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Introduction

* Current encryption techniques use algorithms that rely on
computational assumptions

* Quantum communications rely only on the laws of physics

* Quantum Key Distribution (QKD) protocols typically require
the use of either single or entangled photon sources

* We characterize a high-rate entangled photon source and
demonstrate free-space QKD



Entangled Photon Source

* Developed through Phase 3 SBIR with AdvR, Inc.

* Creates entangled photon pairs via spontaneous parametric
down-conversion in a dual element periodically poled potassium
titanyl phosphate (KTP) waveguide
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Coincidence Counting




Coincidence Counting: Experimental Design
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* Laser pump current controls laser power entering

entangled photon source
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e Laser pump current controls laser power entering entangled photon source

* Source creates entangled 800-nm and 1600-nm photons
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e Laser pump current controls laser power entering entangled photon source
* Source creates entangled 800-nm and 1600-nm photons

* Sorting optics separate 800-nm from 1600-nm photons

LabVIEW



Laser pump current controls laser power entering entangled photon source
Source creates entangled 800-nm and 1600-nm photons
Sorting optics separate the 800-nm from the 1600-nm photons

Photon detectors count rate of photons received

LabVIEW




* Laser pump current controls laser power entering entangled photon source
* Source creates entangled 800-nm and 1600-nm photons

e Sorting optics separate the 800-nm from the 1600-nm photons

* Photon detectors count rate of photons received

* Delay generators account for differences in path length to each
photon detector and one generator is swept around the coincidence

peak

LabVIEW



Laser pump current controls laser power entering entangled photon source

Source creates entangled 800-nm and 1600-nm photons

Sorting optics separate the 800-nm from the 1600-nm photons

Photon detectors count rate of photons received

Delay generators account for differences in path length to each photon
detector and one generator is swept around coincidence peak

Coincidence Counter determines how
many coinciding (+/- 243 picoseconds)

800-nm and 1600-nm photons were
detected

LabVIEW




e Laser pump current controls laser power entering entangled photon source

* Source creates entangled 800-nm and 1600-nm photons

e Sorting optics separate the 800-nm from the 1600-nm photons

* Photon detectors count rate of photons received

* Delay generators account for differences in path length to each photon

detector and one is swept around coincidence peak

* Coincidence Counter determines how many
coinciding (+/- 243 picoseconds) 800-nm and
1600-nm photons were detected

* Delay sweep and data collection are
automated via LabVIEW




Coincidence Counting: Results
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Coincidence Counting: Results
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Coincidence Counting: Results
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Coincidences (Hz)
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Coincidence Counting: Results
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1. PhotonsDetectedg,y, = PhotonsGeneratedgy, * PathEfficiency

2. PhotonsDetected;09 = PhotonsGeneratedqego * PathEf ficiency .,

3. PhotonsGeneratedgyy, = PhotonsGenerated oo = PairsGenerated

4 TrueCoincidences = PairsGenerated = PathEfficiency 4., * PathEfficiency , .,
. PhotonsDetected PhotonsDetected

5. PairsGenerated = 500 - 1690

TrueCoincidences



Coincidence Counting: Total Pairs Generated
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SPACE COMMUNICATIONS

QKD: Demonstration

LTRSS




QKD: Overview

* Provably secure method of encryption

 Arandom key is distributed, then communication
can be sent classically with this key

e Different QKD protocols exist

* We demonstrate one such protocol (B92)

-| message to Bob . . |
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QKD: B92 Protocol

* Alice sends photons in one of two polarizations to Bob

* Bob measures the polarization of these photons in one of two bases

* |f Eve eavesdrops, it will cause errors in the key

e Afterwards, Bob sends time tags of determined bits to Alice via classical channel
e Alice and Bob share a portion of the key classically to check for errors

Alice Eve? Bob




AND NAVIGATION

QKD: Experimental Design
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: Experimental Design

* Pockels cells provide Alice Eve? Bob
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SPACE COMMUNICATIONS

QKD: Results

AND NAVIGATION
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QKD: Results

Pockels cells operate at 2 MHz
If Alice sends more than a photon per period, security is compromised

Periods with exactly one photon

U =

Periods with one or more photons

Can be calculated assuming source exemplifies Poisson emission



SPACE COMMUNICATIONS

QKD: Results

AND NAVIGATION
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Conclusions

* Pair generation rate of 880 MHz is 3500 times better than
previously used (bulky, expensive) conventional entangled
photon source

* Preliminary free-space QKD results show secure
communications with bit rate = 10 kHz, bit error rate = 10%



e Path efficiencies are low, severely limiting coincidence rates

Much of this loss is unexplained: may occur within source

Much of the explained loss, as well as 54 kHz of dark counts,

1600 nm Detector Dark Counts

comes from the 1600 nm detector

* Better (more expensive) detectors do exist
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Conclusions: QKD Limitations

* Wide-band amplifier speed and output voltage
are the two biggest limiting factors

e Current protocol (B92) is not noise-resistant
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Future Work

2016 Isolate and improve lossy components

Design QKD protocol to use time correlation of
2016-2017 ,

entangled photons to reduce noise
Demonstrate QKD across 550 m

2017 . .
link between buildings
Demonstrate QKD between

2020?

ground and low-earth orbit in
daylight
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Questions?

[ JuANTUM OPTIC




QKD: B92 (Back up)

Alice Bob

Alice Bit/Basis Bob Measurement Bob Bit

0 (0° polarization)

1 (45° polarization) 0° 0°/90° ?/1
1 45° 90° ?
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