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Introduction:  Ancient lake deposits and valley 

networks on Mars provide strong evidence that its sur-

face was once modified by liquid water [1,2,3,4,5], but 

the extent of that modification is still debated. Ancient 

lacustrine deposits in Milna Crater (23.4 S, 12.3 W; 

Fig. 1) provide insight into the timescale and fluid vol-

ume required to construct fluvially derived sedimentary 

deposits near the Noachian-Hesperian boundary. Plac-

ing the lacustrine deposits their regional context in 

Paraná Valles provides a quantitative measurement of 

the intermittency of large, water-mediated sediment 

transport events in that region. 

Fig 1. Context for Milna, with drainage divides 

(white lines). White area is drainage area source for 

Milna. North is up. THEMIS VIS image mosaic. 

Methods:  We use CTX, HiRISE, MOLA, and 

THEMIS data coregistered in ArcMap 10 for all meas-

urements. Methods are more thoroughly described in 

[6]. We calculate the volume of the lacustrine deposits 

in Milna based on the current volume of the crater and 

the theoretical original volume of the crater [7]. We 

also take into account sediment porosity [8] and non-

fluvially-sourced sediment by comparing the fill to that 

of an adjacent, similarly sized crater. 

We then use a hydraulic model that takes into ac-

count bedload [9] and suspended sediment flux 

[10,11,12] to calculate the timescale and volume of 

water needed to transport the observed volume of la-

custrine sediment through the inlet channel. We meas-

ure the ratio of inner channel dimensions to their host 

valley in the region surrounding Milna in order to con-

strain the dimensions of the inlet channel.We also con-

sider a range of sediment sizes and model flow assum-

ing various channel types (gravel, sand, and bedrock). 

Results:  Milna (Fig. 2) has a filled volume of 50 

km3, preserves many fans and sinuous valleys, and has 

an inlet and outlet valley, indicating that it was once 

filled with fluid. Under the assumption of continuous 

deposition, we find that the lacustrine fill in Milna was 

transported during 15-4700 terrestrial years, using the 

broadest possible range of model assumptions. Using 

the most reasonable model assumptions [see 6] we find 

that the range is likely to be 75-365 terrestrial years. 

By placing the lacustrine deposits in Milna in re-

gional and global context, we estimate the fraction of 

the time fluid flows capable of significantly transport-

ing sediment operated (i.e. the intermittency, see [13]). 

Milna drains directly into the Paraná Valles system, 

which was fluvially active for 105-106 years during the 

late Noachian [14,15,16,17]. By spreading the total 

flux duration in Milna (i.e. ~102 yr) over the total 

length of activity in Paraná Valles, we find that the 

intermittency of fluvial activity of ~0.01-0.1%. We also 

compare the erosion rate of the drainage area sourcing 

Milna (Fig. 1) to average Noachian erosion rates. The 

average thickness of the sedimentary erosion over the 

entire drainage area needed to produce the fill observed 

in Milna is 2.2 m. Since average Noachian erosion 

rates were on the order of 10-5-10-6 m/yr [18], this 

again yields a ~0.01-0.1% fluvial intermittency factor. 

Discussion: The hydrological activity in Milna can 

be compared to the predictions of different climate 

scenarios: (i) an arid climate capable of periodic flood-

ing events sustained over ~105-106 years [e.g. 16,19], 

(ii) punctuated flooding events triggered by giant im-

pacts [e.g. 20], and (iii) a pervasively glaciated south-

ern highlands [e.g. 21,22]. 

Matsubara et al. [19] use a global hydrologic rout-

ing model to assess the the ratio of precipitation to 

evaporation (the “X-ratio”) of a lake. Matsubara et al. 

[19] find an “X-ratio” under which lakes are sustained 

over long time periods, similar to the extent of lakes in 

the Great Basin region in the western United States 

during the Last Glacial Maximum. We apply this range 

of the “X-ratio” to the Milna system, under the assump-

tion of one day-long storm per martian year delivering 

0.5-5 cm of rainfall (the fluid flux required to create 

the sediment flux required by our preferred model [6]). 

Under this scenario we calculate evaporation rates of 
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0.16-17 m per terrestrial year, which is similar to typi-

cal terrestrial evaporation rates in a wide range of cli-

mates (~meters per year [21,22]), implying that a sus-

tained arid climate capable of periodic flooding events 

is compatible with the observations we make at Milna. 

 Fig 2. A. A large, multi-lobed fan that is incised by 

sinuous valleys in the southeast corner of Milna just 

below the inlet valley (lower left). B. Annotation. Solid 

lines denote scarps, dotted lines denote valleys. Note 

Fan E superposes a valley and that the valleys are sinu-

ous and branched. Note also the stacked scarps visible 

at this (CTX) resolution in Fan Complex D, and Fans C 

& E.  There is also layering not associated with a dis-

crete lobe (white lines). CTX image.  

Impacts may create transitory climates under which 

liquid water could be mobilized [20]. Using models 

from [20], assuming a ~100 km radius bolide under a 1 

bar CO2 atmosphere, ~3 × 1011 m3 of water would be 

mobilized in the Milna drainage area. This is an order 

of magnitude less than the absolute minimum volume 

of water we calculate is required to transport the sedi-

ment observed in Milna (~4 × 1012 m3, [6]). Thus, 10 

bolides of this size would be required, which is unlike-

ly since most of the giant impact basins were formed 

prior to formation of Paraná Valles [17,25]. Similar 

difficulties exist when considering smaller bolides [6]. 

Thus, flux generated by giant impacts alone is unlikely 

to be responsible for the morphology seen at Milna. 

Periodic melting of an extensive southern ice sheet 

(e.g. by meteorite impacts, volcanism, or other temper-

ature excursions [21,22]) may also provide a suitable 

water reservoir. Fastook and Head [22] suggest that 

top-down melting of such an ice sheet could produce 

0.4 Mkm3 of water across the southern highlands 

(enough to fill all open-basin paleolakes [26]) during 

an extended, moderately warm period or during a sin-

gle, extremely warm summer. The observations at 

Milna indicate that an extended water release is more 

likely. We also emphasize that the required volume of 

water needs not only to fill the lakes, but also be capa-

ble of transporting the observed sedimentary fill. 

Conclusions: We find that the total integrated flu-

vial activity in Milna took place over ~102 yr. Consid-

ering both the timescales of fluvial activity in the adja-

cent Paraná Valles and estimates for global Noachian 

erosion rates, we calculate an intermittency factor for 

fluvial activity of ~0.01-0.1% during 105-106 yr near 

the Noachian-Hesperian boundary in the Paraná Valles 

region. These values are comparable to arid climates 

on Earth where the majority of fluvial sedimentary 

transport takes place during floods with multi-year to 

decadal recurrence intervals. Our calculations of inter-

mittency help to quantitatively reconcile the divergent 

estimates of the short and long timescales of fluvial 

activity on Mars reported in the literature. Future in-

vestigations of additional paleolakes will increase the 

robustness of our result. 
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