1

Graphics Processor Units (GPUs)

Edward J Wyrwas edward.j.wyrwas@nasa.gov 301-286-5213 Lentech, Inc. in support of NEPP

Acknowledgment:

This work was sponsored by: NASA Electronic Parts and Packaging (NEPP) Program

Acronyms

Acronym	Definition							
BOK	Body of Knowledge (document)							
CUDA	Compute Unified Device Architecture							
DUT	Device Under Test							
GPGPU	General Purpose Graphics Processing Unit							
GPU	Graphics Processing Unit							
MBU	Multi-Bit Upset							
MGH	Massachusetts General Hospital							
NEPP	NASA Electronic Parts and Packaging							
PTX	Parallel Thread Execution							
RTOS	Real Time Operating System							
SBU	Single-Bit Upset							
SEE	Single Event Effect							
SEFI	Single Event Functional Interrupt							
SEU	Single Event Upset							
SIMD	Single Instruction Multiple Data							
SoC	System on Chip							
TID	Total Ionizing Dose							

Outline

- What the technology is (and isn't)
- Our tasks and their purpose
 - The setup around the test setup
 - Parametric considerations
 - Lessons learned
- Collaborations
 - Roadmap
 - Partners
 - Results to date
 - Plans
- Comments

Technology

- Graphics Processing Units (GPU) & General Purpose Graphics Processing Units (GPGPU) are considered compute devices that behave like coprocessors
 - Take assignments from another device
 - Inability to load and execute code on boot by itself
- Using high-level languages, GPU-accelerated applications run the sequential part of their workload on the CPU – which is optimized for single-threaded performance – while accelerating parallel processing on the GPU.

Purpose

- GPUs are best used for single instructionmultiple data (SIMD) parallelism
 - Perfect for breaking apart a large data set into smaller pieces and processing those pieces in parallel
- Key computation pieces of mission applications can be computed using this technique
 - Sensor and science instrument input
 - Object tracking and obstacle identification
 - Algorithm convergence (neural network)
 - Image processing
 - Data compression algorithms

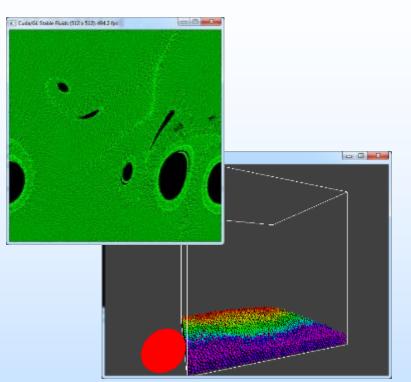
Device Selection

 Unfortunately, GPUs come in multiple types, acting as primary processor (SoC) and coprocessor (GPU)

Nvidia TX1 SoC

Intel Skylake Processor

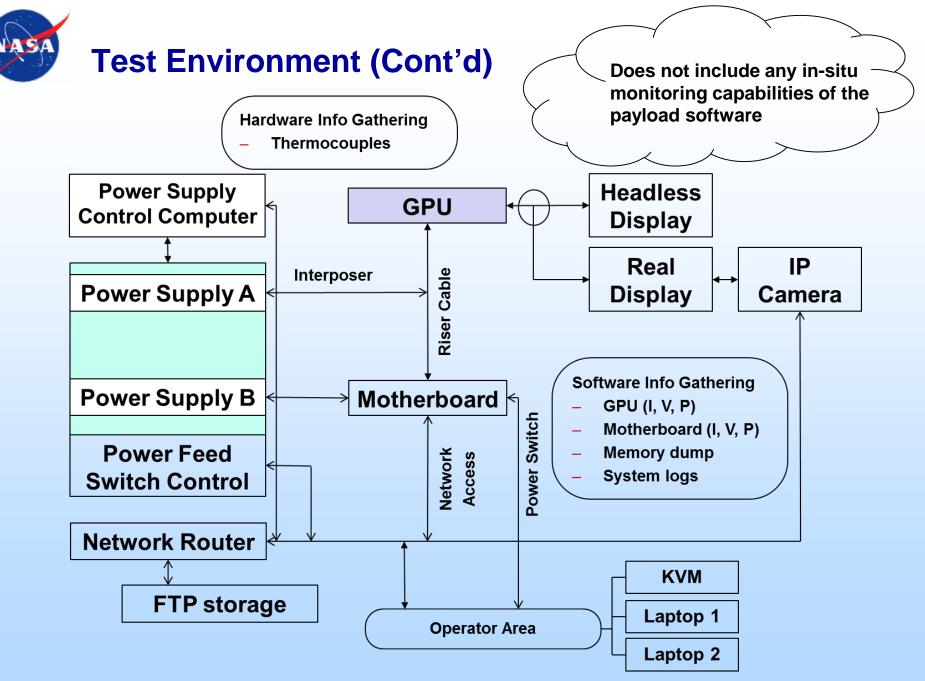
Device Software


- Does it need its own operating system?
 - E.g. Linux, Android, RTOS
- Can we just push code at it?
 - E.g. Assembly, PTX, C
- Payload normalization
 - Can we run the same code on the previous generation and next generation of the device?
 - Cannot with CUDA code; can with OpenCL

Real-time Operating System (RTOS) Parallel Thread Execution (PTX) CUDA is a parallel computing platform and application programming interface (API) model created by Nvidia

Payloads

- Visual Simulations
 - Sample code
 - Fuzzy Donut (i.e. Furmark)
- Sensor streams
 - Camera feed
 - Offline video feed
- Computational loading
 - Scientific computing models
- Easy Math
 - 0 + 0 … wait … should = 0


Test Setup

- Things to consider in the test environment
 - Operating system daemons
 - Location of payload and results
 - Data paths upstream/downstream
 - Control of electrical sources
 - Temperature control (i.e. heaters) in a vacuum
- Things to consider in the DUT
 - Is the die accessible?
 - What functional blocks are accessible?
 - Which functions are independent of each other?
 - Does it have proprietary or open software?

Test Environment

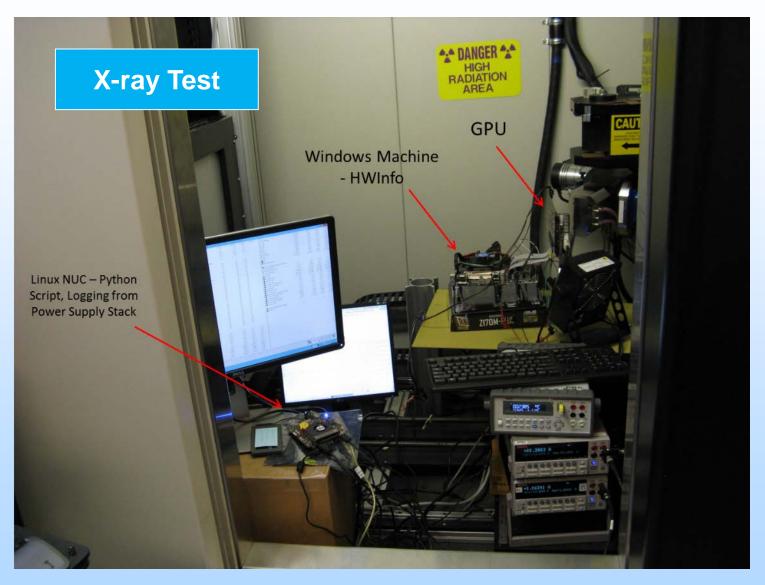
- Beam line
 - DUT testing zone where collateral damage can happen
 - Shielding for everything non-DUT
- Operator Area
 - Cables, interconnects and extenders
 - Signal integrity at a distance
 - "Everything that was done in a lab, in front of you on a bench, now must be done from a distance..."

To be presented by Edward Wyrwas at the NASA Electronics Parts and Packaging (NEPP) Electronics Technology Workshop (ETW), Greenbelt, MD, June 26-29, 2017

Test Environment (Cont'd)

Tripod and mounting

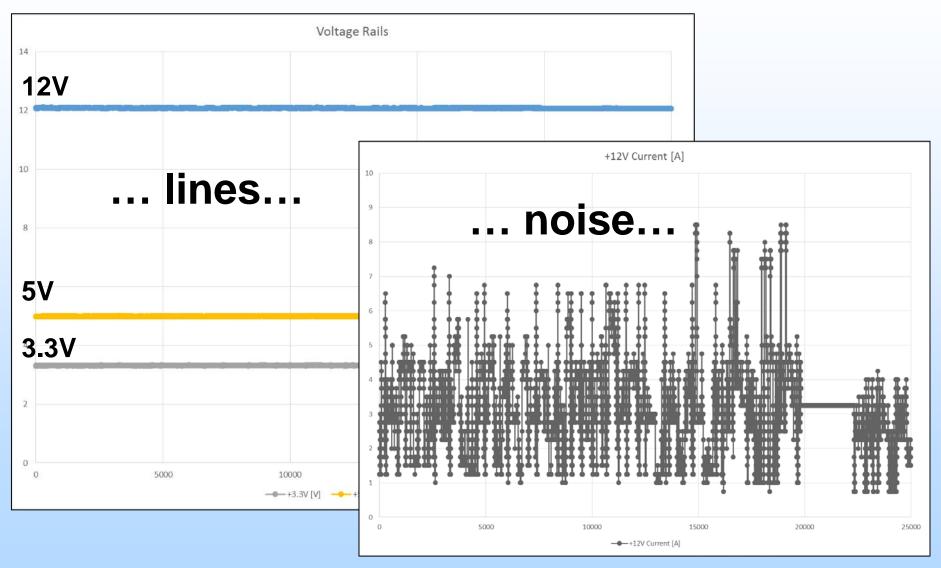
External power


Power injection

Arrows and circle mark locations of the lead and acrylic block fortresses

Pictures are from Massachusetts General Hospital Francis Burr Proton Facility

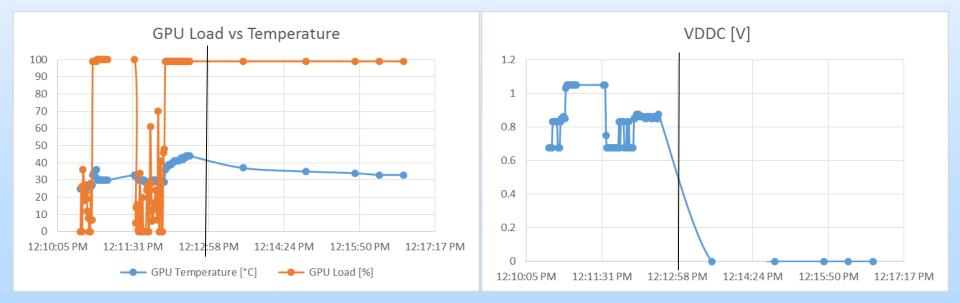
Test Environment (Cont'd)



DUT Health Status

- Accessible nodes
 - Network
 - Heart beat by inbound ping
 - Heart beat by timestamp upload
 - Peripherals response
 - "Num lock"
 - Visual check
 - Remote
 - Local
 - Local with remote viewing
 - Electrical states
 - At the system
 - At the DUT

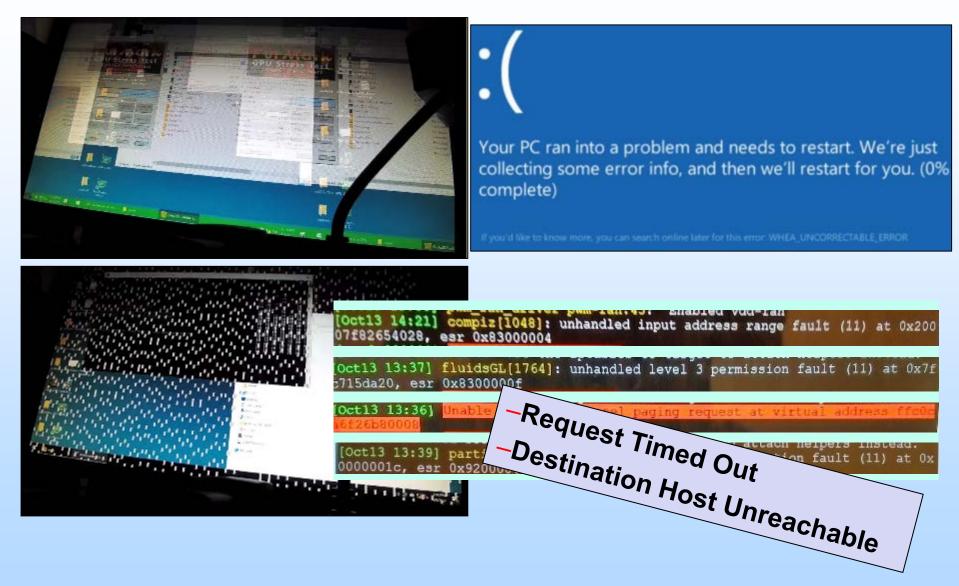
Monitoring Data



To be presented by Edward Wyrwas at the NASA Electronics Parts and Packaging (NEPP) Electronics Technology Workshop (ETW), Greenbelt, MD, June 26-29, 2017

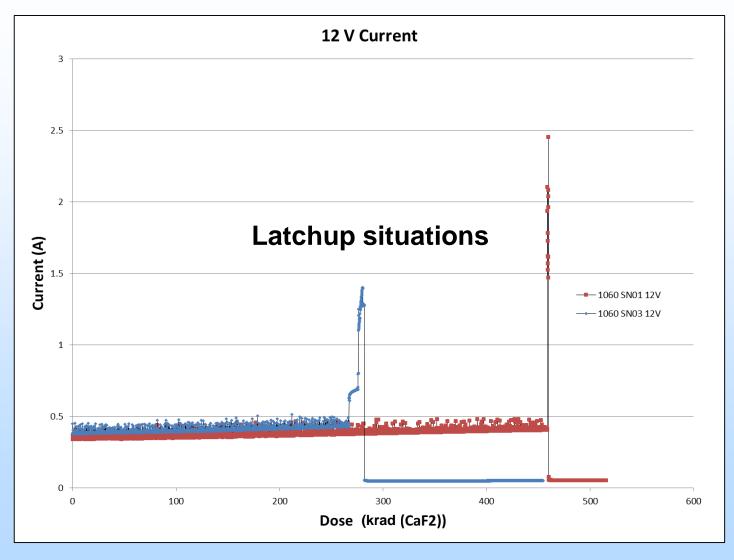
Monitoring Data (Cont'd)

- Significant digits are important
- Resolution is needed for correlation
 - Faster sampling speed
 - Smaller units (µV or mV, not Volts)


Monitoring Data (Cont'd)

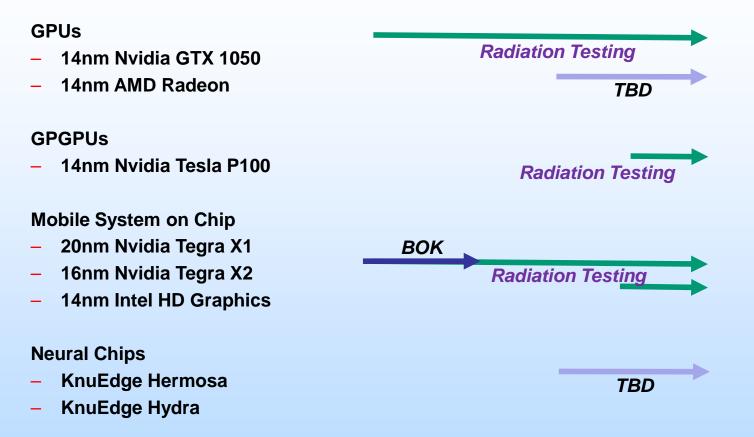
• Even better (albeit being a mock up):

ontinuous Po	ower Supply I	Monitor Rev 1	.0-rel EXIT	Ch1 800m-	635.501m	LOGGING	ŝ.
S Type Simulation	Save Settings	Reset	Leave Pwr ON After Latch?	Mon 600m- En Latch 1 400m-			Por
SET	Recall Settings	Status?	Master Latch Control	Latch 1 200m-	\sim	10-25-20 Heat Mo	OF
HANNEL 1	CHANNEL 2	CHANNEL 3	CHANNEL 4			19:25:29 Heat Mo	ON
Voltage (V)	Voltage (V)	Voltage (V)	Voltage (V)	Ch 2 1- Mon 750m- En Latch 2 500m-	633.372m	3	OFF
OVP (V)	OVP (V)	OVP (V)	OVP (V)	Latch 2 250m-			_
Current Limit (A)	Current Limit (A)	Current Limit (A)	Current Limit (A)	0-		19:25:28	
0CP	1 OCP	0CP	1 OCP	Ch3 1-			
Disable	Disable	Disable	Disable	800m - Mon 600m -	414.803m	Digita	al IO
OCP Delay	OCP Delay	OCP Delay	OCP Delay	En Latch 3 400m -		1	
	90001		[grown	Latch 3 200m- 0- 19-25-24	\sim	2	2
DUT	CH 2 OUT	CH 3 OUT	CH 4 OUT			19:25:29	5
				Ch 4 0 100u-	0.000	5 6	5
EN 1	EN 2	EN 3	EN 4	Mon -200m- En Latch 4 -500m-		6	
ALLO			ALL OFF	Latch 4 -750m-		7 6	
				-1-		19:00:05 Beam Cor	


What does a failure look like?

To be presented by Edward Wyrwas at the NASA Electronics Parts and Packaging (NEPP) Electronics Technology Workshop (ETW), Greenbelt, MD, June 26-29, 2017

Failures (Cont'd)


Learning Experience

- Every test is another learning experience
 - "Is the laser alignment jig in the beam path..."
 - Nuances with controllable nodes
 - DUT power switch
 - Remote power sources
 - DUT electrical isolation from test platform
 - Thermal paths
 - Improvements are always possible, but preparation time may not be as abundant
 - Prioritization during development is important
 - Software payload
 - Hardware monitoring
 - Remote troubleshooting capabilities

GPU Roadmap

- collaborative with NSWC Crane, others

To be presented by Edward Wyrwas at the NASA Electronics Parts and Packaging (NEPP) Electronics Technology Workshop (ETW), Greenbelt, MD, June 26-29, 2017

Partners

- Navy Crane
 - Conducting testing on Nvidia 14nm GPUs
- Collaboration with partners is yielding a comprehensive test suite
 - L1 and L2 cache
 - Registers
 - Shared, Internal, Texture and Global memory
 - Control logic

Qualification Guidance

- Creation of GPU Body of Knowledge (BoK) document

- Technology
 - Silicon
 - Packaging
 - Heterogeneous constituents
- Reliability
 - Semiconductor mechanisms
 - Package issues
 - Scaling issues
- Failure categories and trends
- Software & Hardware sources

Future guidelines will be developed for this technology to include qualification and test methods

Results to Date

- Developing software for cross platform use
 - Nvidia Tegra X SoC ARM with embedded Linux
 - Nvidia GPUs GPU for x86 Windows and Linux
 - Intel Skylake Processor IP Block for x86 Linux
 - Qualcomm Adreno & Mali GPU IP Block for ARM Linux
- Proton test result ranges are dependent on physical target within DUT
 - Cross section (σ, cm²): 1x10⁻⁷ to 9x10⁻⁹
 - Flux (p/cm²/sec): 1x10⁶ to 7x10⁶

Plans (w Schedule)

- More proton testing on 14nm GPUs
 - Test OpenCL payloads
 - Test L1, L2, registers, shared memory & control logic
 - Record die temperature, 12V and 3.3V rail voltages and currents, system events (and observations)
- Two proton test sessions and significant in-lab work has permitted improvements to:
 - Thermal-electrical monitoring of the DUTs though some more improvements are necessary to achieve the desired resolution
 - Proving out which code libraries won't work for the type of testing we're conducting

FY17-18: GPU Testing

		_	_	_	_	_	_	_	_		_				
Description:											FY17-18 Plans:				
 This is a task over all device topologies and process The intent is to determine inherent radiation tolerance and sensitivities Identify challenges for future radiation hardening efforts Investigate new failure modes and effects Testing includes total dose, single event (proton) and reliability Test vehicles will include a GPU devices from nVidia and other vendors as available Compare to previous generations Investigate failure modes/compensation for increased power consumption 												her	 Continue development of universal test suite Probable test structures for SEE: Nvidia (16, 14, 10nm) AMD (14nm) Intel (14nm) Tests: characterization pre, during and post-rad 		
Schedule:													Deliverables:		
Microelectronics	FY17 FY18						FY1	18				 Test reports and quarterly reports 			
T&E	М	J	J	Α	S	0	Ν	D	J	F	М	Α	 Expected submissions for publications 		
On-going discussions for test samples															
GPU Test Development		\diamond	>												
SEE Testing													NASA and Non-NASA Organizations/Procurements:		
Analysis and Comparison												\diamond	 Source procurements: Proton (MGH), TID (GSFC) 		

Pls: GSFC/Lentech/Wyrwas

To be presented by Edward Wyrwas at the NASA Electronics Parts and Packaging (NEPP) Electronics Technology Workshop (ETW), Greenbelt, MD, June 26-

Conclusion

- NEPP and its partners have conducted proton, neutron and heavy ion testing on several devices
 - Have captured SEUs (SBU & MBU),
 - Have seen traceable current spikes,
 - But predominately have encountered system-based SEFIs
- GPU testing requires a complex platform to arbitrate the test vectors, monitor the DUT (in multiple ways) and record data
 - None of these should require the DUT itself to reliably perform a task outside of being exercised
- Progress has been made in proving out multiple ways to simulate and enumerate activity on the DUT
 - Narrowing down on a universal test bench
 - End goal is to make test code platform independent

Acknowledgement

- Ken LaBel, NASA GSFC NEPP
- Martha O'Bryan, ASRC Space & Defense
- Carl Szabo, ASRC Space & Defense
- Steve Guertin, NASA JPL
- Adam Duncan, Navy Crane