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1. Abstract 
Mangroves act as a transition zone between fresh and salt water habitats by filtering and indicating salinity 
levels along the coast of the Florida Everglades. However, dredging and canals built in the early 1900s 
depleted the Everglades of much of its freshwater resources. In an attempt to assist in maintaining the health 
of threatened habitats, efforts have been made within Everglades National Park to rebalance the ecosystem 
and adhere to sustainably managing mangrove forests. The Everglades Ecological Forecasting II team utilized 
Google Earth Engine API and satellite imagery from Landsat 5, 7, and 8 to continuously create land-change 
maps over a 25 year period, and to allow park officials to continue producing maps in the future. In order to 
make the process replicable for project partners at Everglades National Park, the team was able to conduct a 
supervised classification approach to display mangrove regions in 1995, 2000, 2005, 2010 and 2015. As 
freshwater was depleted, mangroves encroached further inland and freshwater marshes declined. The current 
extent map, along with transition maps helped create forecasting models that show mangrove encroachment 
further inland in the year 2030 as well. This project highlights the changes to the Everglade habitats in 
relation to a changing climate and hydrological changes throughout the park. 
 
Keywords 
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2. Introduction 
 
2.1 Background Information 
Consisting of 1.5 million acres of federally protected land, the Everglades National Park (ENP) is the largest 
subtropical ecosystem in the United States (Todd et al., 2010). A variety of habitats are contained within the 
park, with mangrove forests along the coastline that transition into a brackish mix of lowland scrubs and 
sawgrass prairies, to freshwater marshes further inland (Davis, 2005). A 120 mile freshwater river known as 
the “River of Grass” provides the ENP with much of its freshwater flow, allowing for a high diversity of 
wildlife (Alles, 2012). The extensive mangrove forests along the coastline of the park help make this 
ecosystem function as well. Mangroves act as a transition zone between salt and freshwater habitats by 
filtering out saltwater through their root systems (Stevens et al., 2006). However, saltwater is intruding further 
inland of the ENP, and contributes to the loss of approximately 50% of the original Everglades freshwater 
habitats (Ingebritsen, 1999). Flooding became an issue in the early 1900s, and because of this the United 
States Congress decided to implement flood control measures by enacting the South Florida Project, which 
consisted of over 1000 miles of canals, 720 miles of levees, and 16 pumping stations (Perry, 2004).  

 
Figure 1: Everglades National Park 
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Due to this initiative, freshwater flow was dramatically changed throughout the park. As a result, the ENP is 
undergoing one of the largest restoration efforts in the National Park Service’s history (Comprehensive 
Everglades Restoration Plan (CERP), n.d.). The location of mangroves within the ENP designate how far 
saltwater extends inland from the Florida coastline and informs researchers how the ecotones are responding 
to climate change and current restoration efforts.  
 
Understanding the extent of the mangroves within the ENP may provide insight to the overall ecosystem 
health (Zweig and Kitchens, 2008). The hydrological changes to the park can influence the extent of 
mangrove trees, so investigating how the mangroves are shifting in conjunction to changing water routes is 
important in understanding these hydrological changes (Doren et al., 1999). By correlating the past changes of 
mangrove extent with hydrological changes within ENP, ecological modeling can be conducted to predict 
future changes to the park. 
 
Mangrove forests are vastly important for the development of coastal communities around the world as well. 
Providing many ecosystem services, including acting as a large carbon sink, mangroves help make it possible 
for freshwater habitats to flourish alongside saltwater habitats (Twilley and Revera-Monroy, 2005). In the U.S. 
alone, mangroves are estimated to provide around $186 million in goods and services (Rath, 2016). 
Mangroves are thus important to the wetland ecosystem, but imbalances arise when they displace freshwater 
marshes farther inland causing a decrease in habitat for various plants, birds, and other wildlife. For the NPS 
to make informed decisions about the future health of the park, sustainably managing where mangrove 
forests grow is important for maintaining a balance between these freshwater and saltwater habitats. The tool 
created for this project shows promise in its ability to successfully observe changes with mangrove forest 
extent and its implications on freshwater marsh. Further studies and enhancements to this tool can 
complement current methodologies used to understand the extent of mangroves around the globe in order to 
incite sustainable mitigation plans to halt the decline of these habitats. 
 
2.1 Project Partners & Objectives 
This project addresses the Ecological Forecasting application area through the creation of a methodology 
utilized to forecast the mangrove extent in ENP to the year 2030. Park officials at ENP identified that 
delineating mangrove extent is crucial to understanding how freshwater flow is changing in the park.  Future 
water routing plans intend to divert up to 80% of westerly freshwater flow towards the eastern side of the 
park, so monitoring the health of the ecosystem is instrumental to making sound management decisions. This 
project will update the current mangrove extent map with the Generalized Random Tessellation Stratified 
(GRTS) sampling technique selected in this study, and will provide a replicable process for the park staff to 
expand in upcoming years. 
 
This project also addresses a sustainable development initiative in cooperation with the Group on Earth 
Observations Blue Planet Initiative (GEO-BPI) and the Old Dominion University Mitigation and Adaptation 
Research Institute (MARI) in expanding the project’s methodology to globally monitor the mangrove extent.  

3. Methodology 
 
3.1 Data Acquisition  
The team examined the change in mangrove extent within ENP using Google Earth Engine (GEE) API to 
access the archive of Landsat imagery. Earth observation images were accessed directly within the GEE API 
cloud in 5 year intervals (Table 1). Due to problems related to cloud cover in subtropical regions, the study 
period was limited to the dry season of ENP (January 1 - May 30) in hopes of obtaining images with the least 
amount of clouds. Landsat images were composed at 30 meter pixel resolution and Sentinel-2 at 20 meters. A 
16-day return time among Landsat images yields approximately 20 images per year, with variable cloud cover 
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between each image. Access to multiple Landsat images for each year allowed the team to minimize cloud 
coverage by utilizing a cloud masking algorithm and aggregating the data within GEE editor.  
 
Table 1: Earth observations collected from Landsat and Sentinel satellites for the stated years and their 

sources. 
EARTH OBSERVATIONS 

SATELLITE Year - Dry Season Data Source 
Landsat 5 TM 1994/1995, 2005 United States Geological Survey (USGS) 
Landsat 7 ETM+ 2000, 2009/2010 United States Geological Survey 
Landsat 8 OLI 2015, 2016 United States Geological Survey 
Sentinel-2 MSI 2016 Copernicus 

 
In addition to the Landsat series, the Coastal Change Analysis Program (C-CAP) raster, updated in 2010, was 
downloaded from the National Oceanic and Atmospheric Administration (NOAA). This raster file allowed 
the team to delineate a buffer along the study area approximately 10 km2 along the mangrove and marsh 
transition area. In conjunction with this, the NPS provided a detailed vegetation map that also incorporated in 
situ vegetation points. The team used this detailed vegetation map to identify the class types within the study 
area. A Generalized Random Tesselation Stratified (GRTS) shapefile, the boundary shapefile of the park, and 
a topography shapefile with detailed elevation data was also provided by the National Park Service. These 
shapefiles allowed the team to utilize similar methods that the NPS uses to analyze vegetation data for other 
projects ongoing in the same area. A water mask and coastline shapefiles were created by using the Sentinel-
2a classified imagery. STATSGO provided the soil data and Route 41 was collected from street information 
provided by TIGER. 
 
3.2 Data Processing 
The Landsat image collections, already calibrated for top of the atmosphere reflectance, orthorectified, and fit 
with a Function of Mask (Fmask) band, were imported directly into the GEE user interface. The Fmask band 
provided a means for the clouds and cloud shadows to be removed through spectral and brightness 
temperature thresholds from each Landsat image with the Fmask function GEE provides (Figure 2). The 
collection of images was reduced using the median value of pixels for aggregating the image collection into a 
single image that is free of cloud cover and shadows (Figure 2). Any Landsat images that contained missing 
data pixels as a consequence of the Fmask function were aggregated with the prior year’s dry season 
collection to fill in the missing pixels. Before aggregation, the prior year was processed in the same manner.  
 

 
Figure 2: FMask algorithm essentially cuts out the cloud and cloud shadow pixels for the dry season for each 

study year. Pixels from other images are used to fill in the holes that the missing pixels left behind 
and are aggregated to produce a whole image exhibiting the median pixel value.  
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Challengingly, there is no cloud masking band or thermal band available for the Sentinel-2 images. Therefore, 
an alternate approach to the Fmask operation was necessary. This was accomplished by applying a cloud 
score using band QA60, a bit mask with cloud information, to compute a cloud-likelihood for the Sentinel-2 
images. Pixel values less than 1024 were considered cloud-free. A singular cloud-free image was produced by 
reducing the image to the 15th percentile due. Landsat and Sentinel-2 cloud-free images were clipped to the 
boundary of the ENP. 
 
NOAA’s C-CAP raster was used to identify the interior edge of the mangrove-marsh transition in order to 
create a 10-kilometer buffer from that edge. This buffer was then used to clip the GRTS shapefile to isolate 
grids only over the mangrove and marsh extent. Since the GRTS shapefile is already formatted in a random 
fashion, the first 30 grids were then selected to create the random sampling sections where training sites were 
drawn (Figure 3). This random sampling technique provided a spatially-balanced sampling grid so that no grid 
is located too far from another grid and few grids are close to another. This reduced any biased sampling for 
the training sites as well as the uncertainty of classification. 
 

 
Figure 3: GRTS (Generalized Random Tesselation Stratified) sampling technique that allowed us to test our 

accuracy randomly so that we could decrease the bias in our supervised classification results. 
 

3.3 Data Analysis 
A supervised classification was used to define the boundaries of mangroves and marsh extent for this project. 
Seven categories were identified within the image collections: Water, Mangrove Forest, Freshwater Marsh, 
Saltwater Marsh/Sawgrass Prairie, Shrub/Scrub, and Bare Ground/Developed (Table 2). Training sites were 
selected within the random sample grids provided by GRTS. Thirty grids were selected with an effort to 
identify each class within each grid. An average of 35 samples were drawn for each class. The random forest 
classification algorithm was applied to the training sites to create a land cover map for each epoch. To 
calculate the accuracy of the land cover maps, the training points were divided to produce a random sample 
of 10% for testing and 90% for classifying. The accuracy refers to the rate of correct classification that occurs 
when the testing points are compared to the classifying points (See Appendix B).   
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Table 2: Classification types and their descriptions. 

 
CLASS DESCRIPTION 
Water ponds, ocean, rivers, lakes 

Mangrove Forest large clusters of mangrove dominant stands 
Freshwater Marsh freshwater wetlands, grass-like plants, marshes, meadows, fens 

Saltwater Marsh/Sawgrass Prairie salt and brackish marshes associated with tidal estuaries along the 
coastline. sawgrass prairie is considered freshwater grassland marsh 

Shrub/Scrub small stands of vegetation within a marsh or prairie habitat 
Bare Ground/Developed urban areas, roads, beaches, and other bare ground 

 
Quantifying the rate of change in mangrove extent was performed using a set of simple algorithms: 
  

Change in area (ha) = Year – Prior Year 
 

% rate of change = !"#$	&'"()"	!"#$
'"()"	!"#$

x	100 
 

% rate of change per year = 
	 -./0	1	2.34.	-./02.34.	-./0

5	6#$"7
x	100 

 
Net change = Total Gain (ha) – Total Loss (ha) 

 
Forecasting to the year 2030 considered three different analyses provided by the TerrSet Geospatial 
Monitoring and Modeling System Land Change Modeler. Land Change Modeler empirically models the 
relationships of changes in land cover with driver variables to predict the land cover to a future date. The first 
step was to identify what changes have occurred between the earlier and later year using TerrSet’s Change 
Analysis. This analysis pinpoints exactly where the changes have occurred, how much change has occurred 
(net), and which classes contributed to the change in a specified land cover. The second step was to identify 
the potential of a class to transition to a different class through the Transition Potential Modeling using the 
multi-layer perceptron (MLP) neural network machine learning tool. Transitions are empirically evaluated by 
identifying transitions that are likely caused by the same driver variable. Two forecasts were performed where 
one was influenced by current restoration efforts and the other had little to no influence. This was 
determined using the transition sub-models to identify restoration as a transition from mangrove forest to 
freshwater marsh and/or saltwater marsh/sawgrass prairie. Forecasting with little to no restoration effort 
effect was identified as a growth in mangrove forest where freshwater marsh and/or saltwater 
marsh/sawgrass prairie transition to mangrove forest. Table 3 provides the transitions used in the forecasting 
model where there was little to no influence in restoration and Table 4 shows transitions with influence. 
Driver variables used in this analysis are shown in Table 5. Drivers were tested to produce a Cramer’s V - a 
measure of predictive power of the variables on a scale of 0-1. Each driver displayed a Cramer’s V higher 
than 0.3 for the mangrove class signifying them as strong predictors. Finally, Markov Chain analysis was used 
to model the transitions and predict the land cover to the year 2030. 
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Table 3: Transition Sub-Models Used – Little to no influence by restoration efforts. 
 

FROM TO 
Water Mangrove Forest 

Mangrove Forest Water 
Freshwater Marsh Mangrove Forest 

Saltwater Marsh/Sawgrass Prairie Mangrove Forest 
 
 

Table 4: Transition Sub-Models Used – Influenced by restoration efforts 
 

FROM TO 
Water Mangrove Forest 

Mangrove Forest Water 
Mangrove Forest Freshwater Marsh 
Mangrove Forest Saltwater Marsh/Sawgrass Prairie 

 
 

Table 5: Explanatory Variables Used 
 

VARIABLE INFLUENCE ON LAND COVER CRAMER’S V FOR 
MANGROVE FOREST 

Distance to route 41 Route 41 influences freshwater flow into the ENP 
from the Okeechobee Lake 

0.374 

Distance to nearest 
urban centers 

Urban development and expansion influences the 
edges of the National Park 

0.348 

Distance to 
saltwater 

Saltwater influences the extent of mangrove forests 
and locations of freshwater marsh. Mangrove forests 
are located near saltwater while freshwater marsh 
prefers to be farther inland, away from saltwater. 

0.365 

Distance to the 
coastline 

Mangroves are found near the coastline and 
freshwater marsh is located farther inland away from 
the coastline. 

0.407 

Land cover Quantitative representation of land cover using 
evidence likelihood. This represents the likelihood 
of finding a land cover type at any given pixel that 
would likely transition. Mangrove forest influences 
freshwater marsh and vice-versa and are likely to 
transition 

0.639 

Elevation Mangroves prefer lower elevations near sea level 
while freshwater marsh prefers the higher elevations 
away from sea water 

0.339 

Soil type Soil types influence the vegetation that is found  0.513 

4. Results & Discussion 
 
4.1 Analysis of Results 
Seven land cover maps were produced using GEE for each epoch of the study period (Appendix A). One of 
the obvious changes observed from the year 1995 to 2016 was the visible increase in vegetation (mangrove 
and marshlands) on the islands south of the Florida peninsula (A-1 & A-6). Freshwater marsh appears to 
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cover a larger area in the epoch 1995 and may be a result of an unusually wet year causing some bias towards 
the water class. Evidence of current restoration efforts are visible in the 2016 image due to the presence of 
water encroaching into the freshwater marsh system from the north-eastern region (A-6 & A-7). The 
transition from 2000 to 2005 show over 1000ha of loss with freshwater marshes, while mangrove forests 
increased over 1000ha. The year 2005 was hit heavily by hurricanes, which could account for the increase of 
bare ground as well. Hurricanes can take many years to recover in some instances, and seeing an exposure of 
bare ground and less vegetation along the intertidal zones could be indicative of this.  
 
On average, the overall accuracy for all maps was approximately 97.7%. This overall accuracy is very high 
displaying very good agreement between the testing and training pixels. Confusion matrices produced for 
each image consistently show that the shrub/scrub and bare ground/developed classes were the most 
difficult to classify as indicated by the extremely low producer accuracies (Appendix B). Producer accuracy 
identifies the fraction of the correctly classified pixels in relation to all of the pixels of the testing sites. The 
user accuracy calculates the reliability of the class being a certain class. The bare ground/developed and the 
shrub/scrub classes were also deemed the least reliable due to the low user accuracies. Fortunately, the 
mangrove class had the highest user and producer accuracies and was thus very easy for GEE to classify and 
the results were very reliable. In-situ vegetation points helped establish more confidence in the supervised 
classification approach as well for the later study years.  
 
From 1995 to 2016, mangrove forest extent has risen and decreased multiple times with the largest decrease 
during the 2005 to 2010 increment (Appendix C & Table 4). Results show an overall decline in mangrove 
forest extent for the study period with a slight increase within the most recent year of 2015 to 2016 (Table 6 
& Figure 4). Freshwater marsh has been the largest contributor to mangrove forest growth with saltwater 
marsh/sawgrass prairie class being the largest influence to a decline in mangrove forest extent (Figure 5).  
 
Table 6: Changes of area of the extent of mangrove forests located within the GRTS boundary. Numbers 

denoted with a (-) indicate a decrease in mangrove forest while numbers with a (+) indicate an 
increase. Overall, there was a net decrease in mangrove forest of 8,983 hectares. 

 
CHANGES IN MANGROVE FOREST (1995 – 2016) 

 1995 – 2000 2000 – 2005 2005 – 2010 2010 – 2015 2015 – 2016 
Change in area (ha) -4142 +2468 -4688 -3346 +725 
Total percent change -4.0 +2.5 -4.6 -3.4 +0.8 
Percent change/year -0.8 +0.5 -0.9 -0.7 +0.8 

 
 

 
Figure 4: Net changes in area for each class between 1995 and 2016. Mangroves experienced a net 

decrease of 0.51%, Freshwater marsh net decrease = 3.05%, saltwater marsh/sawgrass 
prairie net increase = 3.52% 
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Figure 5: Contributions to the net change of the mangrove forest (% area) class from 1995 to 2016. 

 
Identifying where the mangrove changes are is important to understanding how mangroves are changing. 
Much of the loss of mangrove forest has occurred along the saltwater marsh and freshwater marsh transition 
– the area extending most inward from the mangrove extent away from the coastline – and in the south-
western portion (Figure 6). Growth of mangroves have occurred along the coastline and other waterbodies, 
with some growth along the saltwater and freshwater marsh transition zone (Figure 6). Change maps within 
each study period are located in Appendix D. The periods of 2000 to 2005 and 2015 to 2016 have mangrove 
forest growth along the saltwater and freshwater marsh transition zone, while all other years experienced loss; 
the largest being during the 1995 to 2000 and 2005 to 2010 epochs (Appendix D).  

 

 
Figure 6: Gains (green), Losses (red), and areas of persistence of mangrove forest within the Everglades 

National Park between the 1995 and 2016 epochs. 
 
TerrSet’s Land Change Modeler produced two important prediction maps: hard and soft. The hard prediction 
produced a forecasted map with the same categories as the input maps while soft prediction is essentially a 
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map of the susceptibility of a landcover class to transition. By forecasting to the year 2030, Figure 7 indicates 
the changes that could potentially be seen if restoration efforts do not impact the mangrove extent within the 
park. The transition zones between saltwater and freshwater habitats exhibit the highest vulnerability. 
Mangroves are not particularly vulnerable in this scenario because the freshwater habitats are declining while 
the mangrove forests are expanding inward.  
 
However, if restoration efforts are to impact the park significantly, the areas of vulnerability shift to the 
mangrove forests and to the coastline (Figure 8). This is an expected outcome since this vulnerability is more 
balanced along the mangrove-marsh transition and displacing mangroves with freshwater marsh will take 
time. As freshwater is re-routed into the Northeastern section of the park, freshwater flows through the 
freshwater marsh/sawgrass prairie system and pushes saltwater further towards the coastline. This is 
predicted in figure 8 by the shift in mangrove forests as they shift towards the coastline.   
 

  
Figure 7: Prediction maps of land cover and areas susceptible to change having little to no influence of 

restoration efforts for the year 2030. Left: Hard Prediction; Right – Soft Prediction. 
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Figure 8: Prediction maps of land cover and areas susceptible to change when land cover is influenced by 

restoration efforts for the year 2030. Left: Hard Prediction; Right – Soft Prediction 
 

Validation results of accuracy and skill measure for both forecasting scenarios were provided from the testing 
and training process that MLP performs. The skill measure represents the measured accuracy minus the 
accuracy expected by transition. Forecasted results that have little to no impact of restoration efforts had an 
accuracy rate of 70% and a skill measure of 0.66. The opposite scenario where restoration efforts do affect 
the mangrove extent measured an accuracy rate of 62% and a skill measure of 0.55. Tables 7 and 8 give an in-
depth breakdown of the skill per the modeled transitions. For both scenarios, the driver variables were very 
effective in establishing most of the transitions as explained by the high skill measure. However, saltwater 
marsh/sawgrass prairie to mangrove forest and mangrove forest to saltwater marsh/sawgrass prairie 
transitions had the lowest skill measure. This means that the driver variables used are not very effective at 
predicting the transition between these two sub-models. A reasonable cause to this low skill measure is from 
the combined class of the sawgrass prairie (a freshwater grass) and saltwater marsh resulting in an inadequate 
forecast for these two transitions. This is so because saltwater and sawgrass prairie are driven by different 
variables. Sawgrass prairie is influenced by freshwater movement into the area while saltwater marsh is driven 
by the presence of saltwater.  
  
 
Table 7. Model Skill Breakdown by Transition where Restoration has No Effect 
 

TRANSITION SKILL MEASURE 
Water to Mangrove Forest 0.83 
Mangrove Forest to Water 0.91 

Freshwater Marsh to Mangrove Forest 0.86 
Saltwater Marsh/Sawgrass Prairie to Mangrove Forest 0.27 
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Table 8. Model Skill Breakdown by Transition where Restoration has Effect 
 

TRANSITION SKILL MEASURE 
Water to Mangrove Forest 0.59 
Mangrove Forest to Water 0.88 

Mangrove Forest to Freshwater Marsh 0.60 
Mangrove Forest to Saltwater Marsh/Sawgrass Prairie 0.09 

 
 
4.2 Future Work 
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Studying the effects of restoration of the Everglades National Park is a highly complex and difficult task due 
to the high percentage of cloud cover in satellite images, inaccessibility to study sites, rapidly changing 
habitats, and effects of unpredictable natural disasters. Although this project was successful in creating a 
historical timeline of the land cover changes within the park, future work should consider using higher 
resolution imagery within GEE, such as the Sentinel-2 image collection, for increased land cover accuracy. 
Problematically, the elevation gradient within the Everglades is very low causing the accuracy of freely 
available Digital Elevation Models (DEMs) to be questionable. Producing a higher resolution DEM could 
capture this low gradient and improve the forecasting model results. Due to time constraints, the effects of 
sea level rise on the Florida Everglades was not included in the forecasting model. However, rising sea levels 
is an important factor that future research should consider when forecasting. In situ data would also increase 
the accuracy of the classification process as a comparable analysis can be done more thoroughly. One of the 
limitations to this study was that the training sites were limited within the 30 random sample grids. Expanding 
the random sample grids to the entire park would enable a higher confidence of the land cover classifications 
and improve the maps themselves.  

5. Conclusions 
Google Earth Engine API proved to be a reliable source for monitoring the extent of mangrove forest 
through the Everglades National Park. The supervised classification approach taken for the years 1995, 2000, 
2005, 2010, 2015, and 2016 produced an overall accuracy of 97.7%. The changes seen between consecutive 
land cover maps can be used to delineate how mangrove forests are responding to new mitigation efforts of 
re-routing freshwater back into the park. Over the study period, mangroves have shown a general decrease. 
Forecasting reveals that if restoration efforts influence the mangrove extent, mangroves do shift backwards 
toward the coastline allowing for the growth of the freshwater marsh ecosystem. Areas of high vulnerability 
will be along the coastline where mangroves are likely to expand seaward. On the other hand, if restoration 
efforts fail to impact mangroves, the mangrove and marsh transition zone is the most susceptible to change in 
which mangroves will continue to encroach upon the land and reduce freshwater marsh habitat. This 
demonstrates that restoration efforts will impact the mangrove extent and freshwater habitats in one of the 
two scenarios. However, since mangroves have historically been declining along the mangrove and marsh 
transition, it is reasonable that this trend will continue into the year 2030 and that the restoration efforts will 
be seen to have a positive effect within the Everglades. This tool will help the NPS delineate targets for 
sustainable development goals of managing forests within the park. It can also be used for further analysis for 
distinguishing landcover characteristics in threatened forests around the globe.   
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8. Content Innovation 
Content Innovation #1 
Tutorial 
Emailed to tiffani.n.miller@nasa.gov with filename 
2016Fall_LaRC_EvergladesEcoII_Tutorial 
 
Content Innovation #2 (See Appendix E) 
Glossary Viewer (Should be alphabetical) 
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Content Innovation #3 
Inline Supplementary Material 
Figure 1, Everglades National Park 
Figure 2, FMask Algorithm 
Figure 3, GRTS Sampling Technique 
Figure 4, Net changes in each class from 1995 – 2016 
Figure 5, Contributions to the net change 
Figure 6, Gains, losses, and persistence of mangrove from 1995-1016 
Figure 7, Prediction Maps of Landcover per no influence from restoration 
Figure 8, Prediction Maps of Landcover with influence from restoration 
 
Content Innovation #4 
Virtual Poster Session 
Emailed to tiffani.n.miller@nasa.gov with filename 
2016Fall_LaRC_EvergladesEcoII_VPS_V2 
 
Content Innovation #5 
Brochure 
Emailed to tiffani.n.miller@nasa.gov with filename 
2016Fall_LaRC_EvergladesEcoII_Brochure 
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9. Appendices 
Appendix A: Land Cover Maps for Each Epoch. 

 

 
Figure A-1: Land cover map of the Everglades National Park for the year 1995. 
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Figure A-2: Land cover map of the Everglades National Park for the year 2000. 
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Figure A-3: Land cover map of the Everglades National Park for the year 2005. 
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Figure A-4: Land cover map of the Everglades National Park for the year 2010. 
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Figure A-5: Land cover map of the Everglades National Park for the year 2015. 
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Figure A-6: Land cover map of the Everglades National Park for the year 2016. 
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Figure A-7: Land cover map of the Everglades National Park for the year 2016 using Sentinel-2 MultiSpectral 

Instrument (MSI), Level-1C. 
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Appendix B. Confusion Matrices for Each Epoch. 
 

Table B-1: Random Forest Classification Confusion Matrix for the year 1995 
Overall accuracy = 99.0% with a Kappa Coefficient (KHAT) = 0.97 

T
ra

in
in

g 
Si

te
s 

(9
0%

) 

Testing Sites (10%) 
Class Water Mangrove 

Forest 
Freshwater 

Marsh 
Saltwater Marsh 

& Sawgrass Prairie 
Shrub/
Scrub 

Bare Total 

Water 10 0 0 0 0 0 10 
Mangrove Forest 0 330 3 3 5 0 341 
Freshwater Marsh 0 0 180 0 0 0 180 
Saltwater Marsh & 

Sawgrass 
0 2 8 1684 1 0 1695 

Shrub/Scrub 0 0 0 0 0 0 0 
Bare 0 0 0 0 0 0 0 
Total 10 332 191 1687 6 0 2226 

 
Class Commission (%) Omission (%) Prod. Acc. (%) User Acc. (%) 
Water 0 0 100 100 

Mangrove Forest 3.2 0.6 99.4 96.8 
Freshwater Marsh 0 5.8 94.2 100 

Saltwater Marsh & Sawgrass 0.6 0.2 99.8 99.4 
Shrub/Scrub 0 0 0 0 

Bare 0 0 0 0 
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Table B-2: Random Forest Classification Confusion Matrix for the year 2000 
Overall accuracy = 96.6% with a Kappa Coefficient (KHAT) = 0.95 

T
ra

in
in

g 
Si

te
s 

(9
0%

) 

Testing Sites (10%) 
Class Water Mangrove 

Forest 
Freshwater 

Marsh 
Saltwater Marsh 

& Sawgrass Prairie 
Shrub/
Scrub 

Bare Total 

Water 26 0 0 0 0 0 26 
Mangrove Forest 0 185 0 3 2 0 190 
Freshwater Marsh 0 0 81 9 0 0 90 
Saltwater Marsh & 

Sawgrass 
0 3 0 254 2 0 259 

Shrub/Scrub 0 0 0 0 0 0 0 
Bare 0 0 0 0 0 0 0 
Total 26 188 81 266 4 0 565 

 
Class Commission (%) Omission (%) Prod. Acc. (%) User Acc. (%) 
Water 0 0 100 100 

Mangrove Forest 2.6 1.6 98.4 97.4 
Freshwater Marsh 10 0 100 90.0 

Saltwater Marsh & Sawgrass 1.9 4.5 95.5 98.1 
Shrub/Scrub 0 0 0 0 

Bare 0 0 0 0 
 
Table B-3: Random Forest Classification Confusion Matrix for the year 2005 
Overall accuracy = 98.0% with a Kappa Coefficient (KHAT) = 0.95 

T
ra

in
in

g 
Si

te
s 

(9
0%

) 

Testing Sites (10%) 
Class Water Mangrove 

Forest 
Freshwater 

Marsh 
Saltwater Marsh 

& Sawgrass Prairie 
Shrub/
Scrub 

Bare Total 

Water 122 0 0 0 0 0 122 
Mangrove Forest 0 1592 1 2 0 0 1595 
Freshwater Marsh 0 0 58 7 0 0 65 
Saltwater Marsh & 

Sawgrass 
0 14 16 224 0 0 254 

Shrub/Scrub 0 0 0 0 6 0 6 
Bare 0 0 0 1 0 0 1 
Total 122 1606 75 234 6 0 2043 

 
Class Commission (%) Omission (%) Prod. Acc. (%) User Acc. (%) 
Water 0 0 100 100 

Mangrove Forest 0.2 0.9 99.1 99.8 
Freshwater Marsh 10.8 22.7 77.3 89.2 

Saltwater Marsh & Sawgrass 11.8 4.3 95.7 88.2 
Shrub/Scrub 0 0 100 100 

Bare 0 0 0 0 
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Table B-4. Random Forest Classification Confusion Matrix for the year 2010 
Overall accuracy = 94.1% with a Kappa Coefficient (KHAT) = 0.88 

T
ra

in
in

g 
Si

te
s 

(9
0%

) 

Testing Sites (10%) 
Class Water Mangrove 

Forest 
Freshwater 

Marsh 
Saltwater Marsh 

& Sawgrass Prairie 
Shrub/
Scrub 

Bare Total 

Water 251 0 0 0 0 0 251 
Mangrove Forest 0 1117 0 1 13 0 1131 
Freshwater Marsh 0 0 120 24 1 0 145 
Saltwater Marsh & 

Sawgrass 
1 0 56 78 0 0 135 

Shrub/Scrub 0 2 0 0 0 0 2 
Bare 0 0 0 0 0 0 0 
Total 252 1119 176 103 14 0 1664 

 
Class Commission (%) Omission (%) Prod. Acc. (%) User Acc. (%) 
Water 0 0.4 99.6 100 

Mangrove Forest 1.2 0.2 99.8 98.8 
Freshwater Marsh 17.2 31.8 68.2 82.8 

Saltwater Marsh & Sawgrass 42.2 24.3 75.7 57.8 
Shrub/Scrub 0 0 0 0 

Bare 0 0 0 0 
 
Table B-5: Random Forest Classification Confusion Matrix for the year 2015 
Overall accuracy = 97.6% with a Kappa Coefficient (KHAT) = 0.95 

T
ra

in
in

g 
Si

te
s 

(9
0%

) 

Testing Sites (10%) 
Class Water Mangrove 

Forest 
Freshwater 

Marsh 
Saltwater Marsh 

& Sawgrass Prairie 
Shrub/
Scrub 

Bare Total 

Water 16 0 0 0 0 0 16 
Mangrove Forest 0 1331 0 1 1 0 1333 
Freshwater Marsh 0 0 33 0 0 0 33 
Saltwater Marsh & 

Sawgrass 
0 0 0 8 5 0 13 

Shrub/Scrub 0 0 2 0 0 1 3 
Bare 0 0 0 0 0 0 0 
Total 16 1331 35 9 6 1 1398 

 
Class Commission (%) Omission (%) Prod. Acc. (%) User Acc. (%) 
Water 0 0 100 100 

Mangrove Forest 0.2 0 100 99.8 
Freshwater Marsh 0 5.7 94.3 100 

Saltwater Marsh & Sawgrass 38.5 11.1 88.9 61.5 
Shrub/Scrub 0 0 0 0 

Bare 0 0 0 0 
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Table B-6: Random Forest Classification Confusion Matrix for the year 2016 (Landsat 8 OLI) 
Overall accuracy = 98.5% with a Kappa Coefficient (KHAT) = 0.96 

T
ra

in
in

g 
Si

te
s 

(9
0%

) 

Testing Sites (10%) 
Class Water Mangrove 

Forest 
Freshwater 

Marsh 
Saltwater Marsh 

& Sawgrass Prairie 
Shrub/
Scrub 

Bare Total 

Water 54 0 0 0 0 0 54 
Mangrove Forest 0 1106 0 7 1 0 1114 
Freshwater Marsh 0 0 176 9 0 0 185 
Saltwater Marsh & 

Sawgrass 
1 0 1 21 0 0 23 

Shrub/Scrub 0 0 0 0 0 0 0 
Bare 0 0 1 0 0 0 1 
Total 55 1106 178 37 1 0 1377 

 
Class Commission (%) Omission (%) Prod. Acc. (%) User Acc. (%) 
Water 0 1.8 98.2 100 

Mangrove Forest 0.7 0 100 99.3 
Freshwater Marsh 4.9 1.1 98.9 95.1 

Saltwater Marsh & Sawgrass 8.7 43.2 56.8 91.3 
Shrub/Scrub 0 0 0 0 

Bare 0 0 0 0 
 

Table B-7: Random Forest Classification Confusion Matrix for the year 2016 (Sentinel-2) 
Overall accuracy = 100% with a Kappa Coefficient (KHAT) = 1 

T
ra

in
in

g 
Si

te
s 

(9
0%

) 

Testing Sites (10%) 
Class Water Mangrove 

Forest 
Freshwater 

Marsh 
Saltwater Marsh 

& Sawgrass Prairie 
Shrub/
Scrub 

Bare Total 

Water 120 0 0 0 0 0 120 
Mangrove Forest 0 2496 0 0 0 0 2496 
Freshwater Marsh 0 0 394 0 0 0 394 
Saltwater Marsh & 

Sawgrass 
0 0 0 40 0 0 40 

Shrub/Scrub 0 0 0 0 0 0 0 
Bare 0 0 0 0 0 2 2 
Total 120 2496 394 40 0 2 3052 

 
Class Commission (%) Omission (%) Prod. Acc. (%) User Acc. (%)  
Water 0 0 100 100 

Mangrove Forest 0 0 100 100 
Freshwater Marsh 0 0 100 100 

Saltwater Marsh & Sawgrass 0 0 100 100 
Shrub/Scrub 0 0 0 0 

Bare 0 0 100 100 
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Appendix C. Area of Each Land Cover Class. 
 
Table C-1: Area (ha) of each land cover class for the year 1995 within the GRTS boundary and the 30 GRTS 

random sampled grids. 
YEAR 1995 

 Within GRTS Boundary Within GRTS Sampled Grids 
Water 26,522 2,924 
Mangrove Forest 103,722 6,569 
Freshwater Marsh 63,708 8,301 
Saltwater Marsh/Sawgrass prairie 3,136 508 
Shrub/Scrub 128 24 
Bare Ground/Developed 0 0 

 
Table C-2: Area (ha) of each land cover class for the year 2000 within the GRTS boundary and the 30 GRTS 

random sampled grids. 
YEAR 2000 

 Within GRTS Boundary Within GRTS Sampled Grids 
Water 21,874 2,172 
Mangrove Forest 99,580 15,963 
Freshwater Marsh 54,233 5,832 
Saltwater Marsh/Sawgrass Prairie 70,848 9,448 
Shrub/Scrub 7,620 1,355 
Bare Ground/Developed 142 47 

 
Table C-3: Area (ha) of each land cover class for the year 2005 within the GRTS boundary and the 30 GRTS 

random sampled grids. 
YEAR 2005 

 Within GRTS Boundary Within GRTS Sampled Grids 
Water 25,925 2,664 
Mangrove Forest 102,048 16,505 
Freshwater Marsh 43,519 4,449 
Saltwater Marsh/Sawgrass Prairie 74,488 9,792 
Shrub/Scrub 7,641 1,372 
Bare Ground/Developed 655 29 

 
Table C-4: Area (ha) of each land cover class for the year 2010 within the GRTS boundary and the 30 GRTS 

random sampled grids. 
YEAR 2010 

 Within GRTS Boundary Within GRTS Sampled Grids 
Water 22,961 2,187 
Mangrove Forest 97,360 16,255 
Freshwater Marsh 38,654 4,893 
Saltwater Marsh/Sawgrass Prairie 88,570 10,161 
Shrub/Scrub 6,359 1,273 
Bare Ground/Developed 394 48 
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Table C-5: Area (ha) of each land cover class for the year 2015 within the GRTS boundary and the 30 GRTS 
random sampled grids. 

YEAR 2015 
 Within GRTS Boundary Within GRTS Sampled Grids 
Water 20,855 1,907 
Mangrove Forest 94,014 16,330 
Freshwater Marsh 31,197 3,861 
Saltwater Marsh/Sawgrass Prairie 100,742 11,480 
Shrub/Scrub 6,625 1,109 
Bare Ground/Developed 866 129 

 
Table C-6: Area (ha) of each land cover class for the year 2016 within the GRTS boundary and the 30 GRTS 

random sampled grids using Landsat 8 OLI. 
YEAR 2016 

 Within GRTS Boundary Within GRTS Sampled Grids 
Water 21,906 2,033 
Mangrove Forest 94,739 15,922 
Freshwater Marsh 39,927 4,671 
Saltwater Marsh/Sawgrass Prairie 88,854 10,952 
Shrub/Scrub 7,992 1,152 
Bare Ground/Developed 881 87 
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Appendix D. Gains and Losses of Mangrove Forest in the Everglades National Park. 
 

 
Figure D-1: Gains (green), Losses (red), and areas of persistence of mangrove forest within the 

Everglades National Park between the 1995 and 2000 epochs. 
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Figure D-2: Gains (green), Losses (red), and areas of persistence of mangrove forest within the 

Everglades National Park between the 2000 and 2005 epochs. 
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Figure D-3: Gains (green), Losses (red), and areas of persistence of mangrove forest within the 

Everglades National Park between the 2005 and 2010 epochs. 
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Figure D-4: Gains (green), Losses (red), and areas of persistence of mangrove forest within the 

Everglades National Park between the 2010 and 2015 epochs. 
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Figure D-5: Gains (green), Losses (red), and areas of persistence of mangrove forest within the 

Everglades National Park between the 2015 and 2016 epochs. 
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Appendix E. Glossary Viewer 
 

● Aggregation - Collection of images or fractions of individual pixels within images that are overlaid 
to create a unified, composite image. 

● ArcMap - Main component of ESRI’s ArcGIS suite, used for map creation and geospatial analysis. 
● Bare Ground/Developed - One of the classes in the classification scheme created by the team. It 

refers to urban areas, roads, beaches, and other bare ground. 
● Buffer - an isolation of a specific geographical zone. 
● C-CAP –  NOAA Coastal Change Analysis Program. 
● Carbon sink - an ecosystem able to absorb carbon dioxide from the atmosphere. 
● Ecotone - Gridded sampling method shapefile that features large rectangular polygons along the 

ENP coastline, contains 42 polygons. 
● ENP - Everglades National Park. 
● Endemic - With reference to a plant or animal, a species that is unique to a specific region.  
● Fmask - A function that contains cloud removal capabilities. Operates by removing data from cloud 

covered areas, “cutting” the cloud from the image. 
● Freshwater Marsh - One of the classes in the classification scheme created by the team. It refers to 

freshwater wetlands, grass-like plants, marshes, meadows, fens. 
● Google Earth Engine API - A cloud-based platform used for GIS (remote sensing) analysis and 

map creation. 
● GRTS - “generalized random tessellation stratified” Gridded sampling method shapefile commonly 

used by ENP, contains 1024 small polygon regions covering the park. 
● Hydrology - Pertaining to the study of water and its movements. 
● In situ - Referring to institute, or ground, data that has been verified in person by NPS officials. 
● Inland - location inside the land away from coastal area. 
● KML files - “Keyhole Markup Language” park boundary and sampling shapefiles sent by ENP were 

run through ArcMap to convert to this file type so it would be compatible with GEE. 
● Landsat (5, 7, and 8) - Satellites from NASA EOs, equipped with 7, 8,  and 11 bands respectively 

whose various combinations provide  information on land cover types beyond the visible spectrum. 
● Mangrove Forest - One the classes in the classification scheme created by the team. They are large 

clusters of mangrove dominant stands. 
● Orthorectified - With reference to a Landsat collection, meaning geometrically corrected to have 

consistent translation from a spherical view to a two dimensional plane 
● Path - Part of WRS-2 latitude/longitude converter for Landsat images. Converts a specific 

coordinate into the scene boundary it is encompassed by. Signifies latitude. 
● Pond - One of the classes in the classification scheme created by the team. Refers to an inland closed 

body of water but is not characterized by salinity. Appears dark blue in vegetation false color 
composite but can be blue, green, or brown in true color. Later merged with all bodies of water. 

● Reflectance - Ratio or proportion of light reflected on surface. In remote sensing reflectance gives 
important information about surface of objects. 

● Row - Part of WRS-2 latitude/longitude converter for Landsat images. Converts a specific 
coordinate into the scene boundary it is encompassed by. Signifies longitude. 

● Saltwater Marsh - One of the classes in the classification scheme created by the team. It refers to 
salt and brackish marshes associated with tidal estuaries along the coastline. 
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● Sawgrass Prairie - One the classes in the classification scheme created by the team. It refers to 
freshwater, grassland marsh. 

● Sentinel 2a - Earth Observation Satellite from European Copernicus programme. 
● Shapefiles - Data file format that contains geospatial information that is classified by points, lines, 

and polygons rather than pixels (raster files). 
● Shurb/Scrub - One of the classes in the classification scheme created by the team. They are small 

stand of vegetation within a marsh or prairie habitat. 
● Supervised Classification - A process by which the user specifies the training land cover types and 

locations, and is then applied to all pixels within the selected boundaries.  
● STATSGO - State Soil Geographic (STATSGO) Data Base. 
● TIGER - Topologically Integrated Geographic Encoding and Referencing. TIGER are from US 

Census bureau database and contain spatial information such as roads, railroads, rivers etc.. 
● TerrSet - Software system used for geospatial modeling and known for its ability in ecological 

forecasting. 
● Testing [points] - Ten percent of the created polygons that were kept separate, and not used for the 

creation of the classifier. Keeping the points separate allowed them to be reclassified by the classifier 
and compared to for accuracy. 

● tidalZone - One of the classes in the classification scheme created by the team. This class appears to 
be sandy soil in true color, but in vegetation false color appears as water. Later merged with all bodies 
of water. 

● TIF files (TIFF) - “Tagged Image Format File,” used when exporting highly detailed images from 
Google Earth Engine to ArcMap. 

● Training [points] - Ninety percent of the created polygons, used for the creation of the classifier. 
These points were created from visual analysis of the region. 

● Water - In this project water is used as one the classes and refer to ponds, oceans, rivers, lakes. 
 

 
 
 


