to 1). The assimilation diagnostics can be processed through LVT and 
the model and observation error specifications can be revised to ensure optimal data 
assimilation performance. "

The percentage 
contribution to the total 
POD improvement at 
each spatial scale is 
shown. Most 
improvements are 
obtained at fine spatial 
scales and the 
contribution of the 
scale drops to below 
10% at scales coarser 
than 16km. $
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!   Uncertainty importance measure: An assessment of the relative 
contribution of each parameter to the ensemble spread, computed 
as the correlation between the simulated variable and the the 
parameter, across the ensemble. !



Scale decomposition features!
!   Tools to characterize the impact of spatial scale on different process 

variables !

!   E.g. Discrete Wavelet transforms, spatial similarity measures!S. V. Kumar et al.: Land surface Verification Toolkit 881
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Fig. 8. Percentage contribution to the total improvement in snow covered area POD at different spatial scales,

generated by a two dimensional discrete Haar wavelet analysis.
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Fig. 8. Percentage contribution to the total improvement in snow
covered area POD at different spatial scales, generated by a two
dimensional discrete Haar wavelet analysis.

an example of scale-decomposition evaluation of snow cover
simulations from the LSMs using LVT.
The intensity-scale approach of Casati et al. (2004), orig-

inally developed for the spatial verification of precipitation
forecasts, is used to perform a scale decomposition analy-
sis. The technique employs a two dimensional discrete Haar
wavelet transform that decomposes a given field into the
sum of orthogonal components at different spatial scales. The
mean squared error (MSE) of the decomposed components at
each spatial scale is used to quantify the scale decomposition
effects.
Using the domain configuration at 1 km spatial resolution

over Afghanistan (used in Sect. 5.1), two model simulations
are conducted using Noah LSM (version 2.7.1); one that em-
ploys a terrain based correction of shortwave radiation input
to the LSM and one that does not include such adjustments.
The terrain-based corrections adjust the incoming shortwave
radiation based on terrain slope and aspect, and these changes
in turn impact the evolution of snow over these terrain. The
improvements in the snow cover simulation as a result of
the terrain-based correction is computed as the difference in
POD fields from the two simulations, generated by compar-
ing against the MOD10A1 (version 4) fractional snow cover
product. The scale-decomposition approach is then applied
to this difference field, to quantify how the improvements in
snow cover estimates at 1 km spatial resolution translate to
coarser spatial scales.
Figure 8 shows the result of scale decomposition of the to-

tal improvement field for POD using the two dimensional
discrete Haar wavelet transform. The algorithm computes
successive decompositions of the original field by powers of
2. The percentage contribution to the total improvement at
each coarse spatial scale is shown in Fig. 8. The results indi-
cate that most of the improvements in POD are obtained at
fine spatial scales and the contribution of the scale decreases
with increase in spatial resolution. At scales coarser than
16 km, the percentage contribution drops below 10%. Simi-
lar analysis of scale effects can be performed on other metrics
and variables of interest. This example demonstrates the use

of LVT for another MDF experiment where the MODIS frac-
tional snow cover data is used to assess the applicability of
model formulations at different spatial scales.

5.7 Spatial similarity measures

With the increased availability of spatially distributed
datasets from satellites and remote-sensing platforms, there
is a need for techniques and metrics that evaluate models
and observations based on the their spatial patterns, in addi-
tion to the one-to-one correspondence comparisons that are
typically used. The incorporation of spatial pattern compar-
isons will aid in further improving the reliability of LSMs
for hydrological applications (Bloschl and Sivapalan, 1995;
Grayson and Bloschl, 2000). A review of spatial similarity
methods in hydrology is provided in Wealands et al. (2005),
which includes techniques based on statistical identification
as well as image processing techniques. In this section, an ex-
ample of using a similarity metric through LVT to compare
snow cover patterns from two different LSMs is presented.
Snow cover estimates using two LSMs, Noah (version 3.2)

and CLM (version 2; Dai et al., 2003), forced with GDAS and
CMAP datasets, are generated over a 100⇥ 100 region near
the Southern Great Plains in the US at 1 km spatial resolution
for a time period of 1 November 2008 to 1 June 2009. The
LSMs have different representations of snow processes, with
Noah employing a simple single snow layer scheme. CLM
includes a more complex five layer snow scheme with param-
eterizations for temporally varying snow albedo, as a func-
tion of snow cover and snow age. Both LSMs simulate tem-
porally varying snow density with evolution of patchy snow
cover. The model simulations are evaluated against the frac-
tional snow cover observations from MODIS (MOD10A1
version 4) using the “Hausdorff distance” similarity metric.
Hausdorff distance (HD) measures the similarity of points

in two finite sets and is not designed to find one-to-one cor-
respondence between points in each set. It is expressed as the
maximum distance of a set to the nearest point in the other
set:

h(M,O) = max
m2M

{min
o2O

{||m � o||}}, (3)

where h(M,O) is the HD value, m and o are points of sets
M (representing model) and O (representing observations),
respectively. ||m � o|| is the norm of the points in the model
and observation spaces and can be computed as the Euclidean
distance between m and o.
Figure 9 shows a time series comparison of the cumulative

HD measure from Noah and CLM snow cover simulations
for the winter season of 1 November 2008 to 1 June 2009.
More temporal variability in HD values is observed during
the snow evolution and ablation periods and it drops during
the peak snow season, suggested by the flattening of the cu-
mulative HD curves. This indicates that there is more con-
sistent agreement in the observational and model simulated

www.geosci-model-dev.net/5/869/2012/ Geosci. Model Dev., 5, 869–886, 2012

!   Percentage contribution to the total improvement in snow covered 
area POD at different spatial scales, generated by a two-dimensional 
discrete Haar wavelet analysis. !



Hydrological Products development!
!   A suite of common, normalized indicators used for drought monitoring has been developed in LVT (e.g. 

Standardized precipitation index (SPI), Standardized Runoff Index (SRI), Standardized Soil Water Index 
(SSWI), Percentiles !

July 30, 2002!

Jan 3, 2006!

Sept 27, 2011!

Root zone soil moisture based drought 
percentiles generated by LVT from a 
LIS simulation!

The capabilities of LVT 
enable an environment for 
performing systematic 
evaluation of the OSSEs 
using various metrics 
including end-use oriented 
measures. !

U.S. Drought 
monitor estimate!



Benchmarking	
  
!  Integration with PALS (Protocol for the Analysis of Land 

Surface Models) Land Model Benchmarking Evaluation 
Project (PLUMBER; Best et al. 2015) concepts!

!  LVT is being modified with a number of data analysis/fusion 
methods (regression, neural networks) that can generate 
benchmarks are purely based on specified datasets. !

!  These benchmarks can then be used for model 
intercomparisons (comparisons against a priori expectations 
of performance) and can be released to the community. !

!  LIS supports model outputs in ‘PALS’ formats. Direct use of 
PALS infrastructure is also possible using LIS outputs. !



Summary	
  

!  An environment for the systematic, comprehensive and 
integrated verification of land surface models with a large 
suite of metrics. !

!  LVT supports the outputs from various LIS subsystems 
including DA, OPT, UE, RTM etc.!

!  Extensible features for incorporating new metrics and 
observation sources.!

!   A conduit for developing hydrological products (e.g. drought/
flood indicators).!


