

1

Advanced Thermal Barrier and Environmental Barrier Coating Development at NASA GRC

Dongming Zhu And Craig Robinson

Environmental Effects and Coatings Branch Materials and Structures Division NASA Glenn Research Center Cleveland, Ohio 44135, USA

Information Exchange Meeting, Army Research Laboratory Aberdeen Proving Ground, Maryland April 6, 2017

Durable Thermal and Environmental Barrier Coating Systems for Ceramic Matrix Composites (CMCs):

Enabling Technology for Next Generation Low Emission, High Efficiency and Light-Weight Propulsion

– NASA Environmental barrier coatings (EBCs) development objectives

- Help achieve future engine temperature and performance goals
- Ensure system durability towards prime reliant coatings
- Establish database, design tools and coating lifing methodologies
- Improve technology readiness

Fixed Wing Subsonic Aircraft

Supersonics Aircraft

Hybrid Electric Propulsion Aircraft

NASA Advanced Turbine Thermal and Environmental Barrier Coating Development Goals

- Develop innovative coating technologies and life prediction approaches
- 2500°F Turbine TBCs with high toughness, and improved impact erosion resistance
- 2700°F (1482°C) EBC bond coat technology for supporting next generation turbine engines
- 2700-3000°F (1482-1650°C) turbine and CMC combustor coatings
 - Meet 1000 h for subsonic aircraft and 9,000 h for supersonics/high speed aircraft hot-time life requirements
 - Improve impact/erosion and CMAS resistance

NASA Turbine Thermal and Environmental Barrier Coatings for CMC-EBC Systems

- Emphasize temperature capability, performance and durability for next generation turbine engine systems
- Increase Technology Readiness Levels (TRLs) for component system demonstrations

NASA Environmental Barrier Coating (EBC) - Ceramic Matrix Composite (CMC) Development Needs

- Advanced Component Development Programs (particularly under the Environmentally Responsible Aviation Program): Advanced environmental barrier coatings for SiC/SiC CMC combustor and turbine vane components, technology demonstrations in engine tests
 - N+2 (2020-2025) generation with 2400°F CMCs/2700°F EBCs (cooled)
- NASA Aeronautics Program (FAP-SUP*, SRW/Aero Sciences/TTT** Projects): Next generation high pressure turbine airfoil environmental barrier coatings with advanced CMCs
 - N+3 (2020-2025) generation with advanced 2700°F CMCs/2700-3000°F EBCs (uncooled/cooled)
- Turbine TBC development under NASA Partner Collaborative Programs

High Pressure Turbine CMC vane and blade

Outline

- Environmental barrier coating system development: NASA's perspectives, challenges and limitations
 - Thermomechanical, environment and thermochemical stability issues
 - Prime-reliant EBCs for CMCs, a turbine engine design requirement
- Advanced thermal and environmental barrier coating systems (EBCs) for CMC airfoils and combustors
 - NASA turbine and combustor EBC coating systems
 - Performance and modeling
 - Advanced EBC development: processing, testing and durability
- Advanced CMC-EBC performance demonstrations
 - Fatigue Combustion and CMAS environment durability
 - Component demonstrations
- Summary

Thermal and Environmental Barrier Coating Development: Challenges and Limitations

- Thermal barrier coatings and, in particular, environmental barrier coatings are limited in their temperature capability, water vapor stability and longterm durability
 - Prime-reliant coatings are critical for future engines
- Advanced EBCs also require higher strength and toughness
 - In particular, resistance to combined high-heat-flux, engine high pressure, combustion environment, creep-fatigue, loading interactions
- Turbine airfoil coating low thermal conductivity critical (half k thermal and environmental barrier)
- Thermal and environmental barrier coating need improved impact, erosion and calcium-magnesium-alumino-silicate (CMAS) resistance

Development of Advanced Defect Cluster Low Conductivity Thermal Barrier Coatings

- Multi-component oxide defect clustering approach (Zhu et al, US Patents No. 6,812,176, No.7,001,859, and No. 7,186,466)
 e.g.: ZrO₂-Y₂O₃-Nd₂O₃(Gd₂O₃,Sm₂O₃)-Yb₂O₃(Sc₂O₃) systems
 Primary stabilizer
 Oxide cluster dopants with distinctive ionic sizes
- Defect clusters associated with dopant segregation
- The nanometer sized clusters for reduced thermal conductivity, improved stability, toughness, CMAS resistance and mechanical properties

Plasma-sprayed ZrO_2 -(Y, Nd, Yb)₂O₃

 $\begin{array}{c} \mathsf{EB}\text{-}\mathsf{PVD}\ \mathsf{ZrO}_2\text{-}(\mathsf{Y},\\\mathsf{Nd},\mathsf{Yb})_2\mathsf{O}_3 \end{array}$

EELS elemental maps of EB-PVD ZrO₂-(Y, Gd, Yb)₂O₃

Advanced Multi-Component Erosion Resistant Turbine Blade Thermal Barrier Coating Development

- Rare earth (RE) and transition metal oxide defect clustering approach (US Patents No. 6,812,176, No.7,001,859, and 7,186,466; US Patent 7,700,508 NASA-Army) specifically by additions of RE₂O₃, TiO₂ and Ta₂O₅
- Significantly improved toughness, cyclic durability and erosion resistance while maintaining low thermal conductivity
- Improved thermal stability due to reduced diffusion at high temperature

ZrO₂-Y₂O₃- RE1 {e.g.,Gd₂O₃,Sm₂O₃}-RE2 {e.g.,Yb₂O₃,Sc₂O₃} – TT{TiO₂+Ta₂O₅} systems Primary stabilizer Oxide cluster dopants with distinctive ionic sizes

Thermal Conductivity of Multi-Component Thermal Barrier Coatings – Recent Developments with The Air Force Programs

Rare earth (RE) and transition metal oxide defect clustering approach (US Patents No. 6,812,176, No.7,001,859, and 7,186,466; US Patents 7,700,508 - TBC and 7,740,960 - EBC; NASA-Army) specifically by additions of RE₂O₃, TiO₂ and Ta₂O₅

Thermal Conductivity of NASA EB-PVD Low Thermal Conductivity Thermal Barrier Coatings

- Turbine TBC development focusing on toughness and CMAS resistance
- The systems are applicable to advanced environmental barrier coatings for ceramic matrix composites

EB-PVD Coatings

Thermal Conductivity Optimization of A Series of NASA EB-PVD Processed Low Conductivity Thermal Barrier Coatings

- A ZrO₂-*m*1 Y₂O₃-*m*2 Gd₂O₃-*m*3 Yb₂O₃ System Composition Optimization
- Low thermal conductivity and low rare earth design criteria, including the commercial coating alloy 206A

Thermal Conductivity of ZrO₂-(Y,Gd,Yb)₂O₃ and ZrO₂-(Y,Gd,Yb)₂O₃ + TT(TiO₂-Ta₂O₅) Systems – Compared with Low k + Gd₂Zr₂O₇ Composite Systems

The six-component low conductivity coating systems, for toughness and CMAS resistance, have lower TRLs

Thermal Conductivity of ZrO_2 -(Y,Gd,Yb)₂O₃ and ZrO_2 -(Y,Gd,Yb)₂O₃ + TT(TiO₂-Ta₂O₅) Systems – Compared with Low k + Gd₂Zr₂O₇ Composite Systems - Continued

The EB-PVD processing of low k t', low k cubic phased and Gadolinium Zirconate coatings

Coating Types

15

Initial Furnace Cyclic Behavior of Advanced Multi-Component Rare Earth Oxide Cluster Coatings

- The dopant concentration and coating architecture have been optimized and developed to significantly improve the cyclic durability
- Some composition showed exceptional durability even at higher dopant concentrations
- Lower rare earth concentration was found to be preferred for better durability

Furnace Cyclic Behavior of Advanced Multicomponent Thermal Barrier Coatings with an Interface t' Coating layer

- t' low k TBCs had good cyclic durability
- The cubic-phase low conductivity TBC durability generally improved by an 7YSZ or low k t'-phase interlayer

Furnace Cyclic Behavior of ZrO₂-(Y,Gd,Yb)₂O₃ and with Co-doped with TiO₂ and Ta₂O₅

— Low to moderate concertation TiO_2 and Ta_2O_3 dopants significantly improve cyclic life and thus the coating toughness

Furnace Cyclic Behavior of ZrO_2 -(Y,Gd,Yb)₂O₃ and with Co-dopant TiO₂-TaO₅ Thermal Barrier Coatings 1150°C Cyclic Oxidation of Low k_T RE-doped PVD TBC, Pt-Al Bond Coat on Rene'N5

Advanced Ballistic Impact Resistant NASA Four-Component Low Thermal Conductivity Turbine Coatings

 10X improvements in Impact Resistance; experience learnt for also being used for developing advanced EBC systems

Advanced Ballistic Impact Resistant NASA Four-Component Low Thermal Conductivity Turbine Coatings - Continued

 10X improvement in Impact Resistance; experience learnt for also being used for developing advanced EBC systems

Four-component and six-component coating systems showed excellent impact (10X improvement) and erosion resistance (up to 2X) compared to 7YSZ baseline

Erosion and Impact Aspects: Early Mach 0.3 Ballistic Impact Tests of HfO₂-Si Bond Coat EBC Systems

- Advanced EBCs on par with best TBCs
- More advanced EBC compositions in developments

Direct Laser heat flux infiltrated thermal barrier coatings (Air Force/PTI CMAS)

EB-PVD Low k ZrO₂-4mol%Y₂O₃-3mol%Gd₂O₃-3mol%Yb₂O₃ /PtAl/Rene N5 (Howmet Processing-Run 3844, ID 15H1)

CMAS Related Erosion Failure (CMAS+Erosion)

• CMAS Tested Specimen in Burner Rig

High Heat Flux CO₂ Laser Rig and Testing for Thermal and Environmental Barrier Coatings Development with CMAS

 Heat flux cyclic failure of a thick Gd₂Zr₂O₇ system tested at 1300°C, due to low toughness and the formation of a reaction layer

Typical cyclic failure due to the reaction layer within a few cycles in a $Gd_2Zr_2O_7$ system.

High Heat Flux CO₂ Laser Rig and Testing for Thermal and Environmental Barrier Coatings Development with CMAS

- Low k ZrO₂-2.25mol%Y₂O₃-9mol%Gd₂O₃-2.25mol%Yb₂O₃ tested at 1300°C
- Limited CMAS spreading or penetration, suggesting the coating have resistance to CMAS
- Top and reacted layers had some spallation after 170h cyclic tests
- Preliminary effects of heat flux on baseline coatings determined, further studies planned
- Establish the life database and will compare with those of advanced systems

NASA Low k Metco AE10389 coating specimen, after 170 hr tested in laser rig

CMAS Reaction Studies for Advanced TEBCs: Advanced Low k and HfO₂ showed NASA Potential Benefits

- CMAS reactions studied for selected coating candidate materials
- Preliminary results showed 7YSHf, ZrO₂-9.6Y₂O₃-2.2Gd₂O₃-2.1Yb₂O₃, and 30YSZ had the highest CMAS resistance

With Gustavo Costa et al

Advanced Environmental Barrier Coatings Developments

- Fundamental studies of environmental barrier coating materials and coating systems, stability including recession in rig environments, temperature limits and failure mechanisms
- Focus on high performance and improving technology readiness levels (TRL), including high stability HfO₂ and ZrO₂ -RE₂O₃-SiO₂/RE₂Si_{2-x}O_{7-2x} environmental barrier systems, including processing optimizations for improved composition control and process robustness
- Advanced NASA HfO₂-Si and Rare Earth-Silicon based EBC bond coat systems
 - More advanced, multicomponent composition and composite EBC systems to improve the temperature capability, strength and toughness
 - Develop HfO₂-Si based + X (dopants) bond coat systems for 2700°F (1482°C) longterm applications
 - Develop prime-reliant 2700°F+ (1482°C) Rare Earth (RE)-Si + X (dopants) bond coat systems for advanced integrated EBC-CMC systems, improving bond coat temperature capability and durability

Developing 3000°F (1650°C) EBCs

- Hybrid 3000°F EBC system
 - High stability multicomponent HfO₂ Top Coat (Hf-RE-SiO₂ systems, tetragonal t' ZrO₂ toughened rare earth silicate EBC; Ta, Ti additions)
 Advanced ZrO₂ ytterbium
 - Graded and Layer graded interlayers
 - Advanced HfO₂-Rare Earth-Alumino-Silicate EBC
 - Ceramic HfO₂-Si composite bond coat capable up to 2700°F

Multicomponent Rare Earth (RE) doped HfO_2 (HfO_2 -11 Y_2O_3 -2.5 Gd_2O_3 -2.5 Yb_2O_3) Also available alloys such as Metco AE 10155 and AE 9892 in APS systems

<u>Strain tolerant interlayer</u> <u>HfO₂-Rare Earth</u>-Alumino-Silicate EBC (e.g., Metco 10157)

 HfO_2 -Si or RE modified mullite bond coat (e.g., Metco 10219 in APS systems)

SiC/SiC and Environmental Barrier Coating Recession in Turbine Environments

- Recession of Si-based Ceramics

(a) convective; (b) convective with film-cooling

- Advanced rig testing and modeling (coupled with 3-D CFD analysis) to understand the recession behavior in a High Pressure Burner Rig simulated Turbine Enviornment

NASA High Pressure High Velocity and High Heat Flux SiC/SiC and EBC Recession Studies Under Film Cooling Conditions

 Determined recession under complex, and realistic High Pressure Burner Rig and Laser Rig simulated turbine steam conditions

Degradation Mechanisms for Si Bond Coat – Interface Reactions

- Significant interfacial pores and eutectic phases formation due to the water vapor attack and Si diffusion at 1300°C
 - Heat flux condition further limit the use tempertatures

SEM images Interface reactions at 1300°C; total 200 hot hours

BaO-Al₂O₃-SiO₂ ternary phase diagram

Interface Si bond coat melting of selected coating systems, under laser heat flux tests, 1" dia button specimen

The Yb₂SiO₅/Yb₂Si₂O₇ EBC Delamination Crack Propagation Tests under Heat Flux Thermal Gradient Test Conditions

- Penney-shaped crack initially size 1.5 mm in diameter, tested in air at 1350 $^{\circ}$ C
- Crack propagated from 1.5 mm to 7.5 mm 60, 1 hr cyclic testing
- SiO₂ loss (volatility) accelerated crack propagation

Ytterbium Mono-/Di-Silicate EBC Tested in Laser High Heat Flux Steam Rig

- Observed mudflat cracking after 1400 $^\circ\,$ C test
- Loss of Silica and increased porosity observed after the testing

Fatigue Testing using a Laser High-Heat-Flux Approach for Environmental Barrier Coated Prepreg SiC/SiC CMCs

- Environmental Barrier Coatings Yb₂SiO₅/Yb₂Si₂O₇/Si on MI Prepreg SiC/SiC CMC substrates
- One specimen tested in air, air testing at 1316°C
- One specimen tested in steam, steam testing at T_{EBC} 1316°C, T_{CMC} at ~1200°C
- Lower CMC failure strain observed in steam test environments

HA

Fatigue Testing using a Laser High-Heat-Flux Approach for EBC Coated Prepreg SiC/SiC CMCs - Continued

Crack and recession failure in the laser rig air and steam environment tests tests

Advanced High Temperature and 2700°F+ Bond Coat and **EBC** Development

- NASA Advanced EBC Development:
 - Advanced compositions ensuring environmental and mechanical stability
 - Bond coat systems for prime reliant EBCs; capable of self-healing
 - Corresponding oxygen containing EBCs with high toughness and CMAS resistance
 - Composition further being developed for Ultra-High Temperature Ceramics and Coatings

Advanced 2700°F bond coat systems: RE-Si based Systems, grain boundary engineering designs and/or composite systems

High strength, high HfO₂-Si based and **RE-Si based systems** stability reinforced minor alloyed systems composites: HfO₂-Si for improved strength and stability, e.g., rare and a series of Oxide-Si systems earth dopants HfO₂-Si systems Advanced 2700°F+ Rare Earth - Si Bond Coat systems Rare Earth – Si + Hf coating systems *Temperature capability increase* Hf – Rare Earth – Si coating systems

NASA EBC Bond Coats for Airfoil and Combustor EBCs

- Patent Application 13/923,450 PCT/US13/46946, 2012

- Advanced systems developed and processed to improve Technology Readiness Levels (TRL)
- Composition ranges studied mostly from 50 80 atomic% silicon
 - PVD-CVD processing, for composition downselects also helping potentially develop a low cost CVD or laser CVD approach
 - Compositions initially downselected for selected EB-PVD and APS coating composition processing
 - Viable EB-PVD and APS systems downselected and tested; development new PVD-CVD approaches

	PVD-CVD		EB-PVD	APS*	FurnaceLaser/C
YSi ZrSi+Y	YbGdYSi YbGdYSi	GdYSi GdYSi	HfO2-Si; REHfSi	HfO2-Si YSi+RESilicate	VD/PVD
ZrSi+Y	YbGdYSi	GdYSi	GdYSi	YSi+Hf-RESilicate	REHfSi
ZrSi+Ta	YbGdYSi	GdYSi	GdYbSi GdYb-LuSi NdYSi		
ZrSi+Ta	YbGdSi	GdYSi-X		Hf-RESilicate	Used in ERA components as part of bond coat
HfSi + Si	YbGdSi	GdYSi-X			
HfSi + YSi	YbGdSi				system
HfSi+Ysi+Si	YbGdSi				Used also in EDA
YbSi	YbGdSi				components
HfSi + YbSi	YbSi	Process and		Hf-RE-Al-Silicate	Used in ERA components as part of bond coat system
GdYbSi(Hf)		transitions			
YYbGdSi(Hf)	YbYSi				5,500 m
	YbHfSi				
	YbHfSi			APS* or plase	na sprav related
_	YbSi			processing met	hods

NASA EBC Processing Developments for SiC/SiC Ceramic Matrix Composites

- Develop processing capabilities, experience and demonstrate feasibilities in various techniques: air plasma spray, Electron Beam - Physical Vapor Deposition (EB-PVD), Plasma Sprayed-Physical Vapor Deposition (PS-PVD)
- Efforts in developing turbine EBC coatings with Directed Vapor Technologies
 using Directed Vapor EB-PVD: Turbine Airfoils
- NASA APS, and Triplex Pro APS (with Sulzer/Oerlikon Metco) for Combustor applications
- Cathodic arc and Magnetron PVD processes: bond coat developments
- NASA PS-PVD
- Some planned EBCs DVM/DVC coatings (with Praxair): aiming at combustor EBC
- Other processing techniques such as Polymer Derived Coating composite coatings (Ceramtec), and laser processing for improved stability

Air Plasma Spray Processing of Environmental Barrier Coatings for Combustor Liner Components

- Focused on advanced composition and processing developments using stateof-the-art techniques
- Improved processing envelopes using high power and higher velocity, graded systems processing for advanced TEBCs and thermal protection systems

Sulzer Triplex Pro system having high efficiency and high velocity processing

Inner and outer liner articles

EBC coated SiC/SiC CMC Inner and Outer Liner components

NASA EBC processed by Triplex pro

40

Development and Processing of Directed Vapor Electron Beam - Physical Vapor Deposition (EB-PVD)

- NASA programs in supporting processing developments and improvements with Directed Vapor Technologies International, Inc.
 - Multicomponent thermal and environmental barrier coating vapor processing developments
 - High toughness turbine coatings
 - Affordable manufacture of environmental barrier coatings for turbine components

Directed Vapor Processing systems

Processed EBC system

Plasma Sprayed-Physical Vapor Deposition (PS-PVD) Processing of Environmental Barrier Coatings

- NASA PS-PVD and PS-TF coating processing using Sulzer (Oerlikon) newly developed technology
- High flexibility coating processing PVD splat coating processing at lo pressure (at ~1 torr)
- High velocity vapor, non line-of-sight coating processing potentially suitable for complex-shape components
- · Significant progress made in processing the advanced EBC and bond coats

NASA PS-PVD Coater System

Processed coating systems

HfO₂-Si bond coat

HfO₂-Si Bond Coats Processing using EB-PVD compared with Early Hot-Press Coatings - Continued

- Capble of processing silicide dominant HfO₂-Si bond coats in EB-PVD coating and magnetron PVD
- Graded coatings being designed and used
- Processing nano-structured coatings

Environmental Barrier Coatings and SiC/SiC DIC Testing – High Temperature (<u>12C-470-08-11 and 12C-470-08-12</u>)

- The uncoated and EBC HfO₂-Si coated CVI-MI specimen pre-tested in high pressure burner rig
- Uncoated specimen exposed showed severe degradation of composite properties
- Oxidation and embrittlement of the MI-CVI CMC in HPBR lead to the lowers strength of uncoated specimen

Environmental Barrier Coatings and SiC/SiC DIC Testing – High Temperature (<u>12C-470-08-11 and 12C-470-08-12</u>)

- DIC studies of coated and uncoated CMC specimens
- Energy distribution of AE events compared in specimen gage section with corresponding DIC strain mapping at failure stress

With Matt Appleby et al, Surface and Coatings Technology, 2015

Environmental Barrier Coatings and SiC/SiC DIC Testing – High Temperature (12C-470-08-11 and 12C-470-08-12)

- Uncoated specimen exposed showed severe degradation of composite properties
- Oxidation and embrittlement of the MI-CVI CMC in HPBR lead to the lowers strength of uncoated specimen Si 300 2.0K -250 DIC **Extensometer** 200 coated 150 coated uncoated 100 uncoated

Advanced EBC-CMC Fatigue Test with CMAS: Successfully Tested 300 h Durability in High Heat Flux Fatigue Test Conditions - Continued

Advanced Hf-NdYb silicate-NdYbSi bond coat EBC coatings on 3D architecture CVI-PIP SiC-SiC CMC (EB-PVD processing)

Thermal Gradient Tensile Creep Rupture Testing of Advanced Turbine Environmental Barrier Coating SiC/SiC CMCs

- A thin EB-PVD turbine airfoil EBC system with advanced HfO₂-(Yb,Gd,Y) silicate and (Yb,Gd)Si bond coat tested 300hr at T_{EBC-surface} 1537°C, T_{bond coat} 1480°C, T_{back CMC surface} 1250°C with CMAS
- Fatigue stress amplitude 69 MPa, at frequency f=3Hz, stress ratio R=0.05

1537°C, 10ksi, 300 h fatigue (3 Hz, R=0.05) on 14C579-011001_#8_CVI-SMI SiC/SiC (with CMAS)

Laser Rig Testing and Development of NASA Advanced Multicomponent Yb-Gd-Y Silicate EBC/HfO₂-Si System on 3D Architecture SiC/SiC CMC under 2700°F+ SPLCF Conditions

- The EBC specimens tested under the laser heat flux test rig under 10 ksi (500 hr) and 15 ksi (140 hr completed) SPLCF conditions, respectively;
- One EBC specimen tested in isothermal furnace test at 2700°F, 300 hr completed for comparisons

100

200

300

Time, hours

Laser rig test creep strains

400

500

Fundamental EBC Studies, and High Stability and CMAS Resistant Advanced EBC Developments: High Melting Point Coating, and Multi-Component Compositions

Demonstrated Calcium-Magnesium-Alumino-Silicate (CMAS) resistance for NASA RESi system at 1500°C, 100 hr melts Silica-rich phase precipitation Still some rare earth elements leaching into the melts (low concentration ~9 mol%) = Yb2O MeO AI203 Area B SIO2 CaO Area A Mg E Fe2O3 Surface side of AI20 the CMAS melts **Residual CMAS Glass** NG9-2_P-475_18-11H ~13 um thick Interaction Ints Region EDS E 1.0K Y₂Si₂O₇ Substrate (EBC) Y₂Si₂O₇ Substrate Exposed to CMAS at 1200°C for 20h Valerie Wiesner 200 hr. 1500° Gd Yb Yb Gd Vh Yb 10 keV Ahlborg & Zhu Cursor= Vert=1215 Window 0.005 - 40.955= 58,450 cnt

Laser Rig Thermomechanical Creep - Fatigue Tests of Advanced 2700°F+ RESi Bond Coats and EBC Systems

- APS, PVD and EB-PVD processed 2700°F bond coats and EBCs on SiC/SiC CMC: focus on creep, fatigue high heat flux testing at temperatures of 1316-1482°C+ (2400-2700°F+) – Selected Examples

D. Zhu, "Advanced Environmental Barrier Coatings for SiC/SiC Ceramic Matrix Composite Turbine Components", Engine Ceramics – Current Status and Future Prospects, pp 187-202, 2016

Laser rig testing Creep and Fatigue Tests with CMAS

Air Plasma Sprayed YSi+Hf-RESilicate EBC Bond Coat series on CVI-MI SiC/SiC 1400°C,at 10 ksi, 400 hr

EB-PVD (Hf,Yb,Gd,Yb)₂Si_{2-x}O_{7-x} EBC/GdYbSi bond coat on CVI-MI SiC/SiC (with CMAS) 1537°C, 10ksi, 300 h fatigue (3 Hz, R=0.05)

PVD GdYSi coated on Hyper Them CVI-MI SiC/SiC 1316°C, 10ksi, 1000 h fatigue (3 Hz, R=0.05)

PVD GdYbYSi coated on Prepreg SiC/SiC 1316°C, 15ksi, 1169 h fatigue (3 Hz, R=0.05)

NASA 2700°F(1482°C)+ *EBC System 188* on SA Tyrannohex SiC Composite, 1482°C 15 ksi, 500hr

The Advanced EBCs on SiC/SiC CMC Turbine Airfoils Successfully Tested for Rig Durability in NASA High Pressure Burner Rig

 NASA advanced EBC coated turbine vane subcomponents tested in rig simulated engine environments (up to 240 m/s gas velocity, 10 atm), reaching TRL of 5

EBC Coated CVI SiC/SiC vane after 31 hour testing at 2500°F+ coating temperature

EBC Coated Prepreg SiC/SiC vane after 21 hour testing at 2500°F

EBC Coated Prepreg SiC/SiC vane tested 75 hour testing at 2650°F

Uncoated vane tested 15 hr

EBC Coated Rig Inner and outer liner testing 2500°F, 10-16 atm, completed 250 h

Vane leading edge seen from viewport in High Pressure Burner Rig Testing

16 atm, 200 m/s, up to 2650°F

Thermal Gradient Fatigue-Creep Testing of Advanced Turbine Environmental Barrier

- Advanced environmental barrier coatings Prepreg CMC systems demonstrated long-term EBC-CMC system creep rupture capability at stress level up to 20 ksi at T_{EBC} 2700°F, T_{CMC interface} ~2500°F
- The HfO₂-Si based bond coat showed excellent durability in the long term creep tests

Advanced EBC coated CMC subelement testing and modeling

FEM modeling of EBC-CMC vane trailing edge rig test failure

0.300mm

Summary

- Advanced thermal barrier coatings are based on rare earth co-doped, defect clustered oxide systems, aiming at low thermal conductivity, and high thermal stability, and impact/erosion CMAS resistance
- Durable EBCs are critical to emerging SiC/SiC CMC component technologies, requiring prime-reliant designs
- The NASA EBC development built on a solid foundation from past experience, evolved with the current state of the art compositions of higher temperature capabilities and stabilities
 - Multicomponent EBC Zr, Hf, oxide/silicates with higher stabilities
 - Improved strength and toughness
 - HfO₂-Si and RE-Si bond coats for realizing 1482°C+ (2700°F+) temperature capabilities for helping prime-reliant EBC-designs
 - New EBC compositions improved combustion steam and CMAS resistance, and protecting CMCs
- EBC processing and testing capabilities significantly improved
- Advanced testing and modeling being emphasized
- Focused on next generation turbine airfoil EBC developments, demonstrated component EBC technologies in simulated engine environments

Acknowledgements

 The work was supported by NASA Aeronautics Programs, currently under the Transformational Tools and Technologies (TTT) Project, and NASA Environmentally Responsible Aviation (ERA) Project

In particular, the contributions from the following:

- Dr. Ajay Misra, Ms. Joyce A. Dever, Dr. Joe Grady, Mr. Dale Hopkins and Ms. Janet Hurst;
- Dr. Anindya Ghoshal, Mr. Waldo Acosta and the ARL team; Ms. Lynne Pfledderer and Ms. Ruth Sikorski of ARFL; Ms. Mary Anne Alvin of NETL of DoE

Also,

- Ron Phillips (Vantage Partners, LLC) and Ralph Pawlik (University of Toledo), mechanical testing
- Mike Cuy, Furnace Cyclic Oxidation Testing
- Don Humphrey (Vantage Partners, LLC) and John Setlock, TGA Testing
- Terry McCue (SAIC/NASA GRC, SEM/EDS)
- Joy Buehler (Vantage Partners, LLC, Met Lab) NASA EBC-CMC Team, In particular, Jim DiCarlo, Jim Smialek, Dennis Fox, Bryan Harder, Robert A. Miller, Janet Hurst, Martha Jaskowiak, Ram Bhatt, Mike Halbig, Valerie Wiesner, Nate Jacobson, Narottam Bansal, Francisco Sola-Lopez, and Serene Farmer (NASA GRC)

Collaborators include:

Sulzer Metco (US) - Mitch Dorfman; Chis Dambra

Directed Vapor Technologies, International – Derek Hass and Balvinder Gogia

Praxair Surface Technologies – John Anderson and Li Li (currently with Rolls Royce)

Southwest Research Institute – Ronghua Wei (PVD coating processing)

in supporting the coating processing

Engine OEM Companies including GE Aviation, Rolls Royce (Kang Lee, now with NASA GRC), Honeywell, Pratt & Whitney