National Aeronautics and Space Administration

Printed Circuit Board Quality Assurance

Bhanu Sood Reliability and Risk Assessment Branch Quality and Reliability Division

SAFETY and MISSION ASSURANCE DIRECTORATE Code 300

Safely Achieve Amazing Science Through Mission Success

Outline

- Introduction to PCBs
- •PCB requirements and quality verification
- Risk assessment
- •Example

What is a PCB? Classification of PCBs

- Printed circuit boards are the baseline in electronic packaging they are the interconnection medium upon which electronic components are formed into electronic systems.
 - PCB materials are glass reinforced PCBs, organic polyimide reinforced with woven glass.
- Classified on the basis of
 - Dielectrics used
 - Reinforcement
 - Circuit type
 - Component types
 - Board construction
 - Design complexity

Typical Polyimide Laminate Supply Chain

PCB Quality

- NASA uses IPC standards (e.g., IPC-6012, 6013)
- Inspection, testing and requirements include:
 - External visual examination
 - Microsection evaluation
 - Electrical continuity and isolation
 - Solderability
 - Surface finish evaluation
 - Cleanliness

Significance of Board Requirements

- The requirements and coupons are a "front door".
- Examples:
 - Internal Annular Ring:
 - Egregious violations indicate there may have been a serious problem in development of the board.
 - Minor violations don't likely indicate any risk at all (IPC-6012DS)
 - Negative etchback:
 - With modern cleaning processes and flight experience can result in higher reliability with negative etchback.
 - Wicking of copper:
 - Requirements are conservative based on broad statistics.
 - A basic analysis of the board layout can indicate directly if there is risk or not, regardless of requirements violations.

Microsectioning

- Suppliers perform microsectioning and inspect per specifications.
- Secondary GSFC independent microsection analysis yielded 20-30% inspection rejects, caused by:
 - Screening escapes:
 - Test sample quality not consistent
 - Supplier microsection process
 - Requirement interpretations
 - Requirements flow-down issues
 - Alternative specifications (MIL, ECSS)
 - Buying heritage and off-the-shelf designs

Impact of Non-conformances

- Bare boards cost \$\$ and build schedules expensive!!
- But failures are even more expensive!
- <u>Test sample nonconformance is not the same</u> <u>as PCB failure.</u>
- <u>Risk-based</u> decisions are used for disposition of non-conformances.
- Non-conformances may have little to no impact per application.
- Began to explore origins and merit of requirements (more later).

Risk Assessment

- Traceable PCB test coupons (designed per specs. such as IPC-2221B) are submitted to GSFC or to a GSFC-assessed laboratory.
- Reports that indicate nonconformance are dispositioned by risk assessment performed prior to refabricating or populating the PCB.
 - If risk assessment indicates elevated risk due to the nonconformance, then use is dispositioned by MRB.
- More than a 100 PCB lots assessed for risk since 2014, 95% dispositioned as UAI, significant cost and schedule savings.
- Risk assessment process eliminates waste and saves money and schedule, lowers overall risk for the project.
- The process reduces the need for repeated attempts to refabricate.

Example: PTH Copper Wrap Thickness Requirement

- Thermal cycle stresses act on interfaces, outer layers experience the greatest stress.
- Reason: <u>materials</u> <u>selection and geometry</u>.

Per IPC-6012D for through-holes:

Class 1	AABUS
Class 2	5 μm [197 μin]
Class 3 & 3/A	12 μm [472 μin]
AABUS = As Agreed Between User and Supplier	

Figure 3-16 Surface Copper Wrap Measurement (Applicable to all filled PTHs)

PTH Copper Wrap Thickness: Disposition

- Mission had populated and integrated board with zero wrap, wrap planarization can cause 0.3mil or more variance in panel; manufacturers must target more wrap.
 - Wrap cannot be achieved at required thickness for designs with tight line-width spacing and/or with multiple lamination/plating steps
- Requirement was introduced to IPC with minimal data
 - Reliability reported to be better with wrap vs. butt joint
 - Half of barrel plating thought to be "good enough"
 - Higher quality limit used as safety margin against manufacturing variation during planarization
- **GSFC Studies:** Determined the impact of copper wrap plating thickness on PCB reliability, as characterized by thermal cycles to failure.
 - Able to determine acceptability of wrap defect based on reliability testing and analysis in context of mission environment and duration.
 - IPC voted to change the requirement (amendment in Rev. D and revisions in Rev. E).

PCB Assurance: Summary

- PCB assurance actives are informed by risk in context of the Project.
- Lessons are being applied across Projects for continuous improvements.
- Newer component technologies, smaller/high pitch devices: tighter and more demanding PCB designs:
- Identifying new research areas.
- New materials, designs, structures and test methods.

Thank you!

Bhanu Sood Commodity Risk Assessment Engineer Code 371 – Reliability and Risk Assessment Branch NASA Goddard Space Flight Center Phone: (301) 286-5584

SAFETY and MISSION ASSURANCE DIRECTORATE Code 300