@ https://ntrs.nasa.gov/search.jsp?R=20170006522 2019-08-31T07:11:30+00:00Z

Proceedings of The ASME 2017 International Design Engineering Technical Conferences &

Computers and Information in Engineering Conference

IDETC/CIE 2017
August 6-9, 2017, Cleveland, Ohio, USA

DETC2017-67936

UPDATE: ADVANCEMENT OF CONTACT DYNAMICS MODELING FOR HUMAN
SPACEFLIGHT SIMULATION APPLICATIONS

Thomas A. Brain
Erik B. Kovel
John R. MacLean

METECS
Houston, Texas 77058
Email: tbrain@metecs.com, bkovel@metecs.com,
jmaclean@metecs.com

ABSTRACT

Pong is a new software tool developed at the NASA John-
son Space Center that advances interference-based geometric
contact dynamics based on 3D graphics models. The Pong soft-
ware consists of three parts: a set of scripts to extract geomet-
ric data from 3D graphics models, a contact dynamics engine
that provides collision detection and force calculations based on
the extracted geometric data, and a set of scripts for visualiz-
ing the dynamics response with the 3D graphics models. The
contact dynamics engine can be linked with an external multi-
body dynamics engine to provide an integrated multibody contact
dynamics simulation. This paper provides a detailed overview
of Pong including the overall approach and modeling capabili-
ties, which encompasses force generation from contact primitives
and friction to computational performance. Two specific Pong-
based examples of International Space Station applications are
discussed, and the related verification and validation using this
new tool are also addressed.

* Address all correspondence to this author.

!'This material is declared a work of the U.S. Government and is not subject
to copyright protection in the United States. Approved for public release; distri-
bution is unlimited.

Leslie J. Quiocho*

NASA Johnson Space Center
Software, Robotics, & Simulation Division
Houston, Texas 77058
Email: leslie.j.quiocho@nasa.gov

INTRODUCTION

Human spaceflight operations associated with various pro-
grams, ranging from Shuttle to International Space Station (ISS)
to Exploration, often involve complex multibody and contact dy-
namics [1-4]. Examples include spacecraft docking and undock-
ing, payload/vehicle capture and release by robotic manipulators,
payload/vehicle berthing and unberthing by robotic manipula-
tors, and future surface operations. While some static scenarios
exist, in many cases, crew members must interact with so-called
free-flyers or objects in motion, making situations even more
difficult. The Pong contact dynamics modeling software was
initially developed in response to an increasing need to rapidly
simulate these type of operations. The capability was originally
conceptualized in 2007 when the NASA Johnson Space Cen-
ter (JSC) training community was preparing for HTV-1 Exposed
Pallet (EP) extraction and insertion operations with the JAXA
HTV Unpressurized Logistics Carrier (ULC). This scenario is
shown in Figure 1. Unique to this particular robotic operation
was the use of the Space Station Remote Manipulator System
(SSRMS) Force Moment Accommodation (FMA) and the guide
rail and roller wheel mechanism that allows the EP to slide prop-
erly in and out of the ULC [5]. The action is similar to opening
and closing a desk drawer.

Moreover, since this EP extraction/insertion operation in-
volved the initial use of FMA which was identified for several

FIGURE 1. SSRMS GRAPPLES HTV EXPOSED PALLET

robotics operations on the ISS, it was critical to Verify and Vali-
date (V&V) the NASA FMA simulation capabilities against data
from the Original Equipment Manufacturer (OEM) of the SS-
RMS (i.e., the Canadian Space Agency (CSA) and it’s prime
contractor McDonnell-Detweiler and Associates (MDA)). After
developing contact test cases to support this effort that included
point-plane tripod geometry and peg-in-hole insertion geometry,
an integrated simulation with the SSRMS and EP wheel/rail con-
tact model was developed. The Pong-based model was corre-
lated against a high-fidelity EP contact model which was vali-
dated against data provided by JAXA.

It soon became apparent that the simplified contact dynam-
ics approach taken to solving the above V&V requirements could
be extended to address more complex contact scenarios. This has
resulted in Pong being used for crew and flight controller training
of other ISS operations, pre-flight and post-flight analysis such
as grappling payloads and free-flyers with the SSRMS Latching
End-Effector (LEE), and simulation of ISS Orbital Replacement
Unit (ORU) changeout. One such scenario involved a rapid pro-
totype of a particular contingency operation. For ISS Flight 15A,
the S6 truss potentially needed to be reberthed by the SSRMS
into the Shuttle cargo bay via the Payload Retention Latch As-
sembly (PRLA) alignment guides (refer to Figure 2). Shortly
prior to on-orbit operations, an independent simulation analysis
predicted uncommanded motion of the S6 payload during the
reberth. To address this anomaly, a Pong contact model of the
PRLA alignment guides was created in less than a day to inves-
tigate the unexpected behavior. The Pong model demonstrated
that not only was the uncommanded motion in the high-fidelity
PRLA contact model correct but also that this motion was in fact
due to motor stall in one of the SSRMS joints.

Pong has also been used to prototype contact models as-
sociated with ORU changeout, including worksite models of a
Remote Power Controller Module (RPCM), the Special Purpose

FIGURE 2. SSRMS MANUEVERS S6 TRUSS

Dexterous Manipulator (SPDM) gripper mechanism, and its as-
sociated Micro-Conical Fixture. Using the Pong tool it was pos-
sible to reproduce a jamming condition from the RPCM contact
interaction with the worksite observed in ground test hardware
which was used to replicate an on-orbit anomaly in 2010.

This paper provides a detailed overview of JSC’s Pong con-
tact dynamics package including the overall approach and mod-
eling capabilities. Two specific example applications utilizing
Pong are discussed along with the related V&V of these exam-
ples.

APPROACH

Pong is a software tool that implements interference-based
geometric contact dynamics from 3D graphics models. The Pong
software consists of three parts: a set of scripts to extract geo-
metric data from 3D graphics models, a contact dynamics engine
that provides collision detection and force calculations based on
the extracted geometric data, and a set of scripts for visualizing
the dynamics response with the 3D graphics models. The con-
tact dynamics engine can be linked with an external multibody
dynamics engine to provide an integrated multibody contact dy-
namics simulation. The workflow for creating and using a Pong
model is illustrated in Figure 3.

To build the 3D graphics model, Pong interfaces with the
open-source graphics suite called Blender [6]. Using the Blender
editing tools, 3D meshes are first constructed to represent the
desired contact geometry. Next, a set of in-house developed
Python scripts, collectively known as the Pong Modeling Toolkit
(PMTK), are used to identify these primitives and set contact
dynamics parameters such as stiffness and damping coefficients.
Once the geometry is created and contact parameters are set, a
parenting tree is constructed. The parenting tree corresponds to
the bounding volume tree of the model and each node of the tree

Create Contact Object Geometries in Blender

Use PMTK Scripts to Export Object Data from Blender

Use PMTK Scripts to Convert Data to Contact Dynamics
Engine Inputs

Configure Simulation for Pong Objects, Pong Interfaces,
and Parallelization Options

Run Simulation w/ Pong lob to Calculate Forces/Torques
Based on Geometric Interference

Use PMTK Scrips to Visualize Simulation Response in
Blender

FIGURE 3. PONG WORK FLOW

is referred to as a bounding volume, reference frame, or group.
Each group can contain other groups or primitives but not both.
To distinguish the difference between pieces of the model tree
(i.e. groups and primitives) that are static with respect to its
parentage and pieces of the model that may move despite the
parentage, each group has a flag to specify if it is "movable” in
the PMTK interface. If it is movable, then the group and all of its
children are considered fully-independent bounding volume trees
from the rest of the model. In terms of dynamic state, a movable
group is considered completely detached from its parent and as-
sumes no kinematic constraints or relative motion. Instead, it
relies completely on the user’s dynamics engine to provide a full
dynamic state to the movable group. The root of the entire tree
is a special group called an Object. An Object contains the en-
tire tree despite “movable” designations and is a movable group
itself. While one can separate “movable” groups into their own
Objects, continuing to parent them to a top-level Object group
allows Pong to architecturally treat the entire tree as one contact
model. To interface with a Pong model, one must integrate each
movable group of an Object to an instance of the Interface class.
The Interface class provides a means to transfer dynamic state
data to Pong and contact forces and moments back to dynam-
ics. The Interface class is what connects each movable group to
a user-supplied external dynamics package. Finally, the groups
that contain primitives are called leaf groups or leaf bounding
volumes. The parentage tree is illustrated in Figure 4. The model

States

Dynamics =
JUESEACS 2

States
Moveable Dynamics
Group Forces/Toryues Interface

Primitives

Primitives

FIGURE 4. PONG PARENTING

developers choice of the contents of the leaf bounding volume
has a significant impact on the run-time computational perfor-
mance of the contact engine. To create an efficient contact model,
great care must be taken for specifying the primitives to be con-
tained in each leaf bounding volume. Smart modeling choices
based on experience can lead to desired/optimal run-time perfor-
mance while other poor choices can bog down even relatively
simple models. After the geometry, tree, and contact parameters
have all been specified, PMTK is used to export a model con-
figuration file which is parsed by the engine contact dynamics
engine.

The contact engine allows the creation of multiple Object
instances that use the same model configuration file. The engine
will duplicate the geometry information in independent Object
instances, each with their own set of interfaces to dynamics. To
complete a configuration pertaining to geometry, the user then
specifies which Objects can contact by calling an API function
to name two compatible Object instances. If Object instances are
not paired together, they are not tested in any form or fashion.

As previously mentioned, the Interface and Interface-
derived classes allow the integration of a dynamics engine (e.g.
MBDyn) with Pong [4]. The Interface class requires the dynam-
ics engine to provide position, orientation, and translational and
rotational velocities relative to a common frame. Note that not
every contact Object instance must have the same coordinate ref-
erence if they will never be tested against each other. After pro-
cessing the dynamic states, the contact dynamics engine detects
collisions between the paired contact Objects and, when a col-
lision exists, calculates forces and moments for each colliding
primitive. The forces and moments are summed up and trans-
formed to each movable group. These forces and moments are
placed as outputs in the Interface class to be consumed by the
external multibody dynamics engine. The forces and moments
are applied at and coordinated in the movable group’s reference
frame.

For the most part, the algorithms for the primitive contact
tests and the bounding volume intersection tests are relatively
simple. Most of the current models are made using points, line
segments, and convex polyhedra to produce fairly complex mod-

Line Segment | Sphere | Triangle | Ellipsoid | Polyhedron

Future | ¥es

Future Future

Line Future | Future | Future |Yes

Segment

Future | Future Future | Yes Future | Yes

Future Yes | Future |[Yes Future

Sphere

Triangle

Ellipsoid Future | Future | Future Future | Yes Future | Yes

Polynedron | Yes | Future [Yes. Aves | Future Yes _: Future

TABLE 1. PONG PRIMITIVE TABLE

els covering a wide range of contact models. By keeping the base
algorithms simple, debugging complex models requires little ef-
fort to understand the base algorithms that generate the contact
forces. The trade-off is that more primitives are required to ac-
curately describe certain geometries. In response to this, there
has been significant efforts to improve the computational perfor-
mance of Pong. Algorithms have been improved to eliminate
no-contact situtations rapidly. Code has been optimized to re-
duce function call costs and temporary variables as well as other
improvements. Bounding volumes were introduced and imple-
mented as mentioned above. And, finally, Pong can perform
contact tests in parallel on a multi-core computer. The specific
capabilities are addressed in the next section.

MODELING CAPABILITIES

The capabilities of Pong can be divided into modelling and
performance categories. Primitives and friction models all play a
part in determining the forces generated whereas bounding vol-
umes, parallelization, and memory pools improve computational
performance.

Primitives are essentially definitions of the smallest pieces of
geometry required to do geometric interference detection. Colli-
sion detection engines all implement their own sets of primitive
types in accordance with their requirements and Pong is no dif-
ferent. Pong has a mixture of dimensionless, 2D, and 3D prim-
itives to choose from, each with their own uses. Each primitive
will contain information about its geometry as well as physical
properties such as surface stiffness and/or friction parameters.
Pong currently has Point, Plane, LineSegment, Sphere, Trian-
gle, Ellipsoid, and Planar Polyhedron primitives implemented.
The interactions between these primitive types are listed in Table
1. The architecture of Pong allows for extension of the Primi-
tive class into more primitive types if desired. Pong’s design ap-
proach allows for primitive definitions to exist and yet not every
primitive can contact every other primitive type.

For collision detection, Pong utilizes the polymorphic prop-
erties of the ContactTester class. A contact tester is the actual
collision algorithm between two primitives and is also a con-

tainer class for the results of the collision. A contact tester
must be implemented for each paired type allowed to con-
tact. Any primitive type pairs not implemented in a contact
tester will simply be ignored. For example, a Point has con-
tact testers for Point-Plane, Point-Polyhedron, Point-Sphere, and
Point-Ellipsoid. Any contact object containing a point will be
tested against the polyhedrons in another object. However, if the
second object contains both a polyhedron and a triangle, only
the polyhedron will be tested against the point. While this re-
quires the user to understand the various primitive types that
can contact and explicitly decide what to use in the model, it
also gives flexibility to implement primitive types and their cor-
responding collision algorithms without having to invent algo-
rithms that do not make sense. For instance, a point-triangle al-
gorithm is not practical because the only collision that can be
detected is if the point is on the triangle itself. No penetra-
tion depth can be determined to generate forces and one has to
decide what determines intersection via a numerical tolerance.
The Pong contact tester concept allows us to avoid implement-
ing impractical algorithms or dummy code to satisfy the engine’s
requirements. The current contact testers implemented are:
Ellipsoid-Polyhedron, Ellipsoid-Triangle, LineSegment-Plane,
LineSegment-Polyhedron, Point-Plane, Point-Polyhedron, Ray-
Polyhedron, Ray-Triangle, Sphere-Polyhedron, and Sphere-
Triangle.

A major component of generating contact forces is the fric-
tion model. There are many techniques for calculating friction
forces but very few that can be considered generic for every
application. At this time, Pong’s friction model is based on
a modified reset-integrator bristle model in and along a plane
(2-Dimensional) [7]. The friction forces are calculated and ap-
plied to each contact point determined in the collision algorithms.
While this model is currently implemented as an internal fixed
structure that cannot be changed, there are plans to make the
friction model class extensible for the situation where the default
model is insufficient for the desired application.

Bounding volumes are a very common and useful method
to reduce the number of calculations required to determine con-
tact [8]. The approach for bounding volumes is to encapsulate
portions of geometry with a very simple geometric shape. By
doing so, one can rely on much faster intersection testing of
the simple geometric shapes to eliminate primitives that are not
close enough to each other to execute the much slower compli-
cated collision algorithms. Perhaps the most common bound-
ing volumes are the Sphere and the Axis-Aligned Bounding Box
(AABB), both of which Pong provides. Similar to the primi-
tive and contact tester class, the bounding volume class can be
extended for more bounding volume types. Pong currently has
AABB, Sphere, and Oriented Bounding Box (OBB) types.

Similar to contact testers, Pong uses bounding volume
testers to implement intersection tests for two bounding volume
types. This is where Pong diverges from a majority of the con-

tact dynamics engines. Typically, bounding volumes in a contact
engine are all of the same type. AABB is possibly the most com-
mon. Pong allows one to mix and match bounding volumes for
better modelling choice and control. For example, a model with a
sphere bounding volume will be tested against an AABB bound-
ing volume on the opposing object as well as AABBs on both
sides. In order to accomplish this, the Pong engine must make
no assumptions about the nature of the bounding volume types
or the bounding volume tree associated with it. This means that
Pong cannot take advantage of specific bounding volume tree
structures (e.g., a binary tree) and there is a slight performance
penalty for the logic required to determine which bounding vol-
umes types are in need of testing. However, the flexibility is well
worth the cost as one can make design choices for choosing the
best bounding volume according to the geometry of the specific
model. Like contact testers, a bounding volume definition may
exist but not include an algorithm for determining intersection
between two types. Unlike contact testers, incompatible bound-
ing volume types are not ignored and a run-time error is provided
if an incompatibility is found.

Pong is also capable of executing its algorithms in paral-
lel by leveraging off of a small NASA JSC developed software
package called Critical Threads (also known as CThreads). Ba-
sically, CThreads uses a combination of spin loops, triggers, and
polymorphism to perform high-frequency parallel phases while
avoiding the cost of sharing a CPU with another process or
thread. Utilizing CThreads, Pong is able to split up the bound-
ing volume testers and contact testers among the various threads,
performing intersection and collision detection repeatedly until
all the testers required for the dynamic step are complete. After
parallelization is finished, the contact testers are looped over se-
rially to sum up all of the forces and apply the results through the
interface to dynamics.

As discussed previously, the contact tester class is also a
container class for the forces due to contact generated from two
primitives. This was done so that each primitive pairing between
two objects is an independent calculation and container from all
the other primitive pairs. As one might realize, this implies that
a contact tester must exist for every possible primitive pair that
can contact, however, if every possible primitive pair is allocated,
memory usage becomes a severe problem for intermediate to
large models. If contact testers are allocated during run-time,
the cost of multiple calls to allocate (malloc or new) and deallo-
cate (free or delete) them will negatively impact realtime perfor-
mance. To solve this problem, Pong utilizes a common technique
to reduce this overhead called a memory pool. A memory pool
allocates large chunks of memory at a time and provides pieces
of it to its users. Some memory pools are fixed size where oth-
ers may grow as needed. Pong uses a variable size memory pool
to dole out smaller chunks of memory for the allocation of con-
tact testers. Rather than hundreds of individual allocation calls
per contact tester, there are vert few depending on the number

of primitives in an object and the number of bounding volumes
that intersect at any given point in time. Using memory pools
allows Pong to keep its memory usage small while adding little
overhead for run-time allocations.

EXAMPLE APPLICATIONS

Pong contact models have been created for specific and gen-
eral space-related systems for both analysis and training applica-
tions at the NASA JSC. These include the previously mentioned
Shuttle and ISS examples (i.e., HTV EP, SSRMS LEE, PRLA,
and RPCM) as well as the Common Attach System (CAS) and
Cosmic-Ray Energetics and Mass investigation (CREAM) pay-
load. To address Exploration Program vehicles and future con-
cepts, Pong has been used for an International Docking Standard
(IDS) interface for Orion Multi-Purpose Crew Vehicle (MPCV),
a rover driving on a surface/rocks, and a hexapod robot walk-
ing on a surface. The two most notable and detailed applications
of Pong to date are the SSRMS LEE and the Common Berthing
Mechanism (CBM), discussed in the following sections.

The SSRMS LEE model was developed to assist robotics
analysis teams perform loads analyses of nominal and off-
nominal Visiting Vehicle (VV) capture and release scenarios. For
this use, the Pong contact model was integrated with a 3-cable
snare model which captures and rigidizes various types of Grap-
ple Fixtures (GFs), an electromechanical model which drives the
LEE snare and carriage retract mechanisms, the LEE Control
Software (LCS), a high-fidelity SSRMS model, and a dynamics
package used to propagate the object states. The LEE/GF snare
model response during a capture sequence can be seen in Figure
5.

The contact model is comprised of two Pong objects: the
LEE interface and the GF interface. Renderings of the LEE and
GF Blender models, which were used to create the 3D Pong ge-
ometries, and the hardware interfaces they represent are shown in
Figure 6 and Figure 7. Since this model was developed for anal-
ysis, the geometry consists of a larger amount of primitives than
typically seen in training models. The contact engine accepts the
inertial states of each interface from the dynamics engine, per-
forms collisions tests, calculates the force/torque at each object,
and feeds this information back to the dynamics engine.

The LEE/GF model, including the contact model, has been
validated against the OEM’s truth model simulation [9,10]. Over
a course of six validation exercises with MDA in association with
the CSA, confidence has been built in the model such that it can
be used for NASA flight analysis. These validations from 2010
to date continue to ensure the NASA LEE model response is con-
sistent with the OEM response. The timeline of these validations
can be seen in the LEE Model Validation Timeline table.

In 2012, the Flight Operations Division (FOD) at the NASA
JSC began the development of the Training Systems for the 21st
Century (TS21) program which supports many ISS operations

Grapple

Fixture Shaft End Effector
1) Shaftinside
End Effector SnaresOpen
(Stored)
Fixed Snare
_____ Attach Point
2) End Effector Ring
Rotates. Snares
Close Onto Shaft
Rotating
Snare Attach
Point

3) End Effector Ring
Fully Rotated. Snares
Closed, Centering &
CapturingShaft

FIGURE 5. SNARING SEQUENCE

FIGURE 6. GRAPPLE FIXTURE CONTACT MODEL

TABLE 2. LEE Model Validation Timeline

Validation Scenario Component Validated Completion Date
Rigidization Snare and Contact Models 2010
Vehicle Capture Snare, Contact, and Motor Models 2011
Vehicle Capture/Release Curvic Coupling Contact 2014
Carriage Push-Off Carriage Contact and Motor Model 2015
3D Snare Enhancements Snare, Contact, and Motor Models 2016

[11]. As part of this program, a CBM model was built which,
in addition to Pong contact, includes integration with Flight
Software (FSW) and motor models to drive the four latches.
Each latch is a four-bar mechanism attached to the Active CBM
(ACBM) interface with one constraint point. The latches are
driven by a motor at the base, and can contact the Passive CBM

Passive
CEM

Active CBM

FIGURE 8. CBM COMPONENTS

(PCBM) interface at their tips. Each latch includes Pong con-
tact at the tip and these moveable groups interface with MB-
Dyn which models each link of the mechanism. In addition, the
ACBM interface include four Ready-to-Latch Indicators (RTLIs)
which are sensors attached to a rotational paddle and transla-
tional plunger mechanism. RTLIs let the operator know that the
interfaces are within tolerance to command the latches to drive.
These mechanisms also include Pong contact under moveable
groups linked to the dynamics engine. Additional contact el-
ements rigidly attached to either the ACBM or PCBM include
Coarse Alignment Guides (CAGs), Capture Fittings (CFs), Ther-
mal Standoff Plungers (TSPs), Striker Plates (SPs), and Duck-
head Bumpers (DBs). These subsystem elements are shown in
Figure 8.

The CBM model has been verified against a validated high-
fidelity CBM model created at the Marshall Space Flight Cen-
ter (MSFC) with respect to all contact interfaces besides the
latches. The latches were designed such that their motion and
motor torques required to drive them match hardware responses
as verified by JSC ISS trainers and flight controllers. The major
difference between the two CBM models listed here is that only
the Pong CBM model is sufficiently efficient such that it can ex-

ecute in the real-time TS21 ISS simulator.

CONCLUDING REMARKS

NASA’s human spaceflight program has numerous contact
dynamics operations, including spacecraft docking and berthing,
manual or robotic change-out of avionics boxes or equipment,
and interaction between robotics end-effectors and their environ-
ment during vehicle or satellite servicing. Moreover, future ap-
plications will include robotic systems interacting with planet,
lunar, or even asteroid terrain, also involving contact. These
types of operations have driven contact and multibody dynamics
modeling requirements at the JSC that include rapid prototyp-
ing, detailed engineering analysis, and crew and flight controller
training. Pong has successfully met this challenge by providing a
cost effective means to generate contact surfaces from 3D graph-
ics models and visualize the resulting outputs from its contact
dynamics engine.

ACKNOWLEDGMENT

The work described in this paper was performed entirely
within the Simulation and Graphics Branch of the Software,
Robotics, and Simulation Division of the NASA JSC Engineer-
ing Directorate.

REFERENCES

[1] Quiocho, L.J., Huynh, A., and Crues, E.Z, 2005, “Applica-
tion of Multibody Dynamics to On-Orbit Manipulator Sim-
ulations”, ASME 2005 International Design Engineering
Technical Conferences & Computers and Information in
Engineering Conference, DETC 2005-85545, Long Beach,
CA.

[2] MacLean, J.R., Huynh, A., and Quiocho, L.J., 2007, “In-
vestigation of Boundary Conditions for Flexible Multibody
Spacecraft Dynamics”, ASME 2007 International Design
Engineering Technical Conferences & Computers and In-
formation in Engineering Conference, DETC 2007-35511,
Las Vegas, NV.

[3] Ghosh, T.K., and Quiocho, L.J., 2013, “Development and
Evaluation of an Order-N Formulation for Multi-flexible
Body Space Systems”, EUROSIS 11th Annual Industrial
Simulation Conference, Ghent, Belgium.

[4] Huynh, A., Brain, T.A., MacLean, J.R., and Quiocho,
L.J., 2016, “Evolution of Flexible Multibody Dynamics for
Simulation Applications Supporting Human Spaceflight”,
ASME 2016 International Design Engineering Technical
Conferences & Computers and Information in Engineering
Conference, DETC 2016-60108, Charlotte, NC.

[5] Japan Aerospace Exploration Agency, 2009, HTV-

(8]
(9]

(10]

(11]

1 Mission Press Kit (Revision A). See also URL:
www.global.jaxa.jp/countdown/h2bf1/pdf/presskit_htv_e.pdf.
Blender Home Page. See also URL: www.blender.org.
Haessig, D. and Friedland, B., 1991, “On the Modeling and
Simulation of Friction”, Journal of Dynamic Systems, Mea-
surement, and Control, 113, September, pp. 354-362.
Erickson, C., 2005, Real Time Collision Detection, Morgan
Kaufman/Elsevier, Amsterdam, Netherlands.

Shi, J-F. and Ulrich, S., 2014, “A Direct Adaptive Con-
trol Law Using Modified Rodrigues Parameters for ISS At-
titude Regulation During Free-Flyer Capture Operations”,
65th International Astronautical Congress, IAC-14-C1.4.2,
Toronto, Canada.

Ma, O., 2000, “CDT - A Generic Dynamics Toolkit”, 31st
International Symposium on Robotics (ISR 2000), pp. 468-
473, Montreal, Canada.

Williams, C., 2012, “Plan, Train, Fly (21st-Century Style)”,
Lyndon B. Johnson Space Center Roundup. See also URL:
www.jsc.nasa.gov/roundup/online/0612 _rev.pdf.

