Land surface Verification Ioolkit (LVT)

- LVT is a framework developed to provide an automated, consolidated environment for systematic land surface model evaluation
- Includes support for a range of in-situ, remote-sensing and other model and reanalysis products.
- Supports the analysis of outputs from various LIS subsystems, including LIS-DA, LIS-OPT, LIS-UE

Design of LVT

- Designed as a stand-alone system; Analysis instances are enabled by specifying a configuration file (much like LIS). No external scripting is required.
- Designed as an object-oriented framework with extensible features enabled for
 - Specifying new metrics
 - Specifying new observational datasets.

Observational data support – A growing list

Water and energy fluxes, soil moisture, soil temperature Water and energy fluxes, Soil moisture, soil temperature,

Water and energy fluxes

Water and energy fluxes, soil moisture, soil temperature,

Snow depth, precipitation, land surface temperature

Water and energy fluxes

Snow water equivalent

Downwelling shortwave, downwelling longwave Soil moisture, soil temperature Streamflow

Brightness temperature for different channels

meteorology

meteorology

Precipitation

Snow depth Soil moisture

Soil moisture Soil temperature Snow depth Snow water equivalent

				In-situ measur	ements	
Dataset	Meas varial	urement bles		AMMA (database.amma-international.org/)	Wate soil r	
Model/reanalys	is output	is		Atmospheric Radiation Measurement (ARM)	Wate Soil 1	
Agricultural Meteorology Model (AGRMET) from the Air Force Weather Agency (AFWA)	Wate: Soil 1 Snow	r and energy fluxes, noisture, soil temperature, o conditions, meteorology		(www.arm.gov) Ameriflux (public.ornl.gov/ameriflux/)		
NLDAS model outputs Mitchell et al. (2004)	Wate Soil 1 snow	r and energy fluxes noisture, soil temperature, conditions, meteorology		Coordinated Energy and water cycle Observations Project (CEOP) (www.ceop.net/)	Wate soil r mete	
GLDAS model outputs Rodell et al. (2004b)	Wate: Soil 1	r and energy fluxes, noisture, soil temperature,		National Weather Service Cooperative Observer Program (COOP) (www.nws.noaa.gov/om/coop/)	Snow land	
Canadian Meteorological Center	Snow	depth		NOAA CPC unified Higgins et al. (1996)	Preci	
(CMC) snow depth analysis Brown and Brasnett (2010)				Gridded FLUXNET Jung et al. (2009)	Wate	
Snow Data Assimilation System SNODAS; Barrett (2003)	Snow equiv	ow depth, snow water uivalent		Finnish Meteorological Institute FMI/SYKE; www.environment.fi/syke		
				Global Summary of the Day (GSOD)	Snow	
Satellite and remo	ote sensi	ng data		International Soil Moisture Network (www.ipf.tuwien.ac.at/insitu/)	Soil	
AFWA NASA Snow Algorithm ANSA; Foster et al., 2011		Snow cover, snow depth, snow water equivalent		Soil Climate Analysis Network (SCAN; www.wcc.nrcs.usda.gov/scan/)	Soil 1 Soil 1	
GlobSnow; Pulliainen (2006) (www.globsnow.info/) International Satellite Cloud Climatology Project; ISCCP; Rossow and Schiffer (1991) (isccp.nasa.gov)		Snow cover,		WMO synoptic observations	Snow	
		Land surface temperature		NRCS SNOwpack TELemetry network (SNOTEL; www.wcc.nrcs.usda.gov/snow/)	Snow	
		I		Surface Radiation Network (SURFRAD) (www.srrb.noaa.gov/surfrad/)		
MODIS/Terra Snow cover 500 m MOD10A1: Hall et al. (2006)		Snow cover		Southwest Watershed Research Center (SWRC; www.tucson.ars.ag.gov/dap/)	Soil r soil te	
MODIS Evapotranspiration product		Evapotranspiration		USGS water data (waterdata.usgs.gov/nwis)	Stream	
MOD16; Mu et al. (2007) NASA Level-3, soil moisture retrieval from AMSR-E (AE_Land3) Njoku et al. (2003)		Soil moisture		AMSR-E radiances (mrain.atmos.colostate.edu/LEVEL1C/)	Brigh differ	
Land Parameter Retrieval Model (LPR from NASA GSFC and VU Amsterdar Owe et al. (2008)	M) m	Soil moisture				

Metrics development in LVT

A large suite of analysis metrics, including accuracybased metrics, ensemble and uncertainty measures, information theory metrics and similarity measures has been built into LVT

algorithms

Metric Class	Examples
Accuracy metrics	RMSE, Bias, Correlation
Ensemble metrics	Mean, Standard deviation, Likelihood
Uncertainty metrics	Uncertainty importance
Information theory metrics	Entropy, Complexity
Data assimilation metrics	Mean, variance, lag correlations of innovation distributions
Spatial similarity metrics	Hausdorff distance
Scale decomposition metrics	Discrete wavelet transforms

Metric entropy provides a measure of the randomness in the soil moisture time series at each grid point. The availability of information theory metrics in LVT provides a way to discriminate model simulations based on their information content.

Capabilities

- LVT reconciles the differences in spatial and temporal resolutions by bringing the model (LIS) and observational datasets to a common (user-specified) space and time domain.
- Support for datasets in their "native" formats; Once the specific plugin to process a particular dataset is built, datasets can be directly employed within LVT. E.g. ARM-CART measurements.
- Supports non-LIS datasets for intercomparisons (An observational processing mode in LVT enables the conversion of an external dataset to a "LIS like" form.
- Miscellaneous:
 - Confidence intervals on analysis statistics
 - Analysis outputs in ASCII, binary, GriB, NETCDF formats
 - Probability density functions of computed metrics
 - Stratify analysis by external datasets
 - Stratify analysis based on a model variable (e.g. day-night stratification) $\mathbf{\Theta}$
 - Land surface diagnostics

LVT running mode: "LIS output pro Map projection of the LIS run: "latlon"	Running mode supports LSM intercomparisons/added analysis, analysis of DA diagnostics, processing of observational datasets.			
LIS nest index: 1 Number of surface model types: 1 Surface model types: "LSM" LIS output source: "LSM" LIS output format: "grib1"				
LIS output naming style: "WMO convention LIS output methodology: "2d gridspace" LVT output format: "netcdf"	Supports the analysis of both LSM and other surface model outputs			
LVT output methodology: "2d gridspace" Map projection of parameter data: "latlon	1''	Supports all output formats and vector/ensemble) from LIS	d styles (grid/	
Observation source: "FLUXNET"	Start mod	e:	coldstart	
The analysis time period is a subset of the LIS output Allows analysis restarts – for long analysis integrations.	LVT resta LVT resta Starting Starting Starting Starting Starting Ending yea Ending day Ending how Ending how Ending min Ending se	rt output interval: rt filename: year: month: day: hour: minute: second: ar: nth: y: ur: nute: cond:	"1mo" none 2008 1 1 0 0 2008 5 1 0 0 0 0 0	
	Undefined LVT diagno LIS outpu Number of	value: ostic file: t directory: ensembles per tile:	-9999 FLUXNET/lvtlog /AGRMET_s4 1	

											t cont	
#LIS domai	n									IV		IY
Run domain	lower	left l	at:				-59	9.875				U
Run domain lower left lon:					-179.875					The analysis domain can be a subset of the LIS output domain		
Run domain upper right lat:					89.875							
Run domain upper right lon:					179.875							
Run domain resolution (dx):					0.25					LVT supports both upscaling and downscaling		
Run domain resolution (dy):				0.25				of the LIS output	its	Ũ		
LIS run doi	main l	ower le	ft lat	:			-5	59.875	1			
LIS run do	main l	ower le	ft lon	:	-179.875							
LIS run domain upper right lat:					89.875							
LIS run domain upper right lon:					179.875							
LIS run domain resolution (dx):					0.25							
LIS run domain resolution (dy):):	0.25							
											The attributes fil	e specifies the
LIS output	attri	butes f	ile:	'./	FLUXN	NET/M	IODEL_	_OUTPL	Τ_	LIST_LVT.TBL'	variables include	ed in the
											analysis	
#Energy ba	lance	compone	ents									
Swnet:	0	W/m2	DN	1 0	01	111	10	0 #	ŧ N	let Shortwave Rad	liation (W/m2)	
Lwnet:	0	W/m2	DN	1 0	01	112	10	0 #	ŧ N	let Longwave Radi	ation (W/m2)	
Qle:	1	W/m2	UP	1 0	01	121	10	1 #	ŧ L	atent Heat Flux	(W/m2)	
Qh:	1	W/m2	UP	1 0	01	122	10	1 #	ŧ S	Sensible Heat Flu	ıx (₩/m2)	
Qg:	1	W/m2	DN	1 0	01	155	10	0 #	ŧ (Ground Heat Flux	(W/m2)	
Qf:	0	W/m2	S2L	1 0	01	229	10	0 #	ŧ E	Energy of fusion	(W/m2)	
Qv:	0	W/m2	S2V	1 0	01	134	10	07	ŧ E	Energy of sublima	tion (W/m2)	
0a:	0	W/m2	DN	10	01	136	10	0 7	‡ ∆	dvective Enerav	(W/m2)	

The first column indicates the variables included in the LIS output; the last column indicates the variables that needs to be included in the LVT analysis (LIS output contains Qle, Qh, Qg, LVT output contains Qle and Qh)

lvt.config

Apply external mask:	0
External mask directory:	OBSMASK.bin
Compute information theory metrics:	0
Compute ensemble metrics:	0
Metrics attributes file:	./FLUXNET/METRICS.TBL
Observation count threshold:	0
Temporal averaging interval:	"1mo"
Spatial averaging mode:	"pixel-by-pixel"
Starting month if a shifted year definition is u	used in temporal averaging: 1
Stats output directory:	./STATS.FLUXNET
Stats output interval:	"1mo"
Time series location file:	./FLUXNET/TS_LOCATIONS.TXT
Variable-based stratification:	0
Compute LSM diagnostics:	0
Confidence interval (%):	95
External data-based stratification:	0
Stratification attributes file:	none
Compute average seasonal cycle of error metrics:	: 0
Seasonal cycle minimum count threshold:	0
Seasonal cycle interval type:	"monthly"
Average diurnal cycle minimum count threshold:	0
Apply temporal smoothing to obs:	0

Supports external masks; A variety of metrics;

Pixel-by-pixel and basin-scale averaging and computation of metrics Use of water years, temporal smoothing, lagged computations

Analysis of LIS-DA outputs

Deviations from the expected mean and standard deviations of the normalized innovation distribution is used as a measure of the optimality of the data assimilation configuration.

Analysis of LIS-UE outputs

Uncertainty importance measure: An assessment of the relative contribution of each parameter to the ensemble spread, computed as the correlation between the simulated variable and the the parameter, across the ensemble.

Scale decomposition features

- Tools to characterize the impact of spatial scale on different process variables
- E.g. Discrete Wavelet transforms, spatial similarity measures

Percentage contribution to the total improvement in snow covered area POD at different spatial scales, generated by a two-dimensional discrete Haar wavelet analysis.

Hydrological Products development

A suite of common, normalized indicators used for drought monitoring has been developed in LVT (e.g. Standardized precipitation index (SPI), Standardized Runoff Index (SRI), Standardized Soil Water Index (SSWI), Percentiles

The capabilities of LVT enable an environment for performing systematic evaluation of the OSSEs using various metrics including end-use oriented measures.

Benchmarking

- Integration with PALS (Protocol for the Analysis of Land Surface Models) Land Model Benchmarking Evaluation Project (PLUMBER; Best et al. 2015) concepts
- LVT is being modified with a number of data analysis/fusion methods (regression, neural networks) that can generate benchmarks are purely based on specified datasets.
- These benchmarks can then be used for model intercomparisons (comparisons against a priori expectations of performance) and can be released to the community.
- LIS supports model outputs in 'PALS' formats. Direct use of PALS infrastructure is also possible using LIS outputs.

Summary

An environment for the systematic, comprehensive and integrated verification of land surface models with a large suite of metrics.

- LVT supports the outputs from various LIS subsystems including DA, OPT, UE, RTM etc.
- Servation sources.
- A conduit for developing hydrological products (e.g. drought/ flood indicators).