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• … As applicable to flight research

• Definition

 NASA Procedural Requirements 7900.3C

 “The capability of an aircraft to be operated within a prescribed 

flight envelope in a safe manner.”

• X-planes and research aircraft are not normally fleet 

“certified” operational systems (neither FAA or DoD)

 NASA provides own airworthiness

 Each aircraft has unique requirements, research, mission, flight 

envelope, airframe and systems, etc.

• Tailor design and airworthiness methodology to meet 

unique research/mission requirements

 Designs adequate (not perfectly optimized) for experiment needs

 Multiple paths to airworthiness

 Higher unmitigated risk → additional mitigation is possible (testing, 

instrumentation and monitoring, shorter life, more inspections, etc.)

Understand Airworthiness
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• Big picture: Confidence in strength & confidence in loads

• Many approaches to design, test, and operate "one-of-a-

kind" aircraft or to modify certified aircraft

• Guidelines for entire vehicle or only for certain area(s)

• Guidelines are starting points for tailorable approaches 

to address strength and loads

 Certification approach from Mil-A-8860

 NASA AFRC Approach #1 – “No-Test & No-Data” Factor of Safety

 NASA AFRC Approach #2 – “Test & Data” Factor of Safety

 NASA AFRC Approach #3 – “Test & No-Data” Factor of Safety

 Other approaches…

Static Structures
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Static Structures (Cont.)

• FAA/DoD Approach for Fleet Certification
– Factor of Safety = 1.5 FS on ultimate

– Proof Test = Dedicated, full-scale, equivalent article to 150% DLL

– Instrumentation = Fully instrumented and calibrated flight-test aircraft

– Loads Predictions = Well understood (e.g. wind tunnel derived)

– Flight Level = Methodical envelope expansion up to 100% DLL

F-22

X-53 (AAW)

F-35

787
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Static Structures (Cont.)

• Approach #1 (“No-Test & No-Data” Factor of Safety)
– Factor of Safety = 2.25 FS on ultimate

– Proof Test = None

– Instrumentation = No loads instrumentation

– Loads Predictions = Well understood and conservative

– Flight Level = 100% DLL

AFTI/F-111 MAW Cambered LE & TE

AFTI/F-16XL2 Supersonic

Laminar Flow Control 

Glove and Attachments

F-106/C-141 Tow Launch

Demonstration

G-III Adaptive Compliant Trailing Edge (ACTE)
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Static Structures (Cont.)

• Approach #2 (“Test & Data” Factor of Safety)
– Factor of Safety = 1.5 FS on ultimate

– Proof Test = 100% LL (Flight-test aircraft is proof test aircraft)

– Instrumentation = Fully instrumented and calibrated flight-test aircraft

– Loads Predictions = Low confidence in loads

– Flight Level = 80% LL (100% LL on a case-by-case basis)

– Proof test = 1.25 of flight limit → 1.875 equivalent design FS

F-8 Supercritical Wing

Research Aircraft
X-29
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Static Structures (Cont.)

• Approach #3 (“Test & No-Data” Factor of Safety)
– Factor of Safety = 1.8 FS on ultimate

– Proof Test = 120% LL (Flight-test aircraft is proof test aircraft)

– Instrumentation = None

– Loads Predictions = Well understood & conservative load predictions

 Rarely have well understood & conservative load predictions 

 This approach often coupled with instrumentation to gain 

confidence in loads → Becomes like approach #2

– Flight Level = 100% LL

D-8 UEST

X-57
QueSST / LBFD
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Composites
• Building Block Approach for Experimental Flight

 Building block approach requires time and money but reduces risk 

(safety, technical, and programmatic)

 Impractical to test everything → Balance between analysis and test

 Testing supports analysis for critical and complex features

 Appropriately scope building block approach for prototype flight

=

Destructive 

coupon testing

Gets the design 

started

Destructive testing 

of design features

Project risk 

reduction

On aircraft proof 

loading

Safety of

flight

Test  here  to provide a level of 

confidence failure does not occur  here
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• Airworthiness requires close link between design, 

analysis, and manufacturing to understand “as built” 

performance

– Relationship easier to establish when working with high pedigree 

manufacturers with proven processes and ability to leverage design 

databases

– Start-ups have a path to airworthiness at a cost of higher scrutiny

• Many paths to airworthiness → Tailorable based on risk 

posture, design FS, test pedigree, M&P confidence, etc.

• AFRC best practices:

– If proven material equivalence, follow Static Structures approaches

– FS=3.0 for secondary/tertiary structures with unknown equivalence

Composites (Cont.)
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• Modified, previously-certified aircraft or new store or 

experiment carriage configurations

• Flutter Criteria:  Minimum 15-20% margin on Equivalent 

Air Speed (EAS) and Mach Number

• AFRC process:
 Step #1: Gather historical aeroelastic information pertaining to 

aircraft/test article

 Step #2: Choose clearance approach to show airworthiness = most 

efficient effort to provide sufficient evidence consistent w/risk posture

1) Clearance by flutter analysis, Ground Vibration Test 

(GVT)/Modal Test, and flight-testing

o Large margin (~ >100%) on high-confidence model, flutter 

testing normally not required

o Low margin (~ <100%) on high-confidence model, flutter 

testing and/or monitoring may be required

2) Clearance by flutter sensitivity study

3) Clearance by aeroelastic similarity

Aeroelasticity

Mainly used for smaller
structural modification
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• Approach #1 (Flutter analysis, GVT, and flight-test)
 Standard approach for new aircraft/test article or previously certified 

aircraft with significant structural and/or mass modifications 

 GVT data used to validate or update Finite Element Model (FEM) and 

aid in flight flutter testing

 Flutter analyses often conducted twice (depending on quality of FEM)

 Flight flutter testing proves no aeroelastic instabilities exist within 

planned flight envelope and to extrapolated flutter criteria

Aeroelasticity (Cont.)

G-III w/ Adaptive Compliant 

Trailing Edge (ACTE) 

X-53 Active

Aeroelastic

Wing (AAW)

F-15B w/ Quiet Spike

Stratospheric Observatory for

Infrared Astronomy (SOFIA)

X-43 Hyper-X 

mated to B-52
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• Approach #2 (Flutter sensitivity study)
 When uncertainties in FEM parameters exist, flutter sensitivity study 

can capture variable combinations which bound the flutter envelope

 Determine if large flutter margins exist with all variations

 Identify flutter critical combinations & justify further investigation

 If necessary, perform limited GVT to validate FEM

Aeroelasticity (Cont.)

F-15B Rake Airflow Gage Experiment (RAGE) 

& Cone Drag Experiment (CDE) attached to 

Propulsion Flight Test Fixture (PFTF)

DC-8 High Ice Water Content 

(HIWC) Wingtip Pylon

CDE

RAGE
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Aeroelasticity (Cont.)

F-15B Aeronautics Research Testbed



Swept Wing Laminar 

Flow (SWLF) Experiment

Supersonic Boundary Layer 

Transition (SBLT) Experiment

• Approach #3 (Aeroelastic similarity)
 Minimum effort & low cost approach

 Often used for new external stores when previously cleared on same 

pylon and same aircraft location

 Similar mass & stiffness distributions and unsteady aerodynamic 

forces as previous flown and cleared configuration

 Often, stores considered stiff & treated as rigid-bodies attached 

to a flexible pylon; Shape, mass, CG location, & inertias of old 

and new stores may be sufficient for comparison
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• Instrumentation required to understand performance…
 Safety

 Experiment success

 Experiment failure

• Flight research requires a combination of COTS and 
unique purpose-developed instrumentation

• Early involvement critical to experiment success

Structural Instrumentation

Conventional
Strain Gages

Extrinsic Fabry-Perot
Interferometer (1800°F)

Fiber Optic Strain
Sensing (FOSS)

Liquid Metal Strain Gage
(Extremely High Strain)

Accelerometer
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Structural Instrumentation (Cont.)

Strain gage loads measurement

techniques on composites

proven on HiMAT

then utilized on X-29


Electro-optical Flight Deflection

Measurement System (FDMS)

developed for HiMAT then

utilized on AFTI/F-111 MAW,

X-29, and X-53 AAW

Highly Maneuverable

Aircraft Technology 

(HiMAT) 1979-83

F-111 MAW

1974-86

X-53 AAW

2001-04

X-29

1984-92

• Purposed and opportune → Need strategic view to 

develop measurement and test technologies/techniques 

as a priority for future X-planes
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• X-planes and modified vehicles for flight research 

require a unique perspective compared to fleet certified 

airframes

• Aerostructures Lessons Learned / Best Practices

#1 – Understand tailorable/adequate airworthiness processes 

applicable to flight research 

#2 – Modified structure requires special considerations (e.g. modified 

inspection plans)

#3 – Tailor Static Structures airworthiness methodology to gain 

confidence in strength and loads

#4 – Understand the use of composites in non-certified, research 

airframes

#5 – Tailor Aeroelasticity airworthiness methodology to gain 

confidence in flutter margins

#6 – Make sure you have the ability to learn the right information from 

the research; Work instrumentation early in development

Summary
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