https://ntrs.nasa.gov/search.jsp?R=20170005546 2019-08-31T08:15:31+00:00Z

NASA Armstrong Flight Research Center

Aerostructures X-Plane Airworthiness Guidelines and Best Practices

Randy Thompson^{*}, Bill Lokos[†], Natalie Spivey[‡], and Matt Moholt[§] June 2017

- * Senior Aerospace Engineer, NASA Armstrong, Aerostructures Branch, Branch Chief
- [†] Senior Aerospace Engineer, NASA Armstrong, Aerostructures Branch, Aero/Structural Loads Group
- [‡] Aerospace Engineer, NASA Armstrong, Aerostructures Branch, Structural Dynamics Group
- § Aerospace Engineer, NASA Armstrong, Aerostructures Branch, Thermal and Advanced Structures Group

NEW AVIATION HORIZONS

no-

ANANK

Understand Airworthiness

- ... As applicable to flight research
- Definition
 - NASA Procedural Requirements 7900.3C
 - "The capability of an aircraft to be operated within a prescribed flight envelope in a safe manner."
- X-planes and research aircraft are not normally fleet "certified" operational systems (neither FAA or DoD)
 - NASA provides own airworthiness
 - Each aircraft has unique requirements, research, mission, flight envelope, airframe and systems, etc.
- Tailor design and airworthiness methodology to meet unique research/mission requirements
 - Designs adequate (not perfectly optimized) for experiment needs
 - Multiple paths to airworthiness
 - Higher unmitigated risk \rightarrow additional mitigation is possible (testing, instrumentation and monitoring, shorter life, more inspections, etc.)

Static Structures

- Big picture: Confidence in <u>strength</u> & confidence in <u>loads</u>
- Many approaches to design, test, and operate "one-of-akind" aircraft or to modify certified aircraft
- Guidelines for entire vehicle or only for certain area(s)
- Guidelines are starting points for tailorable approaches to address strength and loads
 - Certification approach from Mil-A-8860
 - NASA AFRC Approach #1 "No-Test & No-Data" Factor of Safety
 - NASA AFRC Approach #2 "Test & Data" Factor of Safety
 - NASA AFRC Approach #3 "Test & No-Data" Factor of Safety
 - Other approaches...

- FAA/DoD Approach for Fleet Certification
 - Factor of Safety = 1.5 FS on ultimate
 - Proof Test = Dedicated, full-scale, equivalent article to 150% DLL
 - Instrumentation = Fully instrumented and calibrated flight-test aircraft
 - Loads Predictions = Well understood (e.g. wind tunnel derived)
 - Flight Level = Methodical envelope expansion up to 100% DLL

- Approach #1 ("No-Test & No-Data" Factor of Safety)
 - Factor of Safety = 2.25 FS on ultimate
 - Proof Test = None
 - Instrumentation = No loads instrumentation
 - Loads Predictions = Well understood and conservative
 - Flight Level = 100% DLL

IRINATION FLICHT RESEARCH CENTER

G-III Adaptive Compliant Trailing Edge (ACTE)

AFTI/F-111 MAW Cambered LE & TE

AFTI/F-16XL2 Supersonic Laminar Flow Control Glove and Attachments

F-106/C-141 Tow Launch Demonstration

- Approach #2 ("Test & Data" Factor of Safety)
 - Factor of Safety = 1.5 FS on ultimate
 - Proof Test = 100% LL (Flight-test aircraft is proof test aircraft)
 - Instrumentation = Fully instrumented and calibrated flight-test aircraft
 - Loads Predictions = Low confidence in loads
 - Flight Level = 80% LL (100% LL on a case-by-case basis)
 - Proof test = 1.25 of flight limit \rightarrow 1.875 equivalent design FS

- Approach #3 ("Test & No-Data" Factor of Safety)
 - Factor of Safety = 1.8 FS on ultimate
 - Proof Test = 120% LL (Flight-test aircraft is proof test aircraft)
 - Instrumentation = None
 - Loads Predictions = Well understood & conservative load predictions
 - Rarely have well understood & conservative load predictions
 - This approach often coupled with instrumentation to gain confidence in loads → Becomes like approach #2
 - Flight Level = 100% LL

Composites

Building Block Approach for Experimental Flight

- Building block approach requires time and money but reduces risk (safety, technical, and programmatic)
- Impractical to test everything \rightarrow Balance between analysis and test
- Testing supports analysis for critical and complex features
- Appropriately scope building block approach for prototype flight

Composites (Cont.)

- Airworthiness requires close link between design, analysis, and manufacturing to understand "as built" performance
 - Relationship easier to establish when working with high pedigree manufacturers with proven processes and ability to leverage design databases
 - Start-ups have a path to airworthiness at a cost of higher scrutiny
- Many paths to airworthiness → Tailorable based on risk posture, design FS, test pedigree, M&P confidence, etc.
- AFRC best practices:
 - If proven material equivalence, follow Static Structures approaches
 - FS=3.0 for secondary/tertiary structures with unknown equivalence

Aeroelasticity

- Modified, previously-certified aircraft or new store or experiment carriage configurations
- Flutter Criteria: Minimum 15-20% margin on Equivalent Air Speed (EAS) and Mach Number
- AFRC process:
 - Step #1: Gather historical aeroelastic information pertaining to aircraft/test article
 - Step #2: Choose clearance approach to show airworthiness = most efficient effort to provide sufficient evidence consistent w/risk posture
 - 1) Clearance by <u>flutter analysis, Ground Vibration Test</u> (GVT)/Modal Test, and flight-testing
 - Large margin (~ >100%) on high-confidence model, flutter testing normally not required
 - Low margin (~ <100%) on high-confidence model, flutter testing and/or monitoring may be required
 - 2) Clearance by **<u>flutter sensitivity study</u>**
 - 3) Clearance by **aeroelastic similarity**

Mainly used for smaller structural modification

Aeroelasticity (Cont.)

- Approach #1 (Flutter analysis, GVT, and flight-test)
 - Standard approach for new aircraft/test article or previously certified aircraft with significant structural and/or mass modifications
 - GVT data used to validate or update Finite Element Model (FEM) and aid in flight flutter testing
 - Flutter analyses often conducted twice (depending on quality of FEM)
 - Flight flutter testing proves no aeroelastic instabilities exist within planned flight envelope and to extrapolated flutter criteria

Armstrong Flight Research Center

Aeroelasticity (Cont.)

Approach #2 (Flutter sensitivity study)

- When uncertainties in FEM parameters exist, flutter sensitivity study can capture variable combinations which bound the flutter envelope
 - Determine if large flutter margins exist with all variations
 - Identify flutter critical combinations & justify further investigation
- If necessary, perform limited GVT to validate FEM

DC-8 High Ice Water Content (HIWC) Wingtip Pylon

F-15B Rake Airflow Gage Experiment (RAGE) & Cone Drag Experiment (CDE) attached to Propulsion Flight Test Fixture (PFTF)

Aeroelasticity (Cont.)

Approach #3 (Aeroelastic similarity)

- Minimum effort & low cost approach
- Often used for new external stores when previously cleared on same pylon and same aircraft location
 - Similar mass & stiffness distributions and unsteady aerodynamic forces as previous flown and cleared configuration
 - Often, stores considered stiff & treated as rigid-bodies attached to a flexible pylon; Shape, mass, CG location, & inertias of old and new stores may be sufficient for comparison

F-15B Aeronautics Research Testbed

Structural Instrumentation

- Instrumentation required to understand performance...
 - Safety
 - Experiment success
 - Experiment failure
- Flight research requires a combination of COTS and unique purpose-developed instrumentation

Early involvement critical to experiment success

Structural Instrumentation (Cont.)

 Purposed and opportune → Need strategic view to develop measurement and test technologies/techniques as a priority for future X-planes

Highly Maneuverable Aircraft Technology (HiMAT) 1979-83

Strain gage loads measurement techniques on composites proven on HiMAT then utilized on X-29

 \Rightarrow

Electro-optical Flight Deflection Measurement System (FDMS) developed for HiMAT then utilized on AFTI/F-111 MAW, X-29, and X-53 AAW

Summary

- X-planes and modified vehicles for flight research require a unique perspective compared to fleet certified airframes
- Aerostructures Lessons Learned / Best Practices

#1 – Understand tailorable/adequate airworthiness processes applicable to flight research

#2 – Modified structure requires special considerations (e.g. modified inspection plans)

#3 – Tailor Static Structures airworthiness methodology to gain confidence in strength and loads

#4 – Understand the use of composites in non-certified, research airframes

#5 – Tailor Aeroelasticity airworthiness methodology to gain confidence in flutter margins

#6 – Make sure you have the ability to learn the right information from the research; Work instrumentation early in development

