National Aeronautics and Space Administration

Communications for UAS Integration in the NAS Phase 2: Satellite Communications and Terrestrial Extension

Presented by: Bob Kerczewski

2017 ICNS Conference 18-20 April 2017

<u>OUTLINE</u>

- Introduction
- UAS in the NAS C2 Subproject Objectives
- C2 Subproject Phase 1 Overview
 - Air-Ground Channel Propagation
 - C2 Radio Development and Testing
 - UAS C2 Spectrum
 - Standards Development
- C2 Subproject Phase 2
 - Terrestrial Extension
 - Ka-Band Satellite Communications
 - Ku-Band Satellite Communications
 - Ku-Band Interference and Propagation
 - C-Band Satellite Communications
- Summary

Introduction

Integration of Unmanned Aircraft Systems (UAS) into the National Airspace System (NAS) – controlled (non-segregated) airspace

- Command and Control (C2) communications link
 - Line of Sight (LOS) terrestrial link
 - Beyond (radio) Line-of-Sight (BLOS) satellite link
- Performance standards must be developed and validated.

NASA's UAS Integration in the NAS

- 2012-2016: Phase 1 focused on radio line-of-sight (LOS) C2 links
- 2017-2020: Phase 2 will focus on beyond radio line-of-sight (BLOS) C2 links.

Activity	bps
Telecommand	4593
Navigational Aid Setting	666
ATC Voice	4800
ATC Data	49
Total	10108

Uplink (GCS to RPAS)

Activity	bps
Telemetry	7975
Navaid Display Data	1137
ATC Voice	4800
ATS Data	59
DAA	4800
Weather	27770
Video	270000
Total	316161

Downlink (RPAS to GCS)

UAS in the NAS C2 Subproject Objectives

Frequency spectrum allocations for both LOS and BLOS UAS C2

 Analysis, sharing studies, and advocacy to support the establishment of spectrum allocations technical requirements of operational spectrum use Beyond

Develop/validate UAS C2 Minimum Operational Performance Standards (MOPS)

Technology assessment, collaborative prototype development, laboratory and flight testing

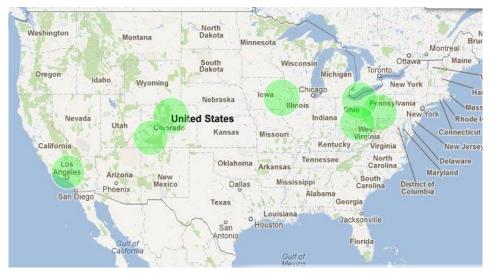
Develop security recommendations for civil UAS C2

Establish security requirements, develop, test and validate technical recommendations

Support recommendations for integration of UAS in the NAS

• Through flight testing, C2 system modeling and simulation, and analysis develop and validate technical recommendations for integration of UAS into the airspace

Air-Ground Channel Propagation

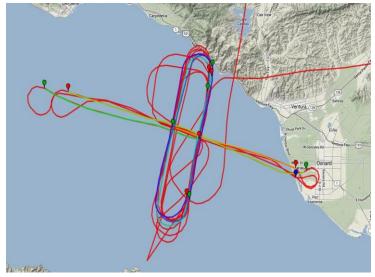


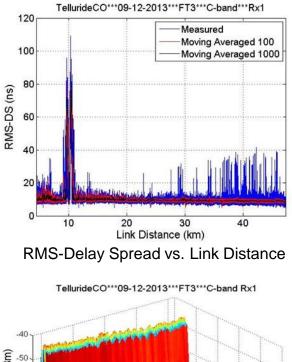
Lockheed Orion S-3B research aircraft. Inset: antenna locations

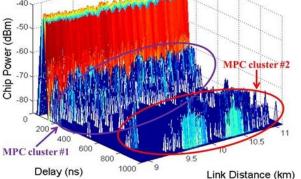
Air-ground channel characterization in 7 different locations studied several terrain types:

- Mountainous
- Hilly
- Flat terrain
- Near-urban

- Suburban
- Salt water
- Fresh water

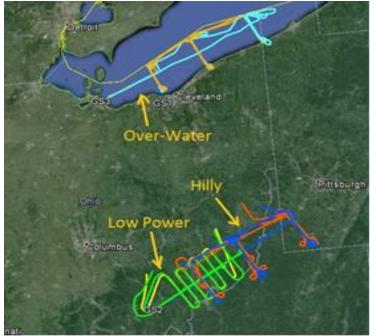

AG channel measurement flight test locations




Air-Ground Channel Propagation

- Flight tracks provided varied orientations relative to the ground station and terrain.
- Channel impulse responses were measured and power delay profiles calculated.
- Channel models were developed for all terrain types.

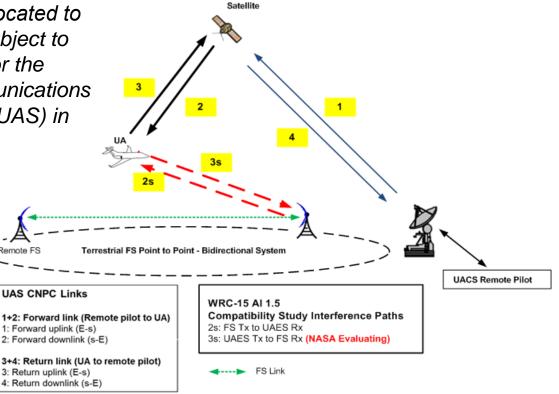
Example Flight Tracks for Over Sea Propagation Measurements near Oxnard, California


Power Delay Profiles

C2 Radio Development and Testing

- Shared-resource cooperative agreement with Rockwell Collins
- Five generations of prototype C2 radios, both ground and airborne versions, were used to validate the MOPS
- Radios operated in the 960 977 MHz and 5030 5091 MHz bands.
- A complete CNPC system
 - Interface to a ground based pilot station
 - Transmission of CNPC data to/from more than one ground station
 - Onboard reception and transmission of CNPC data on more than one UA
- Testing included
 - Hand-off, coverage limits
 - Signal loss and recovery
 - Mountainous, desert, hilly, urban, and over water environments
- C2 Flight Testing Statistics (2012-2016)
 - >65 mission flights flown at 12 locations
 - >200 hours of flight data collection
 - >12,000 miles traveled by portable GS

C2 Radio Flight Test Tracks for Several Flights in Northern and Southern Ohio


UAS C2 Spectrum

Sharing studies for 2015 World Radiocommunication Conference Agenda Item 1.5:

> "the use of frequency bands allocated to the fixed-satellite service not subject to Appendices 30, 30A and 30B for the control and non-payload communications of unmanned aircraft systems (UAS) in non-segregated airspaces..."

- Studies focused on interference from the UAS into terrestrial systems (link "3s")
- Ku-Band 14.0-14.5 GHz
- Ka-Band 27.5-29.5 GHz
- Bands in which Fixed Service allocations exist

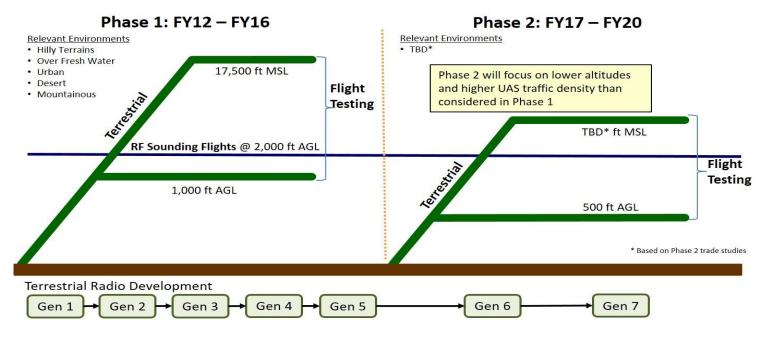
WRC-15 adopted Resolution 155, providing C2 allocations in both Ku-Band and Ka-Band

Sharing scenario for UAS BLOS C2 in FSS bands.

Standards Development

- RTCA Document DO-362, Command and Control (C2) Data Link Minimum Operational Performance Standards (MOPS) (Terrestrial) developed by RTCA Special Committee 228 (SC-228) was published 22 September 2016
- UAS in the NAS laboratory and flight testing, system and network modeling and • simulation, system security analysis, spectrum studies and operational analyses contributed to the MPS development and validation
- UAS in the NAS wrote all or part of MOPS sections:
- Equipment Performance Requirements and Test Procedures – Section 2
- Common Characteristics Section 2.2.1
- Section 2.2.2
- CNPC Link System Manufacturer-Specific Radio Requirements – Section 2.2.3
- Equipment Performance Verification Procedures Section 2.4
- Security Considerations Appendix D
- UAS CNPC Link System Operational Capabilities and Implementation Considerations – Appendix F
- Data Rates Appendix J •
- Example CNPC Link Budgets Appendix L

- UAS CNPC Link Performance (Based on NASA GRC Flight Test Data) – Appendix K
- MOPS Baseline CNPC Link System Appendix M
- MOPS Baseline CNPC Link System Requirements • Bench Test Data for the MOPS Baseline CNPC Link System – Appendix N
 - Flight Test Data for the MOPS Baseline CNPC Link System – Appendix O
 - Compatibility of TACAN Operations and CNPC Operations using L-Band Signals (Based on baseline radio design) – Appendix P
 - Summary of NASA Air-Ground Channel Measurements and Models – Appendix Q
 - CNPC Link Undesired-to-Desired Signal Ratios (Based on NASA GRC Flight Test Data) – Appendix R 9


- Focus on BLOS C2 communications link
- Similar to Phase I:
 - Develop, bench test and flight test the satellite C2 link
 - Provide technical requirements and performance validation for Command and Control (C2) Data Link Minimum Operational Performance Standards (MOPS) (Terrestrial) now beginning to be developed by RTCA SC-228.
- Ku-Band and Ka-Band systems to be tested
 - WRC-15 Resolution 155 allows FSS bands to be used for UAS C2 links in non-segregated* airspace:
 - 10.95-11.2 GHz, 11.45-11.7 GHz, 11.7-12.2 GHz (Region 2), 12.2-12.5 GHz (Region 3), 12.5-12.75 GHz (Regions 1 and 3) and 19.7-20.2 GHz (space-to-Earth)
 - 14-14.47 GHz and 29.5-30.0 GHz (Earth-to-space)
- C-Band study to be conducted, 5030-5091 MHz
- Terrestrial extension of completed MOPS lower altitudes, higher density
 - Terrestrial radio development and flight testing, similar to Phase 1
 - C-Band only, 5030-5091 MHz

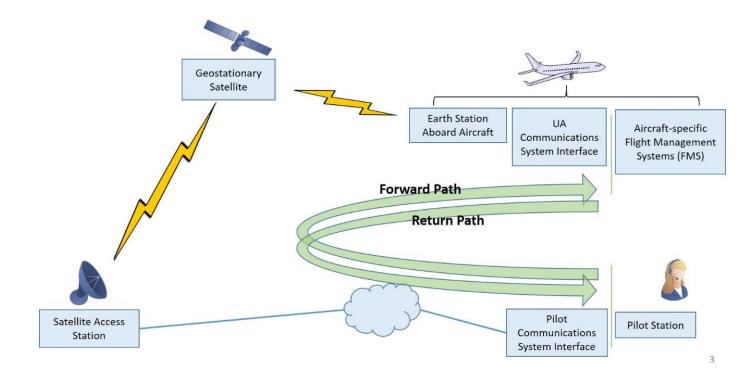
Terrestrial Extension

- Addresses the smaller, lower altitude, higher traffic density mid-size UAS operational environment
- Technology assessment of signal waveform and access considerations
- Develop additional generations of prototype C2 terrestrial radio system
- Laboratory and flight tests in a relevant flight environment
- Support the extension of the current RTCA SC-228 C2 Terrestrial MOPS

Ka-Band Satellite Communications

- Develop an appropriate Ka-Band satellite communications-based link between the UAS and the ground control station (GCS) that supports the required performance of the unmanned aircraft in the NAS
 - Ensures that the pilot always maintains a threshold level of control
 - Enables performance validation and development of technical data to support BLOS C2 satellite communications MOPS development
- Flight testing in a relevant environment
- NASA GRC entered into a cooperative agreement with Honeywell International,
 - Use of the Inmarsat Global Express network/Inmarsat I-5 Ka-Band satellite
 - Honeywell's JetWave high-speed satellite communications hardware
- Frequencies defined in WRC-15 Resolution 155: 29.5-30.0 GHz for earth-tospace and 19.7-20.2 GHz for space-to-earth.
- Testing will occur at en-route flight altitudes
- Two types of Ka-Band aircraft satellite communications will be tested
 - Fuselage-mounted phased array
 - Tail-mounted mechanically steerable parabolic reflector

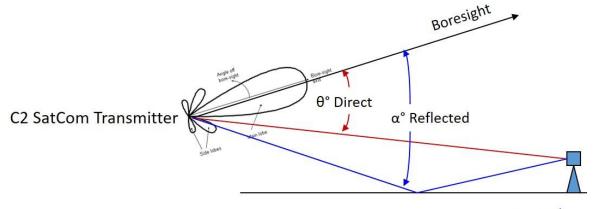
Ku-Band Satellite Communications


- The flight testing described for BLOS C2 satellite communications in Ka-Band will be duplicated in the Ku-Band frequencies
- 14.0-14.47 GHz for earth-to-space, and 10.95-11.2 GHz, 11.45-11.7 GHz, 11.7-12.2 GHz space-to-earth bands applicable globally or in ITU Region 2
- A cooperative agreement partner was not available for Ku-Band testing
 - NASA GRC will develop the required aircraft and ground terminal equipment
 - Identify a suitable Ku-Band satellite network for the flight testing

Ku- and Ka-Band Satellite Communications

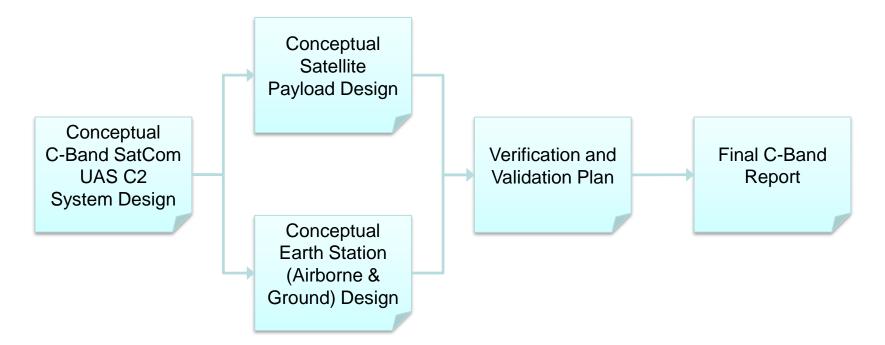
- End-to-end communications latency testing
- Link performance vs. transmit power, data rate, modulation and coding, multiple access scheme, and other parameters.

Ku-Band Interference and Propagation


- Resolution 155 allocated Ku-Band C2 spectrum that must share with another co-primary service – Fixed Service (point-to-point and point-to-multipoint digital microwave links)
 - Protection of the Fixed Service from harmful interference from UAS satellite transmitters was (WRC-15) and is (WRC-19) a very contentious issue
 - Resolution 155 requires that a power flux density (pfd) limit be established for the UAS satellite transmitter to protect the Fixed Service
 - The details of the pfd limit are to be decided at WRC-19
- The propagation characteristics of the "interference" channel the air-ground channel at 14.0-14.47 GHz have not been well established
- NASA will therefore conduct a propagation measurement campaign to establish propagation characteristics and channel models
 - Flight test campaign similar to Phase 1 (960-977 MHz and 5030-5091 MHz)
 - Development of channel models appropriate for interference assessment

Ku-Band Interference and Propagation

- Initial experiment design:
 - Omni-directional antenna on the bottom of the aircraft
 - 2 ft. parabolic receive antenna on the ground, simulate Fixed Service receive station
 - Broad beamwidth horn antenna to capture larger range of transmission
- See previous presentation "UAS Satellite Earth Station Emission Limits for Terrestrial System Interference Protection"


Ground Receiver

C-Band Satellite Communications

- An AMS(R)S allocation in C-Band covers the 5030-5091 MHz band and would also be suitable for BLOS C2 satellite communications.
 - C-Band will be studied to provide technical data for MOPS development
- However there are no existing satellites operating in this band
 - No flight testing is possible
- The C-band activity will therefore be study-based

Summary

- NASA's UAS in the NAS Project's C2 Subproject has entered Phase 2
- <u>Phase 1 (2012-2016) emphasized LOS C2 terrestrial link</u>, development of technical data for supporting the completion of C2 Terrestrial MOPS
 - L-Band/C-Band air-ground channel; C2 prototype radio development and testing; system and network modeling; security analysis; sharing studies for BLOS spectrum allocation; MOPS document DO-362
- Phase 2 (2017-2020) emphasizes BLOS C2 satellite communications
- As with Phase 1, technical data will be developed to support RTCA SC-228 development of BLOS C2 satellite communications MOPS.
- Terrestrial extension of the C2 Terrestrial MOPS (i.e. DO-362)
 - Smaller, lower altitude, higher traffic density mid-size UAS operations
 - Tech assessment, C2 radio development, laboratory and flight testing
- Ku and Ka-Band C2 satellite link development and testing
 - Cooperative agreement with Honeywell for Ka-Band
 - NASA GRC in-house development and testing at Ku-Band
- Ku-Band air-ground channel model development for interference modeling
- C-Band C2 satellite link study, develop technical performance information₁₈

Thank you!

For further information contact: <u>Jim Griner</u> jgriner@nasa.gov <u>Robert J. Kerczewski</u> rkerczewski@nasa.gov

NASA Glenn Research Center