

American Helicopter Society's 73rd Annual Forum May 9-11, 2017

Hybrid Gear Performance Under Lossof-Lubrication Conditions

Kelsen E. LaBerge (ARL), Stephen P. Berkebile (ARL), Robert F. Handschuh (NASA), Gary D. Roberts (NASA)

Approved for public release

- Background
- Hybrid gear design
- Experimental setup
- Results
- Conclusions
- Future work

Approved for public release

Background

What is a hybrid composite gear?

U.S. ARMY RDECOM®

 Hybrid composite gear replaces the structural steel portion of a gear with a lightweight composite material

Why hybrid gears?

Approved for public release

- Hybrid gears offer a potential to increase the power density in drive systems.
- Advanced vertical lift configurations are pushing for multi-speed capability, requiring additional driveline components

Past Efforts

Small-Scale

3.5 inch pitch diameter hybrid gears

- One million cycle endurance test
- Static torque test

Approved for public release

Large-Scale

16.5 inch pitch diameter hybrid bull gear

- One million cycle endurance test at 3300 hp
- Operational testing at 5000 hp
- Static torque test on the web

What about operation under adverse conditions?

The Nation's Premier Laboratory for Land Forces

Approved for public release

Hybrid Gear Design

NASA

• T700S-50C standard modulus fiber

Approved for public release

U.S. ARMY RDECOM®

- Prepreg / compression molding approach for flat web element
- ACG MTM45-1 resin with MTA241 film adhesive

- Gears were reground to correct distortion caused by the curing process – Resulted in increased backlash
- Endurance test (10,000 RPM, 490 in-lb) completed to 10⁹ cycles
- Two hybrid gears used, no damage detected after endurance test

Approved for public release

Experimental Setup

Procedure

- Green Run at 10,000 RPM and 210 in-lb for at least 1 hour
- Increase torque to 520 in-lb
- At thermal equilibrium turn off oil supply pump and cap supply line
- Continue test until failure

Approved for public release

Results - Baseline

Approved for public release

Results - Experiment 1

Hybrid Driving Hybrid

- After shutdown loss-of-torque was verified
- Visual inspection showed that the hub had rotated with respect to the teeth on the left gear

Approved for public release

Approved for public release

Results - Experiment 1

Disassembled left gear

Modified right gear

NASA ARL

Approximate location of interlock pattern

Experiment 2

Approved for public release

Approved for public release

Results - Experiment 2

NASA

Approved for public release

u.s. army **RDECOM**®

U.S.ARM

Results - Experiment 2

NASA

Approved for public release

U.S. ARMY RDECOM®

U.S.ARMY

Results - Experiment 2

NASA

Approved for public release

Post-test Analysis

What is the source of the black substance on the gear teeth?

- Samples collected
 - Gear teeth
 - Gearbox

Approved for public release

- Uncured prepreg
- Thin film adhesive
- Analyzed using energy dispersive spectroscopy for elemental characterization

Gear Tooth Surface Sample

Gearbox Residue Sample

Approved for public release

EDS Analysis

Epoxy on Prepreg

Thin Film Adhesive

Approved for public release

Conclusions

- The mechanical interlock design in a hybrid gear is important during an oil-out event
- The pinned interlock pattern was shown to better withstand this type of event
- At increased temperatures, softened polymer at the gear mesh may act as a lubricant or sulfur-containing lubricant additive

The effects of material degradation on hybrid gear design for oil-out conditions needs further investigation

Future Work

- Isolate source of performance increase
 - Increased backlash
 - Polymer lubricant
- Can polymer flow phenomenon be used to increase survivability of steel gears during an oil-out event?

Approved for public release

Questions?

Acknowledgements:

- A&P Technology Provided hybrid gears used for this project as part of a NASA SBIR
- Roger Tuck Technician support
- ARL's Weapons and Materials Research Directorate – EDS