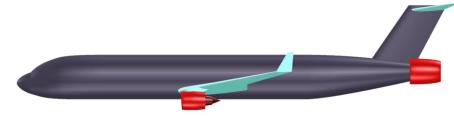

## Overview of the NASA STARC-ABL (Rev. B) Advanced Concept

Single Aisle Turboelectric Aircraft Concept

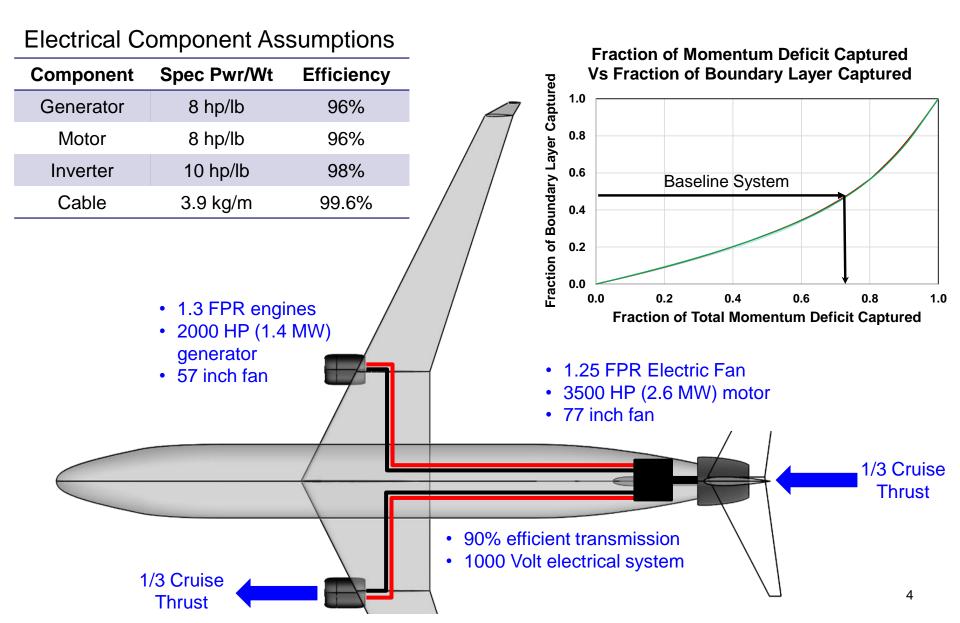
Jason Welstead – PI, Aeronautics Systems Analysis Jim Felder – Propulsion Systems Analysis Mark Guynn – Aeronautics Systems Analysis Bill Haller – Propulsion Systems Analysis Mike Tong – Propulsion Systems Analysis Scott Jones – Propulsion Systems Analysis Irian Ordaz – Aeronautics Systems Analysis Jesse Quinlan – Aeronautics Systems Analysis Brian Mason – Structural Mechanics

#### **Concept Germination**





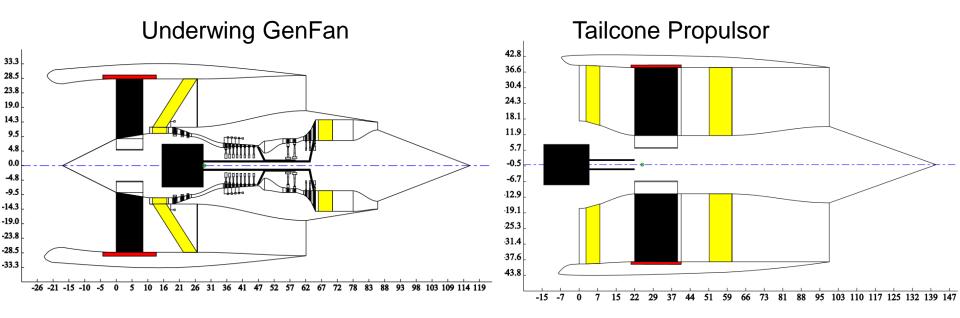

# **STARC-ABL Rev. B\* Concept Description**




- STARC-ABL: <u>Single-aisle</u> <u>Turboelectric</u> <u>AiRC</u>raft with <u>Aft</u> <u>Boundary</u> <u>Layer</u> propulsion
  - Conventional single aisle tube-and-wing configuration
  - Twin underwing mounted N+3 geared turbofan engines with attached generators on fan shaft
  - Ducted, electrically driven, boundary layer ingesting tailcone propulsor
- Summary of changes from Rev. A to Rev. B
  - Design cruise Mach number increased from 0.7 to 0.785
  - Modified wing sweep angle to accommodate increased Mach number
  - Using NASA Glenn N+3 geared turbofan model
  - Empirical estimates for propulsion weight replaced by WATE++ analysis
  - Improved weight estimates of thermal management system
  - Onboard voltage increased from 750 to 1000 volts
  - Underwing engine fan pressure ratio decreased from 1.45 to 1.3
  - Modified mission constraints to provide comparable performance to N3CC
  - All other assumptions and methods unchanged from previous analysis



\*STARC-ABL Rev. A published in AIAA SciTech 2016 paper (AIAA-2016-1027)






## **Propulsion System Concept Description**



- Normal conduction (non-superconducting) electrical system
- Constant 3500 HP to BLI propulsor except at low system throttle settings
- Underwing engine fan pressure ratio of 1.30
- BLI propulsor fan pressure ratio of 1.25
- N+3 technology assumptions on propulsion architecture



## **System Performance Comparison**



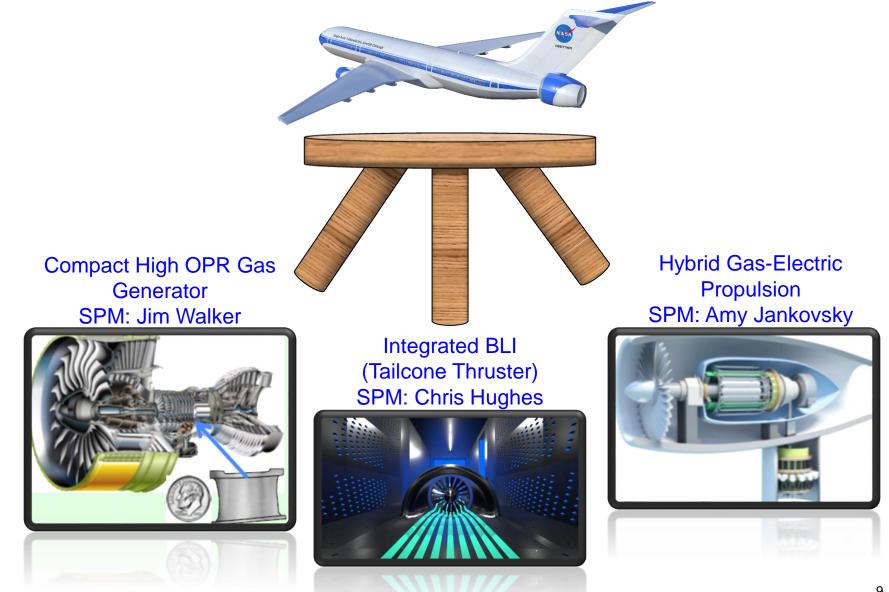
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            |          | STARC-ABL R.B | N3CC R.B | Delta        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------|---------------|----------|--------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Wing Area (trap)           | ft^2     | 1140          | 1170     | -2.3%        |
| Conceptual Design of a Single-Aisle<br>Turboelectric Commercial Transport with Fuselage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Span                       | ft       | 118           | 118      | Fixed        |
| Boundary Layer Ingestion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Aspect Ratio               | -        | 12.2          | 11.9     | 2.3%         |
| JASON IF. Welstends"<br>NASA Langley Research Conter, Heading, VA 22888, United States of America<br>and James L. Felder <sup>1</sup><br>NASA Gima Research Conter, Generated, Of 11114, United States of America                                                                                                                                                                                                                                                                                                                                                       | Sweep (LE)                 | deg      | 29            | 29       | Fixed        |
| A single-side commercial transport concept with a turbocletric propulsion system ar-<br>electrony and developed assuming entry into university in 2005 and compared to a similar                                                                                                                                                                                                                                                                                                                                                                                        | Wing Loading               | lb/ft^2  | 116.3         | 118.1    | -1.5%        |
| technology conventional configuration. The turbulencleric architecture consisted of two an-<br>derwise turbulenas with generators extracting power from the fan shaft and sensing it to a<br>rear faselage, axisymmetric, boundary layer ingesting fan. Results indicate that the turbo-<br>electric concept has an economic mixino in the burr reduction of 7%, and a design mixino<br>fuel burs reduction of 12% compared to the consentional configuration. An exploration of<br>the damy space was performed to potter understand bur the turbodectric architecture | Empty Weight               | lb       | 72730         | 73920    | -1.6%        |
| changes the design space, and system availabilities were run to determine the sensitivity of<br>threat upscrift fact communition at two of think and propulsion systems weight for the motor<br>power, fan pressure ratio, and electrical transmission efficiency of the aft boundary layer<br>ingeving fan.                                                                                                                                                                                                                                                            | Operating Empty Weight     | lb       | 77350         | 78540    | -1.5%        |
| Nomenclature<br>G. = 18 coefficient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Zero Fuel Weight           | lb       | 108150        | 109340   | -1.1%        |
| $C_p$ = presence coefficient<br>D = Drag<br>HPC = high presence compressor<br>HPT = high presence runthian                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Takeoff Gross Weight       | lb       | 132480        | 137670   | -3.8%        |
| L = 10.<br>LPC = to premare compressor<br>LPT = to premare turbing<br>M/W = Mach sampler with number<br>M/W = Mach sampler turbing                                                                                                                                                                                                                                                                                                                                                                                                                                      | Excess Specific Power      | ft/min   | 650           | 430      | 51.0%        |
| N+3 = third generation compares with expected entry into service near 2005<br>$N_{C}$ = corrected flas model<br>$\vec{P}_{1}$ = mass-entropyed total pressure<br>$\vec{P}_{1}$ = total pressure                                                                                                                                                                                                                                                                                                                                                                         | Time to Climb              | min      | 25.8          | 20.7     | 24.6%        |
| pris = pounds per sequence inch absolute<br>HTCO = rolling takador<br>T4 = eurisis inde total temperature<br>TSPC = Linear specific fuel consumption                                                                                                                                                                                                                                                                                                                                                                                                                    | Thrust (Sea Level Static)  | lb/eng   | 21470         | 21660    | -0.9%        |
| W = man flow rate<br>*Armys Explore, ASBN NASA Langder Banaerh Center, 1 N Dryden B. M/S 142, Hampun, VA 1981, Menther<br>ALAA.<br>*Armysone Engineer, UZA, NASA Olexe Research Center, 10500 Breedpach Rd, Chevideni, OH 44145                                                                                                                                                                                                                                                                                                                                         | Altitude (Start of Cruise) | ft       | 37000         | 36340    | 1.8%         |
| 1 of 12<br>American Institute of Anternautice and Anternautice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CL (Start of Cruise)       | -        | 0.58          | 0.57     | 1.5%         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Cruise Mach Number         | -        | 0.785         | 0.785    | Fixed        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | L/D (Start of Cruise)      | -        | 20.9          | 20.1     | <b>4.0%</b>  |
| SciTech 2016 Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Takeoff Length             | ft       | 8160          | 8200     | -0.5%        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Landing Length             | ft       | 5960          | 6030     | -1.1%        |
| Start of Cruise TSFC: -14.6%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Approach Velocity          | knots    | 146           | 147      | -0.7%        |
| Design Mission Block Fuel: -12.2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TSFC (Start of Cruise)     | lb/hr/lb | 0.437         | 0.496    | -11.8%       |
| Economic Block Fuel: -6.8%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Design Mission BF          | lb       | 21340         | 25170    | -15.2%       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Economic Mission BF        | lb       | 6260          | 6910     | <b>-9.4%</b> |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            |          |               |          |              |

# **Propulsion System Weights**



- Each propulsion system sized to meeting rolling takeoff and climb thrust requirements
- Sized propulsion systems are similar in sea level static thrust

|                     | STARC-ABL<br>(41,780 lb) | N3CC<br>(37,660 lb) ▲ | SLS Thrust |
|---------------------|--------------------------|-----------------------|------------|
| Turbofans* (2)      | 7250                     | 10690                 |            |
| Tailcone w/ gearbox | 2040                     | -                     |            |
| Electric motor      | 440                      | -                     |            |
| Inverter            | 350                      | -                     |            |
| Rectifier           | 390                      | -                     |            |
| Cable               | 450                      | -                     |            |
| Circuit breaker     | 120                      | -                     |            |
| Thermal management  | 110                      | -                     | _          |
| Nominal total       | 11,150 lb                | 10,690 lb             |            |
| Installation weight | 5%                       | 5%                    | •          |
| Sized SLS thrust    | 42,940                   | 43,320                |            |
| Engine scale factor | +2%                      | +15%                  |            |
| Sized total         | 12,074 lb                | 13,179 lb             |            |


# **Quick Summary of Rev. B Results**

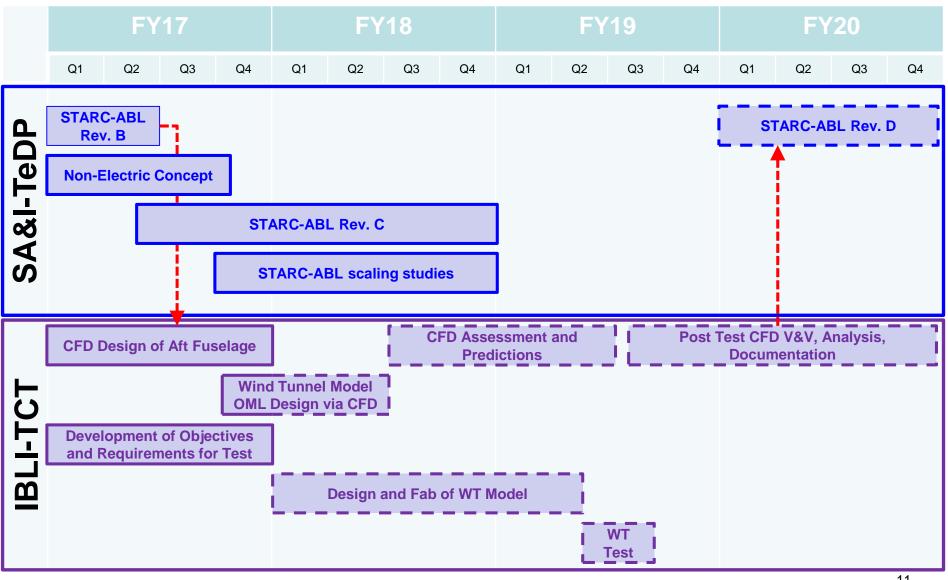


- Significant reductions in system fuel burn
  - 12% reduction in start of cruise (SOC) TSFC
  - 9% reduction in economic mission block fuel
  - 15% reduction in design mission block fuel
  - Fuel burn benefits similar to Mach 0.7 STARC-ABL Rev. A results
- Fuselage propulsor details
  - Only bottom half of boundary layer ingested
  - BLI propulsor placed at most aft fuselage position
  - Driven by an all-electric motor, nominally operating at 3500 HP
  - Electrical system modeled assuming ~10% total system losses
- Partially turboelectric system is not a weight penalty
  - Downsizing of underwing engines enabled by turboelectric offsets the weight addition of electrical components and tailcone propulsor
- Cable size/weight can become prohibitive if onboard voltage too low
- Electric system specific power based upon current AATT NRA efforts

#### **Related AATT Investments on Enabling Technologies for STARC-ABL**






#### Summary of Current and Near Term AATT Research Efforts



| SA&I               | Concept Study and Trades | • | <ul> <li>Continued systems analysis of STARC-ABL Concept (Rev. B)</li> <li>Improved propulsion system weight modeling</li> <li>Increased design cruise Mach to 0.785</li> <li>Better estimate of TMS requirements and weights</li> <li>Higher order analysis (Rev. C)</li> </ul> Analysis of a Single-aisle non-electric distributed propulsion concept <ul> <li>Turbine powered tailcone thruster</li> <li>Explore the question, "What does electric give you?"</li> </ul> |
|--------------------|--------------------------|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -<br>BLI<br>-<br>- | ruster Task              | • | <ul> <li>CFD on objective (full) scale vehicle</li> <li>Generate a nominal design for rear aircraft shaping and nacelle that minimizes distortion and maximizes performance</li> <li>Use objective scale results to guide design at WT model scale</li> </ul>                                                                                                                                                                                                               |
|                    | Tailcone Th              | • | CFD analysis and design for potential wind tunnel model OML                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                    |                          | • | Exploration of potential test facilities and wind tunnel model conceptual design                                                                                                                                                                                                                                                                                                                                                                                            |

## **Notional Development Roadmap**





## **Questions?**







## **System Performance Comparison**



|                            |          | 2016          |            |        | 2017        |             |        |  |
|----------------------------|----------|---------------|------------|--------|-------------|-------------|--------|--|
|                            |          | STARC-ABL R.A | N3CC R.A   | Delta  | STARC-ABL R | .B N3CC R.B | Delta  |  |
| Wing Area (trap)           | ft^2     | 1270          | 1220       | 4.3%   | 1140        | 1170        | -2.3%  |  |
| Span                       | ft       | 118           | 118        | Fixed  | 118         | 118         | Fixed  |  |
| Aspect Ratio               | -        | 11.0          | 11.4       | -4.1%  | 12.2        | 11.9        | 2.3%   |  |
| Sweep                      | deg      | 20.1 (c/4)    | 20.1 (c/4) | Fixed  | 29 (LE)     | 29 (LE)     | Fixed  |  |
| Wing Loading               | lb/ft^2  | 106.1         | 106        | 0.1%   | 116.3       | 118.1       | -1.5%  |  |
| Empty Weight               | lb       | 76700         | 69020      | 11.1%  | 72730       | 73920       | -1.6%  |  |
| Operating Empty Weight     | lb       | 81380         | 73690      | 10.4%  | 77350       | 78540       | -1.5%  |  |
| Zero Fuel Weight           | lb       | 112180        | 104490     | 7.4%   | 108150      | 109340      | -1.1%  |  |
| Takeoff Gross Weight       | lb       | 135000        | 129260     | 4.4%   | 132480      | 137670      | -3.8%  |  |
| Excess Specific Power      | ft/min   | 980           | 300        | 222.6% | 650         | 430         | 51.0%  |  |
| Time to Climb              | min      | 19.7          | 25.3       | -22.1% | 25.8        | 20.7        | 24.6%  |  |
| Thrust (Sea Level Static)  | lb/eng   | 21460         | 20510      | 4.6%   | 21470       | 21660       | -0.9%  |  |
| Altitude (Start of Cruise) | ft       | 34400         | 34580      | -0.5%  | 37000       | 36340       | 1.8%   |  |
| Cruise Mach Number         | -        | 0.7           | 0.7        | Fixed  | 0.785       | 0.785       | Fixed  |  |
| CL (Start of Cruise)       | -        | 0.59          | 0.6        | -1.7%  | 0.58        | 0.57        | 1.5%   |  |
| L/D (Start of Cruise)      |          | 22.1          | 21.4       | 3.3%   | 20.9        | 20.1        | 4.0%   |  |
| Takeoff Length             | ft       | 8190          | 8190       | 0.0%   | 8160        | 8200        | -0.5%  |  |
| Landing Length             | ft       | 5590          | 5580       | 0.1%   | 5960        | 6030        | -1.1%  |  |
| Approach Velocity          | knots    | 140           | 140        | 0.1%   | 150         | 150         | -0.7%  |  |
| TSFC (Start of Cruise)     | lb/hr/lb | 0.377         | 0.437      | -13.8% | 0.437       | 0.496       | -11.8% |  |
| Design Mission BF          | lb       | 19940         | 22050      | -9.6%  | 21340       | 25170       | -15.2% |  |
| Economic Mission BF        | lb       | 5860          | 6090       | -3.7%  | 6260        | 6910        | -9.4%  |  |