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NASA Transformational Tools and Technology Project

Critical Aeronautics Technologies (CAT) Sub-Project 

• High Temperature Engine Materials

• Technical Challenge:  Develop high temperature 

materials for turbine engines that enable a 6% 

reduction in fuel burn for commercial aircraft, 

compared to current SOA materials 

2
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• Reduced component weight (1/3 density of superalloys)

• Higher temperature capability/increased thermal margin

• Reduced cooling requirements

• Improved fuel efficiency            further increase with

• Reduced emissions (NOx and CO2)

SiC/SiC Components for Gas Turbine Engines:  Benefits

2700°F CMC components

Incentive to Increase Engine Operating Temperatures
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Evaluation of CVI SiC/SiC Composites for                                                   

High Temperature Applications

4

Determine damage mechanisms and failure modes under creep

deformation from 2200°F (1200°C) to 2700°F (1482°C) in air.
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Evaluation of CVI SiC/SiC Composites for                                                   

High Temperature Applications

Approach 

• Building on a previous GRC study1 of 2D CVI (chemical vapor 

infiltration) SiC/SiC reinforced with SylramicTM-iBN SiC fabric 

(manufactured by Hyper-Therm*)

• Building on previous SiC fiber and SiC/SiC CMC and minicomposites 

creep modeling (DiCarlo2, Shinavski3, Bhatt4, and Almansour5)

• Conduct CMC creep study at 2200°F (1200°C) to 2700°F (1482°C)               

—with a limited number of specimens 

• Examine samples following 2700°F (1482°C) creep testing (run-out 

condition) and characterize their residual properties / integrity

5

* Hyper-Therm HTC, Inc. became Rolls-Royce HTC 
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Previous Study

6

• 2D CVI (chemical vapor 

infiltration) SiC/SiC reinforced 

with SylramicTM-iBN SiC fabric 

(manufactured by Hyper-Therm) 

• Machined EPM geometry 

samples were CVI SiC

seal-coated to seal the coupons’ 

edges

1
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EPM Tensile Geometry: 6” Dog-bone Sample

7

gage section:

20% reduction in 

width, with tapering 

from 0.5” (grip) to   

0.4” (gage) 



Room T FF            

(Ave. 3 tests)

2700°F  FF                

(Ave. 2 tests)

σ ULT ave. 47.1 ksi (325 MPa) 31.9 ksi (220 MPa) 

ε ULT ave. 0.24% 0.17%

PLS ave. 18.6 ksi (128 MPa) 

E ave. 47.7 Msi (329 GPa) 32.9 Msi (227 GPa)

Representative RT FF Stress-Strain Curve

8

For

Comparison

SylramicTM-iBN SiC Fiber-Reinforced CVI SiC Matrix         

CMC with BN Interphase — Fast Fracture Testing

Ref. 1
Creep Testing:

Stay below RT PLS 

PLS 



0

0.05

0.1

0.15

0.2

0.25

0 20 40 60 80 100 120

S
tr

a
in

 (
%

)

Time (hours)

Tensile Creep Test Elevated Temperature

SBN 04-15 Tested 2700 deg F @ 10 Ksi

Residual RT FF 

Properties

Ave. 3 

tests
σ ULT. 46.6 ksi

ε ULT 0.28%

PLS 18.8 ksi

E 47.3 Msi

Three Samples Tested -- Observed

Virtually Identical Creep Behavior

Ave. Total Strain = 0.21%

Residual Properties Very Similar to Those of the As-Received CMC

Representative Creep Curve
Run Discontinued at 100 hrs

9

SylramicTM-iBN SiC Fiber-Reinforced CVI SiC Matrix         

CMC with BN Interphase — 2700°F Tensile Creep, 10 ksi, Air 

Ref. 11482°C, 69 MPa

Conclude that the matrix did not crack and that the fibers were not degraded during creep 
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Material

- Similar to CMC material from previous GRC study 

• 2D CVI (chemical vapor infiltration) SiC/SiC reinforced with 
SylramicTM-iBN SiC fabric 

• Machined tensile samples were CVI SiC seal-coated to seal the 
coupons’ edges

• Made by HTC (via NASA LaRC-funded SBIR Phase II Contract 
NNX11CB63C).  Bequeathed by D. Brewer

- Relevant material system, especially for 2700°F applications

Current Study

10



National Aeronautics and Space Administration

www.nasa.gov

Creep of CVI SiC/SiC CMC 3

• When CMCs are loaded below the matrix cracking stress (PLS), 
fibers are not exposed to oxidation damage and they carry a 
fraction of the applied load.  

• If the matrix is more creep resistant, the fiber unloads over time 
and matrix load increases, which increases the possibility of matrix 
damage.    

Current Study

11
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2D CVI SiC/SiC Reinforced with SylramicTM-iBN:
Creep in Air— 5 Different Conditions, and RT FF of As-Received  

Specimen ID Test Condition 
(Temperature: °F,  Stress: ksi,  Time: hrs)

1520-S2-1 2700°F, 10 ksi for 100 hrs

1520-S2-2
2700°F, SPLCF*, R=0.5, 5 / 10 ksi

for 100 hrs

1520-S2-3

2700°F,    10 ksi for 100 hrs, 

12.5 ksi for 100 hrs, 

15 ksi for 100 hrs

1520-S2-4 RT FF Tensile Test

1520-S2-5

2200°F, 12.5 ksi for 100 hrs, 

2460°F, 12.5 ksi for 100 hrs,                  

2700°F, 12.5 ksi for 100 hrs

1520-S2-6 2700°F, 12.5 ksi for 300 hrs

Creep 

Testing:

Stay below 

RT PLS 

* Sustained Peak Low Cycle Fatigue
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S2-4 (As-Fabricated Sample)
Prepped for Resistivity Measurement

2D CVI SiC/SiC Reinforced with SylramicTM-iBN:
Testing at Room Temp.:  As-Rec. and Following Creep in Air

Used various characterization approaches 

(AE, resistivity, hysteresis testing, and 

fractography) to determine which ones 

provide the most useful post-test information.

S2-6 (Post-creep)
Unique Acoustic Emission (AE) Set-up

In Progress[                 ]
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2D CVI SiC/SiC Reinforced with SylramicTM-iBN:
Testing at Room Temp.:  As-Rec. and Following Creep in Air

Unique Acoustic Emission (AE) Set-up for Characterizing Cracking

S2-6 (Post-creep)

Front                   

sensor

extensometer

resistance

AE sensor

resistance
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2D CVI SiC/SiC Reinforced with SylramicTM-iBN:
Testing at Room Temp.:  As-Rec. and Following Creep in Air

Also Collecting Resistivity Data for Characterizing Cracking

S2-6 (Post-creep)

Side

resistance

resistance

(mesh)

resistance

resistance

Examine 

cracking in 

gage section

conductive

mesh

gage
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Determination of CMC Stress Dependence Creep at 2700 °F 
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SylramicTMiBN/BN/CVI-SiC Creep in Air

2200 °F, 86.2 MPa

2D CVI SiC/SiC Reinforced with SylramicTM-iBN:
Creep in Air— Results of 5 different testing conditions 

• No failures occurred due to 

creep

• All tests were run-outs: 

discontinued as-planned

• One test per condition
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2D CVI SiC/SiC Reinforced with SylramicTM-iBN:
Creep in Air at 2700°F (1482°C)

S2-2

S2-1

S2-6

SPLCF, R = 0.5, 5 / 10 ksi

• Strain rate measured 

at end of each test 

2700°F, 10 ksi for 100 hrs

2700°F, 12.5 ksi for 300 hrs

• Held at T without loading following test 

to observe elastic creep recovery

• Material shows 

less creep than 

Study 1 CMC
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SylramicTMiBN/BN/CVI-SiC Creep at 2700°F in Air 

103.4 MPa86.2 MPa69 MPa

S2-3

10 Ksi 12.5 Ksi 15 Ksi

Determination of CMC Creep Stress-Dependence

2D CVI SiC/SiC Reinforced with SylramicTM-iBN:
Creep in Air at 2700°F (1482°C)— Exposed to 3 stresses 

• Strain rate measured 

at end of each 100 hr 

segment

Sample

100 hr

200 hr

300 hr

• Very similar 

to S2-1 

creep curve
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Determination of CMC Stress Dependence Creep at 2700 °F 
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SylramicTMiBN/BN/CVI-SiC Stress Dependence at 2700 °F

  = B   

B is a constant =9.72 *10-15

n is the stress exponent ~ 3.5

S2-3

10 Ksi

15 Ksi

12.5 Ksi

2D CVI SiC/SiC Reinforced with SylramicTM-iBN:
Creep in Air at 2700°F (1482°C) 

Determination of CMC Creep Stress-Dependence
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Determination of CMC Stress Dependence Creep at 2700 °F 
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S2-5

2D CVI SiC/SiC Reinforced with SylramicTM-iBN:
Creep in Air, 12.5 ksi (86.2 MPa)—Exposed to 3 Temperatures 

Examination of CMC Creep Temperature-Dependence at 2200-2700 °F 

1200°C 1350°C
1482°C

• Held at 2700º F to 

assess creep 

recovery; broke 

during cool-down

Sample

• Strain rate measured 

at end of each 100 hr 

segment

Heating /

expansion
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Determination of CMC Stress Dependence Creep at 2700 °F 

y = -12849x - 8.8175
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SylramicTMiBN/BN/CVI-SiC Temperature Dependence
2200-2700 °F under 86 MPa in Air

Slope = (− )/ 
R= Gas Constant= 8.314 J/K.mol

Q= Activation Energy= 107 KJ/mol

S2-5

2200°F

1200°C 

2460°F

1350°C 

2700°F

1482°C 

2D CVI SiC/SiC Reinforced with SylramicTM-iBN:
Creep in Air, 12.5 ksi (86.2 MPa)—Exposed to 3 Temperatures 

• Activation Energy is 

dependent on when strain 

rate is measured (hrs of 

creep completed)

Sample

at 100 hr, 86.2 MPa

Examination of CMC Creep Temperature-Dependence at 2200-2700 °F 

• Contribution from Primary Creep 

leads to low Activation Energy
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Determination of CMC Stress Dependence Creep at 2700 °F 
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Creep Resistance @ 2700°F, 86 MPa Dependence on Loading History

CMC Creep Dependence on Mechanical and Thermal Loading Histories

After:   12.5 ksi:  100 hrs at 2200°F, 100 hrs at 2460°F, 100 hrs at 2700°F

Example of How Measured Strain Rate Depends on Loading History

After:   100 hrs at 2700°F (10 ksi), 100 hrs at 2700°F (12.5 ksi)       
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2D CVI SiC/SiC Reinforced with SylramicTM-iBN:
Creep in Air— 5 Different Conditions, and RT FF of As-Received  

Specimen ID
Test Condition 

(Temperature: °F, Stress: ksi,      

Time: hrs)

RT Fast Fracture

Residual UTS         
(ksi, MPa)

RT Fast Fracture

Ultimate Strain          
(%)

1520-S2-1 2700°F, 10 ksi for 100 hrs 49.5, 341 0.26

1520-S2-2
2700°F, SPLCF, R=0.5, 5 / 10 ksi

for 100 hrs
51.6,       356 Ext. Moved

1520-S2-3

2700°F, 10 ksi for 100 hrs, 

12.5 ksi for 100 hrs, 

15 ksi for 100 hrs

45.1,       311 0.31

1520-S2-4 RT Tensile test 49.5,       341 0.33

1520-S2-5

2200°F, 12.5 ksi for 100 hrs, 

2460°F, 12.5 ksi for 100 hrs,      

2700°F, 12.5 ksi for 100 hrs

Broke upon cooling Not tested at RT

1520-S2-6 2700°F, 12.5 ksi for 300 hrs 47.1,       325 0.31
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Work Remaining / Future Work

• Fractography and microstructural characterization.

• Analyze AE (acoustic emission) and resistivity data.

• Analyze hysteresis testing data.

• Compare fiber loadings: Study 1 (previous) and Study 2 (current) materials.

• Review SiC/SiC activation energy data in open literature.

• Examine crack spacing in gage section of tested samples.

• Examine data collected when specimens were held at T following the   

creep testing to see how much strain recovery occurred.

• Prepare updated presentation (A. Almansour presenting at Pac Rim 

Conf. in 2017).

• Consider obtaining another panel of CVI SiC/SiC and conduct testing at 

2700°F / 3 stresses and 12.5 ksi / 3 temperatures.   Test minimum 2 

samples per condition.  Use selected post-test analysis techniques.

24
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Summary and Conclusions

• CVI SiC/SiC CMCs incorporating SylramicTM-iBN SiC fiber are being 

evaluated via tensile creep testing to determine creep parameters for 

modeling. 

• A stress exponent was determined at 2700°F, and an activation energy was 

calculated.  

• As reported previously (Shinavski et al3), the activation energy measured 

depends on the time/strain at which strain rates are measured, and on 

loading history.  

• All creep specimens achieved a run-out condition.  Fractography conducted 

on those samples following RT FF residual strength measurement will help 

determine whether or not any samples cracked during creep testing. 

• We are investigating various approaches to analyzing specimens following 

creep testing such as AE and resistivity to help us understand CMC damage 

mechanisms.

25
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