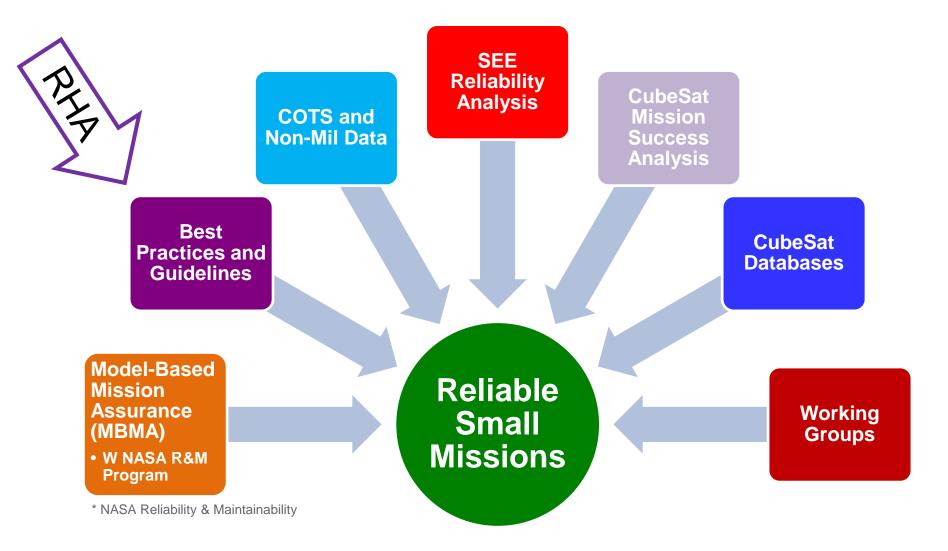



### Small Mission Radiation Hardness Assurance (RHA)

### Michael J. Campola NASA Goddard Space Flight Center (GSFC) NASA Electronic Parts and Packaging (NEPP) Program

To be presented by Michael J. Campola at the NASA Electronics Parts and Packaging (NEPP) Electronics Technology Workshop (ETW), Greenbelt, MD, June 26-29, 2017.

### Acronyms




| COTS | Commercial Off The Shelf            |  |  |  |
|------|-------------------------------------|--|--|--|
| DD   | Displacement Damage                 |  |  |  |
| GEO  | Geostationary Earth Orbit           |  |  |  |
| GSFC | Goddard Space Flight Center         |  |  |  |
| LEO  | Low Earth Orbit                     |  |  |  |
| LET  | Linear Energy Transfer              |  |  |  |
| MBU  | Multi-Bit Upset                     |  |  |  |
| MCU  | Multi-Cell Upset                    |  |  |  |
| NEPP | NASA Electronic Parts and Packaging |  |  |  |

| RDM  | Radiation Design Margin           |  |  |  |
|------|-----------------------------------|--|--|--|
| RHA  | Radiation Hardness Assurance      |  |  |  |
| SEB  | Single Event Burnout              |  |  |  |
| SEDR | Single Event Dielectric Rupture   |  |  |  |
| SEE  | Single Event Effects              |  |  |  |
| SEFI | Single Event Functional Interrupt |  |  |  |
| SEGR | Single Event Gate Rupture         |  |  |  |
| SEL  | Single Event Latchup              |  |  |  |
| SOA  | Safe Operating Area               |  |  |  |
| TID  | Total Ionizing Dose               |  |  |  |

# **NEPP - Small Mission Efforts**

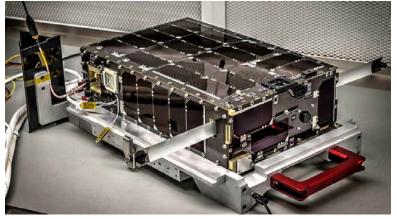




### Introduction

- What constitutes a small mission? What is RHA?
- Implementing RHA in small missions gives unique challenges
  - » No longer able to employ risk avoidance
  - » Design trades impact radiation risks, cost, and schedule
  - » Difficulty bounding risks to the system
- Useful risk practices and lessons
  - » Risk identification and comparison
  - » Categorizing risk based on manifestation at the system level
  - » Leverage RHA from previous missions

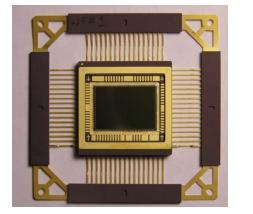


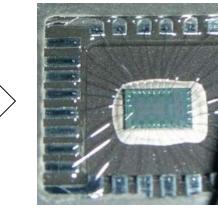

- Risk Acceptance
- Partnerships
  - Universities
  - Government Institutions
  - o Small Business Collaborations
- CubeSat/SmallSat Subsystem Vendors (cubesat.org)

- Not Small Goals
  - Mass < 180kg (Small Spacecraft Technology Program)
  - Can be any class mission! Not necessarily small budget
  - Mission goals for small spacecraft are growing as is the need for reliability

# **Risk Acceptance**

### Mission Profiles Are Expanding

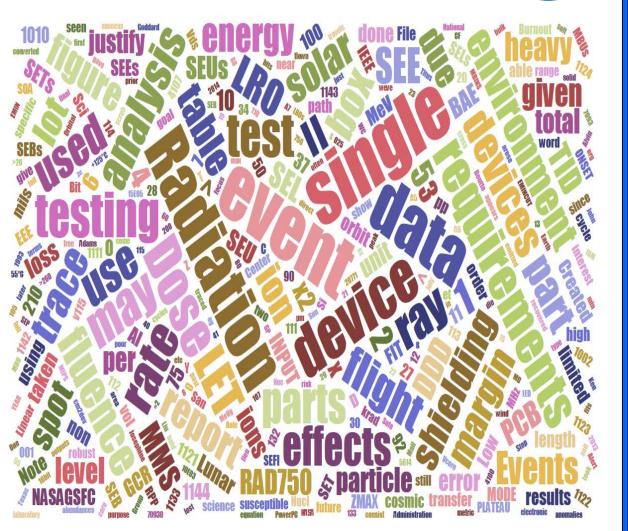

- Profiles were based on mission life, objective, and cost
- Oversight gives way to insight for lower class
- o Ground systems, do no harm, hosted payloads
- o Similarity and heritage data requirement widening
- o In some cases unbounded radiation risks are likely




Credits: NASA's Goddard Space Flight Center/Bill Hrybyk

Part Classifications Growing

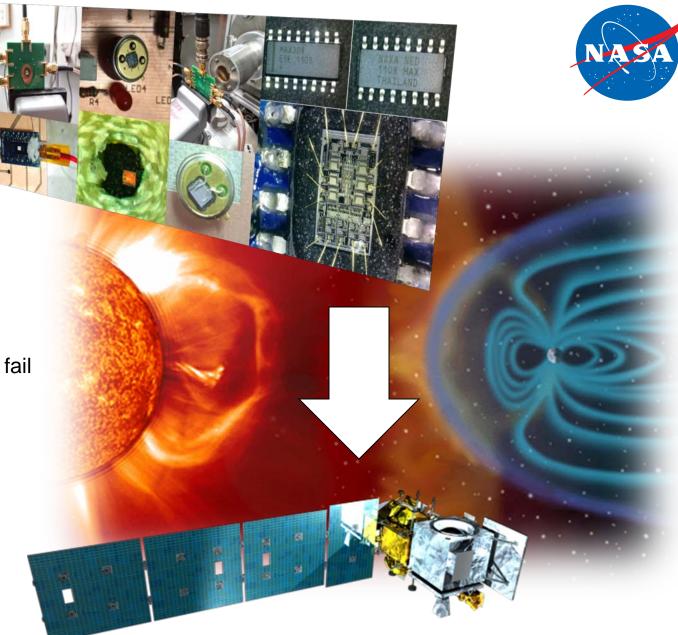
 Mil/Aero vs. Industrial vs. Medical
 Automotive vs. Commercial






As a Result, Risk Types Have Increased and RHA is Necessary!

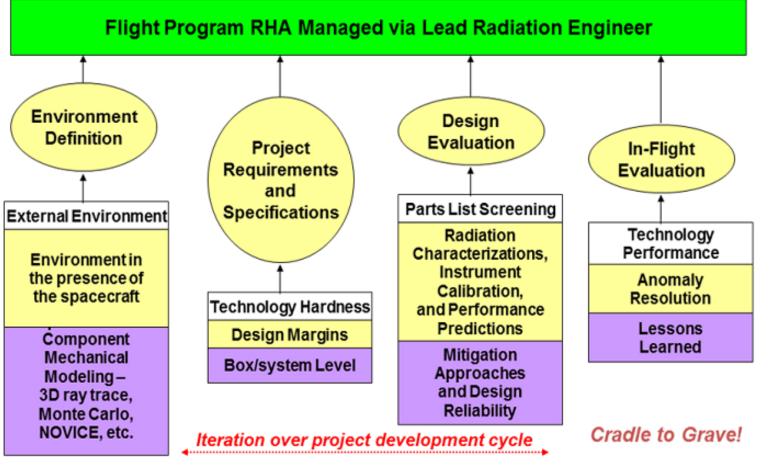
# Notional RHA Questions to Start


- Radiation risks: What are we dealing with? What are the challenges?
- How do similar systems/devices react in the space environment?
- What can you do to bring down the risk of that interaction?
- Need availability throughout the mission or at specific times?
- What does changing the radiation environment look like to the system?





# RHA Challenges... Not So Small


- New Technologies
  - Increased COTS parts / subsystem usage
  - Device Topology / Speed / Power
  - Modeling the Physics of Failure
- Quantifying Risk
  - Translation of system requirements into pass / fail criteria
  - Determining appropriate mitigation level (operational, system, circuit/software, device, material, etc.)
- Wide Range of Mission Profiles
- Always in a *dynamic* environment



# **RHA Definition and Overview**



RHA consists of all activities undertaken to ensure that the electronics and materials of a space system perform to their design specifications throughout exposure to the mission space environment



(After Poivey)

(After LaBel)

### RHA Flow Doesn't Change With Accepted Risk

1.00E+0

1.00E+0

1.00E+02

1.00E+0 1.00E+0

1.00E-0

1.00E-02 1.00E-03

1.00E+06

1.00E+05

1.00E+04

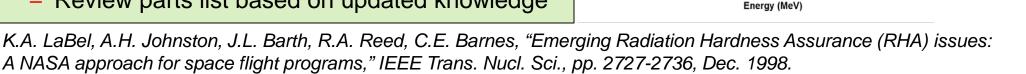
1.00E+03

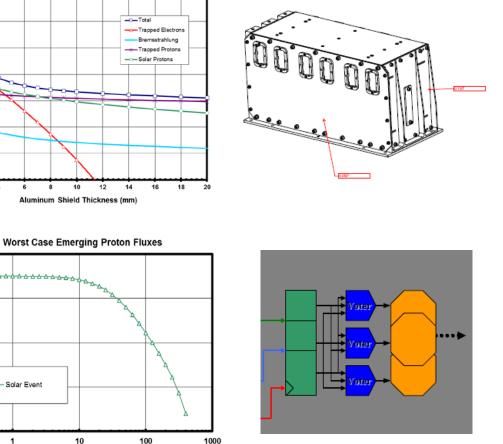
1.00E+02 0.1

E (p/cm<sup>2</sup>/sec)

• Flux

Peak


2 4


- Solar Event

1

#### **Define the Environment**

- External to the spacecraft
- **Evaluate the Environment** 
  - Internal to the spacecraft
- **Define the Requirements** 
  - Define criticality factors
- **Evaluate Design/Components** 
  - Existing data/Testing
  - Performance characteristics
- "Engineer" with Designers
  - Parts replacement/Mitigation schemes
- **Iterate Process** 
  - Review parts list based on updated knowledge





Dose-Depth Curves

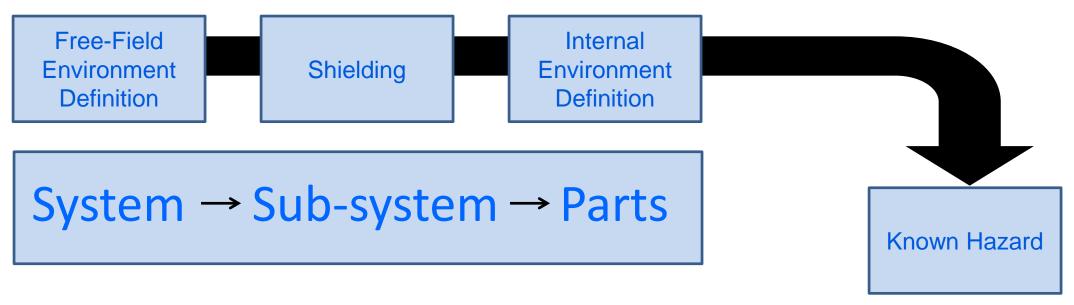


# Define and Evaluate the Hazard



#### Define the Environment

- External to the spacecraft
- Evaluate the Environment
  - Internal to the spacecraft
- Define the Requirements
  - Define criticality factors
- Evaluate Design/Components
  - Existing data/Testing
  - Performance characteristics
- "Engineer" with Designers
  - Parts replacement/Mitigation schemes
- Iterate Process
  - Review parts list based on updated knowledge


**Environment Severity/Mission Lifetime** 

|                           |        | Low                                                                       | Medium                                                               | High                                                             |  |
|---------------------------|--------|---------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------|--|
| Evaluate RHA System Needs | High   | Manageable<br>Dose /<br>SEE impact to<br>survivability or<br>availability | Moderate Dose /<br>SEE impact to<br>survivability or<br>availability | High Dose /<br>SEE impact to<br>survivability or<br>availability |  |
|                           | Medium | Manageable<br>Dose /<br>SEE needs<br>mitigation                           | Moderate Dose /<br>SEE needs<br>mitigation                           | High Dose /<br>SEE needs<br>mitigation                           |  |
|                           | Low    | Manageable<br>Dose /<br>SEE do no harm                                    | Moderate Dose /<br>SEE do no harm                                    | High Dose /<br>SEE do no harm                                    |  |

# Define and Evaluate the Hazard

- Same process for big or small missions, no short cuts
- Know the contributions
  - » Trapped particles (p+,e-)
  - » Solar protons, cycle, events
  - » Galactic Cosmic Rays

- Calculate the Dose
- Transport flux and fluence of particles
- Consider different conditions or phases of the mission separately





# Summary of Environmental Hazards



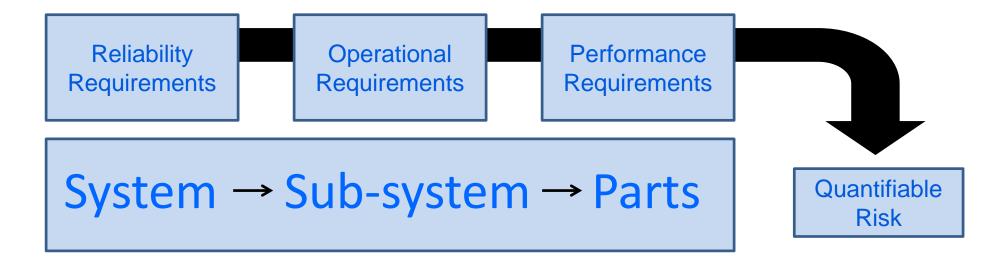
|                                          | Plasma<br>(charging)                                        | Trapped<br>Protons                                          | Trapped<br>Electrons                                        | Solar Particles  | Cosmic Rays | Human<br>Presence | Long Lifetime<br>(>10 years) | Nuclear<br>Exposure | Repeated<br>Launch | Extreme<br>Temperature | Planetary<br>Contaminates<br>(Dust, etc) |
|------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|------------------|-------------|-------------------|------------------------------|---------------------|--------------------|------------------------|------------------------------------------|
| GEO                                      | Yes                                                         | No                                                          | Severe                                                      | Yes              | Yes         | No                | Yes                          | No                  | No                 | No                     | No                                       |
| LEO (low-<br>incl)                       | No                                                          | Yes                                                         | Moderate                                                    | No               | No          | No                | Not<br>usual                 | No                  | No                 | No                     | No                                       |
| LEO Polar                                | No                                                          | Yes                                                         | Moderate                                                    | Yes              | Yes         | No                | Not<br>usual                 | No                  | No                 | No                     | No                                       |
| International Space Station              | No                                                          | Yes                                                         | Moderate                                                    | Yes -<br>partial | Minimal     | Yes               | Yes                          | No                  | Yes                | No                     | No                                       |
| Interplanetary                           | During<br>phasing<br>orbits;<br>Possible<br>Other<br>Planet | During<br>phasing<br>orbits;<br>Possible<br>Other<br>Planet | During<br>phasing<br>orbits;<br>Possible<br>Other<br>Planet | Yes              | Yes         | No                | Yes                          | Maybe               | No                 | Yes                    | Maybe                                    |
| Exploration –<br>Lunar, Mars,<br>Jupiter | Phasing<br>orbits                                           | During<br>phasing<br>orbits                                 | During<br>phasing<br>orbits                                 | Yes              | Yes         | Possibly          | Yes                          | Maybe               | No                 | Yes                    | Yes                                      |

https://radhome.gsfc.nasa.gov/radhome/papers/SSPVSE05\_LaBel.pdf

# **Derive Smart Requirements**

- Define the Environment
  - External to the spacecraft
- Evaluate the Environment
  - Internal to the spacecraft
- Define the Requirements
  - Define criticality factors
- Evaluate Design/Components
  - Existing data/Testing
  - Performance characteristics
- "Engineer" with Designers
  - Parts replacement/Mitigation schemes
- Iterate Process
  - Review parts list based on updated knowledge




|        | Low                                                                    | Medium                                                                                        | High                                                                            |
|--------|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| High   | Dose-Depth /<br>GCR and<br>Proton Spectra<br>for typical<br>conditions | Dose-Depth<br>evaluation at<br>shielding /<br>GCR and proton<br>Spectra for all<br>conditions | Ray-Trace for<br>subsystem /<br>GCR and proton<br>Spectra for all<br>conditions |
| Medium | Dose-Depth /<br>GCR and proton<br>spectra for<br>background            | Dose-Depth /<br>GCR and<br>Proton Spectra<br>For background                                   | Dose-Depth<br>evaluation at<br>shielding / All<br>spectra<br>conditions         |
| Low    | Similar mission<br>dose, same<br>solar cycle /<br>GCR spectra          | Dose-Depth /<br>GCR spectra                                                                   | Dose-Depth /<br>GCR and<br>Proton Spectra<br>For background                     |

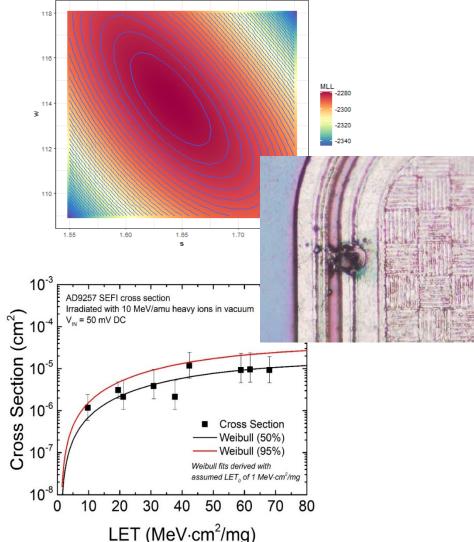
Criticality

# **Derive Smart Requirements**

### Requirements by Technology

- Take into account the environment
- Take into account the application and criticality/availability needs



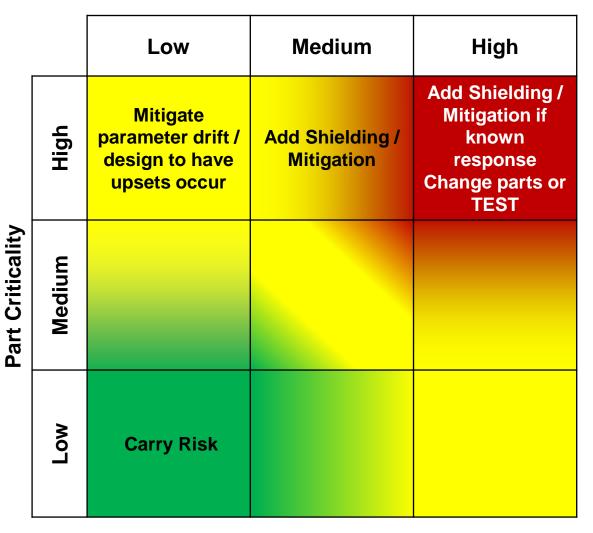



# Requirements by Technology



- SEE, SET
  - Confidence intervals for rate estimations
- SEL, SEB
  - Environment driven, risk avoidance
  - Protection circuitry / diode deratings
- SEGR, SEDR
  - Effect driven, normally incident is worst case
  - Testing to establish Safe Operating Area (SOA)
- MBU, MCU, SEFI, Locked States
  - Only invoked on devices that can exhibit the effect
  - Watchdogs / reset capability
- Proton SEE susceptible parts are evaluated as determined here:

https://nepp.nasa.gov/files/25401/Proton\_RHAGuide\_NASAAug09.pdf



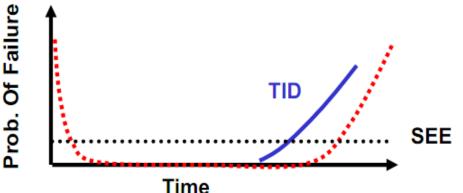

#### To be presented by Michael J. Campola at the NASA Electronics Parts and Packaging (NEPP) Electronics Technology Workshop (ETW), Greenbelt, MD, June 26-29, 2017.

# Engineering Trades / Parts Evaluation

- Define the Environment
  - External to the spacecraft
- Evaluate the Environment
  - Internal to the spacecraft
- Define the Requirements
  - Define criticality factors
- Evaluate Design/Components
  - Existing data/Testing
  - Performance characteristics
- "Engineer" with Designers
  - Parts replacement/Mitigation schemes
- Iterate Process
  - Review parts list based on updated knowledge

Environment Severity/Mission Lifetime

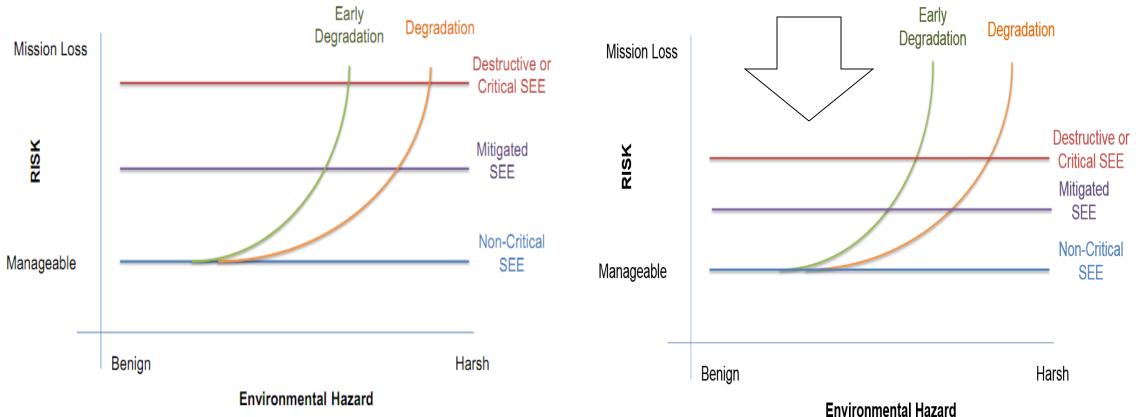





# **Engineering Trades / Parts Evaluation**

- Weigh the hazard and risk
  - Mission parameter changes impact the radiation hazard
  - Look at each part's response, compare with part criticality
  - Utilize applicable data and the physics of failure
  - Determine if error will manifest at a higher level
- Be conscious of design trades
  - Size, Weight, and Power (SWaP) trades need to be carefully considered
  - Parts replacement/mitigation is not necessarily the best
  - Single strain vs. allowable losses




- Testing sparingly
  - The "we can't test everything" notion
  - Test where it solves problems and reduces system risk (risk buy down)
  - Requirements and risk impacts to the system should determine the order of operations when limited
  - Only when failure modes are understood can we take liberties to predict and extrapolate results



To be presented by Michael J. Campola at the NASA Electronics Parts and Packaging (NEPP) Electronics Technology Workshop (ETW), Greenbelt, MD, June 26-29, 2017.

# Single Strain vs. Allowable Losses

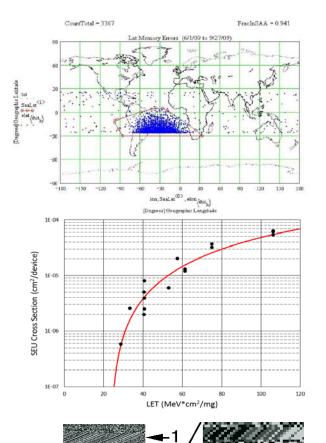




- Redundancy alone does not remove the threat
- Adds complexity to the design
- Diverse redundancy

## Iterate the Process!

- Define the Environment
  - External to the spacecraft
- Evaluate the Environment
  - Internal to the spacecraft
- Define the Requirements
  - Define criticality factors
- Evaluate Design/Components
  - Existing data/Testing
  - Performance characteristics
- "Engineer" with Designers
  - Parts replacement/Mitigation schemes
- Iterate Process
  - Review parts list based on updated knowledge



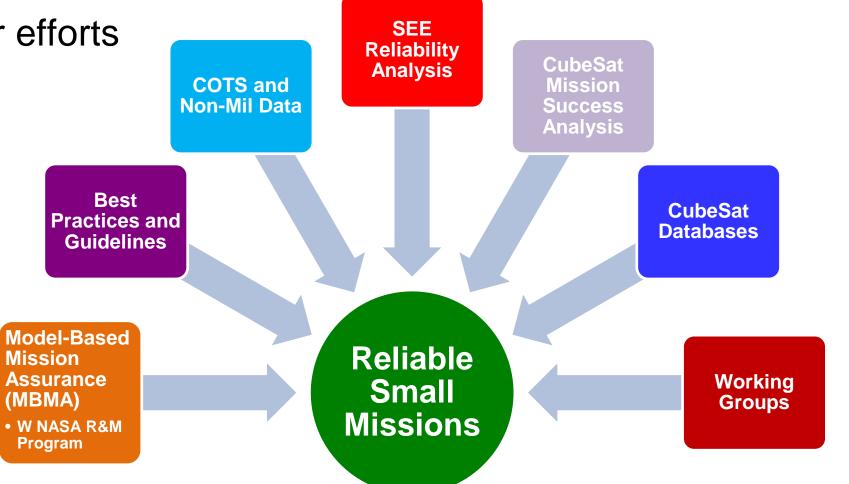

#### To be presented by Michael J. Campola at the NASA Electronics Parts and Packaging (NEPP) Electronics Technology Workshop (ETW), Greenbelt, MD, June 26-29, 2017. 21

# **Risk Hierarchy and Classification**

#### • Parts

- Predicted radiation response
- Downstream/peripheral circuits considered
- Subsystem
  - Criticality
  - Complexity
  - Interfaces
- System
  - Power and mission life
  - Availability
  - o Data retention
  - Communication
  - Attitude determination








# **In-Flight Evaluation**

- Key to future mission success
- Feeds back into our efforts

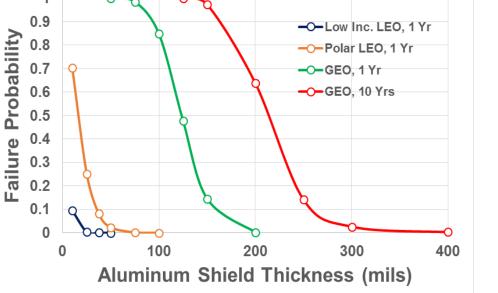




# **RHA Improvements**

#### Confidence levels vs. Radiation Design Margins

- Trapped models AE8/AP8 to AE9/AP9
- Solar particles already handled this way


#### Statistics on datasets

- Careful analysis can bound response from different test sets and results
- Ground based testing more sophisticated

#### Requirements are getting more specific

- By function or expected response (power, digital, analog, memory)
- By semiconductor or fab (GaN, GaAs, SiGe, Si, 3D stacks, hybrids)

#### Communication with Systems Engineers





# Summary

- RHA for Small missions
  - Challenges identified in the past are here to stay
  - Highlighted with increasing COTS usage
- Small missions benefit from detailed hazard definition and evaluation as done in the past
- RHA flow doesn't change, risk acceptance needs to be tailored
  - We need data with statistical methods in mind
- · Varied mission environment and complexity is growing for small spacecraft
  - Don't necessarily benefit from the same risk reduction efforts or cost reduction attempts
- Requirements need to not overburden
  - Flow from the system down to the parts level
  - Aid system level radiation tolerance
- Risks versus rewards can have big impact on mission enabling technologies

Sponsor: NASA Electronic Parts and Packaging (NEPP) Program





michael.j.campola@nasa.gov



To be presented by Michael J. Campola at the NASA Electronics Parts and Packaging (NEPP) Electronics Technology Workshop (ETW), Greenbelt, MD, June 26-29, 2017.